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Abstract: Regrind processing poses challenges for single-screw extruders due to the irregularly
shaped particles. For grooved feed zones, the output is lessened by the reduction of bulk density
in comparison to virgin material. Simultaneously, the melt temperature increases, reducing the
extruder’s process window. Through experimental investigations on a test stand, a novel feed
zone geometry (nominal diameter 35 mm) is developed. It aligns the regrind’s specific throughput
with that of virgin material. The regrind processing window is essentially increased. As the solids
conveying in the novel feed zone cannot be simulated with existing methods, numerical simulations
using the discrete element method are performed. Since plastic deformation occurs in the novel feed
zone geometry, a new hysteresis contact model is developed. In addition to spheres, the regrind and
virgin particles are modeled as superquadrics to better approximate the irregular shape. The new
contact model’s simulation results show excellent agreement with experimental compression tests.
The throughput of the extruder simulations is considerably underestimated when using spheres
to represent the real particles than when using irregularly shaped superquadrics. Corresponding
advantages can be seen especially for virgin material.

Keywords: extrusion; solids conveying; grooved feed zone; regrind; numerical simulation; discrete
element method; superquadrics; elastic-plastic contact model

1. Introduction

The recycling of plastics will grow considerably in the future. Thereby, the proportion
of regrind material processed by single-screw extruders would equally increase. However,
the irregular shape of the regrind particles in comparison to virgin material (see Figure 1)
becomes a challenge for single-screw extruders.
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1. Introduction 
The recycling of plastics will grow considerably in the future. Thereby, the propor-

tion of regrind material processed by single-screw extruders would equally increase. 
However, the irregular shape of the regrind particles in comparison to virgin material (see 
Figure 1) becomes a challenge for single-screw extruders. 

  
(a) (b) 

Figure 1. (a) Regrind material; (b) virgin material granules. 

When using grooved feed zone extruders, regrind material comprises a lower bulk 
density, resulting in a reduced specific throughput (throughput per screw revolution). 
This in turn decreases the extruder’s efficiency [1]. The extruder’s lower specific through-
put leads to a higher melt temperature, which devalues the melt quality (Figure 2b, red 
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Figure 1. (a) Regrind material; (b) virgin material granules.

When using grooved feed zone extruders, regrind material comprises a lower bulk
density, resulting in a reduced specific throughput (throughput per screw revolution). This
in turn decreases the extruder’s efficiency [1]. The extruder’s lower specific throughput
leads to a higher melt temperature, which devalues the melt quality (Figure 2b, red area).
The melt temperatures can be lowered by a reduced screw speed. (Figure 2b, gray area).
This shows that regrind processing essentially reduces the extruder’s process window.
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Figure 2. (a) Influence of an increased regrind share adapted with permission from [2]. 2021 Mi-
chels; (b) reduced process window through regrind processing. 

An improved feeding process of single-screw extruders has long been the goal of this 
research field. Hegele [3] examined eccentric filling zones where the granules could not 
be pushed back into the hopper section. This enhanced the solids conveying of the feed 
zone, which was also confirmed by further investigations by Potente et al. [4].  

Recent work regarding asymmetric feed pockets was conducted by Michels [2] and 
Sikora [5,6]. However, eccentric filling zones are counterproductive for regrinding and 
reduce the specific throughput [2]. 

An optimized feed zone geometry for regrind processing can be found in so-called 
feed pockets. In the filling zone, the barrel’s inner diameter is larger than the nominal 
diameter. This provides the regrind material more space to flow into the extruder’s filling 
zone. However, it is recommended that the feed pocket’s design be kept small to prevent 
stagnation of material [2]. The influence of the angle from the feed pocket diameter to the 
nominal diameter was investigated by Krämer [7]. The flatter the angle, the higher the 
specific throughput. 

Based on theoretical considerations, experimental investigations, and calculations 
carried out, Rahal [8] determined that a maximum effective flight depth must not be ex-
ceeded on the active screw flight, as otherwise the conveying efficiency would be nega-
tively influenced. To maintain a sufficient screw channel volume, the screw channel is 
conical in an axial direction (see Figure 3).  
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Figure 2. (a) Influence of an increased regrind share adapted with permission from [2]. 2021 Michels; (b) reduced process
window through regrind processing.

An improved feeding process of single-screw extruders has long been the goal of this
research field. Hegele [3] examined eccentric filling zones where the granules could not be
pushed back into the hopper section. This enhanced the solids conveying of the feed zone,
which was also confirmed by further investigations by Potente et al. [4].

Recent work regarding asymmetric feed pockets was conducted by Michels [2] and
Sikora [5,6]. However, eccentric filling zones are counterproductive for regrinding and
reduce the specific throughput [2].

An optimized feed zone geometry for regrind processing can be found in so-called
feed pockets. In the filling zone, the barrel’s inner diameter is larger than the nominal
diameter. This provides the regrind material more space to flow into the extruder’s filling
zone. However, it is recommended that the feed pocket’s design be kept small to prevent
stagnation of material [2]. The influence of the angle from the feed pocket diameter to the
nominal diameter was investigated by Krämer [7]. The flatter the angle, the higher the
specific throughput.

Based on theoretical considerations, experimental investigations, and calculations
carried out, Rahal [8] determined that a maximum effective flight depth must not be ex-
ceeded on the active screw flight, as otherwise the conveying efficiency would be negatively
influenced. To maintain a sufficient screw channel volume, the screw channel is conical in
an axial direction (see Figure 3).
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Other research focused on adjustable means to influence the specific throughput of
a single-screw extruder depending on the requirements. Behounek [9] developed a coax-
ial screw in which the feeding screw’s screw speed was independent of the plasticizing
screw. In addition, special feed supports were developed, which are arranged separately
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from the plasticizing screw and can thus regulate the specific throughput [10]. Further-
more, attempts were made to influence the specific throughput with a variable groove
geometry. Corresponding patents can be found in Kautz [11] and Peiffer [12]. However,
the developments seen remained in prototype status and were not brought to market
maturity [13].

There has been numerous research into calculating the solids conveying throughputs of
single-screw extruders. It started with Peiffer’s [14] model of one-dimensional descriptions
which was later refined by Kaczmarek [13]. Further essential one-dimensional models
were developed by Grünschloß [15] and Schöppner [16]. Hennes [17] established the basis
for the two-dimensional description of the throughput that was further developed into a
three-dimensional one by Imhoff [18].

However, for an efficient three-dimensional consideration of solids conveying pro-
cesses, the discrete element method (DEM) is used, in which the plastic granules are
modeled as spheres. Cundall and Strack [19] developed the DEM in 1979 [20]. Newtonian
laws of motion form the basis for the DEM, with particles having three translational and
three rotational degrees of freedom. However, the particles are rigid and non-deformable.
Therefore, simulation of processes with plastic deformation is challenging. Normal and
tangential forces result from particle-particle collisions (see Figure 4). The selected contact
law determines the normal and tangential forces, which comprise the spring stiffness k,
the damping component c, and the friction µ (see Equations (1) and (2)) [21]. The new
position of the particles can be calculated for a corresponding time step size [22]. Basis of
the calculation is the virtual overlapping of the colliding particles [23].

Fn = −kn δn + cn ∆vn (1)

Ft = min {|kt

∫
∆vt dt + ct ∆vt |, µ·Fn } (2)
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Moysey and Thomson first used the discrete element method for three-dimensional
simulations of a single-screw extruder’s feed zone [25]. Recirculation effects in the filling
zone were detected, which had previously been determined in other investigations [26].
Further DEM applications were used to refine the boundary conditions and to optimize
the feed zone geometry [27–31]. Other research proved that feed pockets are beneficial for
the filling of the screw channel, which is relevant for regrind processing.

The particles of DEM simulation are generally represented as spheres (Figure 5a),
although the real plastic granules are not ideally spherical. Other methods, such as multi-
spheres (Figure 5b), allow for a better approximation of the real particle shape. One particle
is made up of several other particles. Amberger et al. used this method in [32] for the ap-
proximation of non-convex and arbitrary objects. The disadvantage is a higher simulation
time [22]. Finally, the particles can be approximated by superquadrics (Figure 5c). The
shape is defined according to Formula (3) [20]. The shape of superquadrics results from
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a distortion of spheres and ellipsoids. The semi-axis lengths in x-, y-, and z-direction are
defined by the parameters aSq, bSq, and cSq. The shape parameters nSq,1 and nSq,2 determine
how angular the superquadric particle is shaped. Since there is only one particle, simulation
time is reduced as compared to multispheres [20].

f (x) ≡
(∣∣∣∣∣ x

aSq

∣∣∣∣∣
nSq,2

+

∣∣∣∣∣ y
bSq

∣∣∣∣∣
nSq,2

) nSq,1
nSq,2

+

∣∣∣∣∣ z
cSq

∣∣∣∣∣
nSq,1

− 1 = 0

x = (x, y, z)T

(3)
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Leßmann and Schöppner [33] used the multisphere method to approximate the real
shape of particles, which were cylinders and lenses (Figure 6). It was found that bulk
density simulations comprising the approximation had an essential influence on the result.
Leßmann used the examinations in [33] for further simulations of the feed zone with a
smooth barrel in [34]. However, the output prediction did not improve. Further research
on DEM simulations regarding solids conveying of single-screw extruders and particle
shapes can be extracted from [35–41].
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The spring and damper constants can be calculated according to Kloss [42]. The
widely used fully elastic contact model is based on Hertz’s [43] work for the description of
normal forces through a contact. Mindlin and Deresiewicz [44] extended Hertz’s model for
the tangential force calculation. Additionally, the Hertz and Mindlin model is a non-linear
elastic model as the spring and damper values are dependent on the particle overlap [42].

Unlike purely elastic models (Hertz), elastic-plastic models took into account the
remaining deformation after unloading (Figure 7). The models of Thornton–Ning [44,45],
VuQuoc–Zhang [46,47], Brake [48], and Walton and Braun [49–51] should be named in this
context. Walton and Braun’s (Figure 7b) model consists of two different stiffnesses for the
loading and unloading phases. The reduced stiffness for the relief phase leads to residual
plastic deformation.



Polymers 2021, 13, 1540 5 of 20

Polymers 2021, 13, x  5 of 20 
 

 

VuQuoc–Zhang [46,47], Brake [48], and Walton and Braun [49–51] should be named in 
this context. Walton and Braun’s (Figure 7b) model consists of two different stiffnesses for 
the loading and unloading phases. The reduced stiffness for the relief phase leads to re-
sidual plastic deformation. 

 
(a) (b) 

Figure 7. (a) Remaining plastic deformation after load adapted with permission from [46]. 2021 
Vu-Quoc; (b) Contact model of Walton and Braun adapted with permission from [24]. 2021 
Trippe. 

The objective of this work is to develop a feed zone geometry that achieves a com-
plete alignment of the specific throughput when processing regrind. Thereby, the process 
window of the extrusion unit is significantly increased. The geometry should act passively 
and not influence the specific throughput through adjustable elements. This ensures an 
easy production-related realization of the feed zone geometry. Since such expected pro-
cesses can no longer be described with analytical models, the DEM is used to perform 
solids conveying simulations.  

Theorem 1. In terms of compressibility and internal friction, the different bulk material properties 
of virgin granules and regrinds can be exploited by a compression zone in the single-screw ex-
truder’s feed zone, achieving a full alignment of the specific throughput of virgin granules and 
regrinds without adjustable elements. This increases the process window for regrind processing in 
terms of throughput and melt temperature (see Figure 8).  

 
Figure 8. Visualization of the theorem. 

0

500

1000

1500

0 4 8 12 16

no
rm

al
 fo

rc
e 

in
 N

virtual overlap δn in µm 

FEA (elastic plastic)
Hertz (elastic)
Vu-Quoc and Zhang
Thornton (1997)

δ0

begin of plastic 
deformation

no
rm

al
 fo

rc
e

virtual overlap δn
δ0

2ܭ unloading

1ܭ loading

Walton and Braun
1500

1000

Granulat
Mahlgut

virgin granules

regrind ݉̇௦௣௘௖

regrind
granules

regrind
granules

regrindgranules

in
ne

rf
ric

tio
n

bu
lk

de
ns

ity

th
ro

ug
hp

ut

screw speed

pressure

Figure 7. (a) Remaining plastic deformation after load adapted with permission from [46]. 2021 Vu-Quoc; (b) Contact model
of Walton and Braun adapted with permission from [24]. 2021 Trippe.

The objective of this work is to develop a feed zone geometry that achieves a complete
alignment of the specific throughput when processing regrind. Thereby, the process
window of the extrusion unit is significantly increased. The geometry should act passively
and not influence the specific throughput through adjustable elements. This ensures an easy
production-related realization of the feed zone geometry. Since such expected processes
can no longer be described with analytical models, the DEM is used to perform solids
conveying simulations.

Theorem 1. In terms of compressibility and internal friction, the different bulk material properties
of virgin granules and regrinds can be exploited by a compression zone in the single-screw extruder’s
feed zone, achieving a full alignment of the specific throughput of virgin granules and regrinds
without adjustable elements. This increases the process window for regrind processing in terms of
throughput and melt temperature (see Figure 8).
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Figure 8. Visualization of the theorem.

The following experimental investigations, contact model developments, and results
are part of the German Ph.D. thesis of Thieleke [52].



Polymers 2021, 13, 1540 6 of 20

2. Methods and Experiments
Experimental Setup

The experimental investigations aim to examine different feed zone geometries cost-
effectively. This is intended to determine the optimal feed zone geometry. For this purpose,
a test stand is developed (similar to [53,54]) that only covers the barrel’s feed zone (Figure 9).
The test stand was developed within the research project (see funding below, grant number
ZF4041120CM7) together with the company Helix GmbH (Winnenden, Germany). The
plastic is not molten within the test stand. With the mentioned test stand, it is possible to
record the axial force of the screw in the direction of the gearbox.
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Figure 9. (a) Experimental setup; (b) sectional view of the test stand.

The feed zone geometry of the single-screw extruder was developed based on the
assumption that the compressibility and the internal friction of virgin granules and regrind
are different. These different bulk properties will be used to align the specific throughput.
Therefore, the bulk material must be compressed in the feed zone. The required com-
pression ratio and the exact design of the compression zone are examined using different
feed zone geometries. The following parameters of the feed zone geometry are varied
(Figure 10).

• Diameter of filling zone DZ,max;
• Angle of compression zone ϕZ;
• Groove design of compression zone.
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To evaluate the pressure level within the feed zone, two force sensors are applied in
the compression zone (Figure 11). The forces and temperatures are originally recorded
in a plasticizing barrel (see Thieleke [52]). The forces are recorded at two axial positions.
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Sensor 1 is positioned in the middle of the compression zone and sensor 2 at the end. The
temperature is recorded at the same axial positions (Figure 11).
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3. Materials

For the investigations, polyolefins from the material group high-density polyethylene
(PE-HD) and polypropylene (PP) were chosen (Table 1). The selected PE-HD is Lupolen
4261AG UV60005, which is a product of the company Lyonell Basell, Rotterdam, Nether-
lands. The homopolymer DuPure G 72 TF from the company Ducor Petrochemicals,
Rozenburg, Netherlands is used as PP. PE-HD is relevant for the blow molding of hollow
parts. Blow molding involves an internal process regrind and is often returned to the
process in a middle layer with a regrind share of 100%. Consideration of the PE-HD regrind
is also essential for increasing recycling rates for blow-molded post-consumer containers
in the future.

PP is increasingly used in flat film production and frequently replaces films that were
previously made of polystyrene. Internal process regrind is also produced in flat film
production and is returned to the extruder in the form of thin shreds.

A future range of applications regarding post-consumer articles may include thermo-
formed food trays. After usage, these thermoformed trays could be ground, washed, and
added to the flat film process as regrind. Table 1 also shows the approximated shape of
the particles for the implementation in the DEM simulation. To obtain these shapes, the
particles were scanned (at least 200) to determine the particle size distribution. An optical
analysis defined the shape parameter of the superquadrics nSQ,1 and nSQ,2 (roundness
of the particle edges). By scanning the particles, the minimum and maximum ellipsoid
diameters were determined using the Fiji software [52]. The weight of all particles and the
density were used to calculate the average particle thickness [55].

Additionally, the equivalent sphere diameter was determined by measuring the parti-
cles’ volume of the superquadrics. The particle size distribution is applied to superquadrics
and spheres (see results in Thieleke and Bonten [56]).
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Table 1. Overview of applied materials and particle geometry transformation in the numerical simulation environment.

PE-HD Virgin PE-HD Regrind PP Virgin PP Regrind
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Furthermore, the materials were analyzed for bulk density according to Grünschloß [15]
and compression tests (as shown in Figure 12) were conducted to determine its behavior
under pressure and temperature (see [57]). An amount of 40 g of each material was inserted
into the cup. The selected temperatures (23 ◦C, 61.5 ◦C, 100 ◦C) were set with the heater
band. Before being filled, each material was heated up to the corresponding temperature in
an oven. After filling, the compression die compacted the material to the chosen pressure
levels of 50 bar, 100 bar, and 150 bar.
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4. Numerical Simulation

The numerical simulation is carried out for the novel feed zone geometry, which aligns
the regrind’s specific throughput to that of the virgin material (see Chapter 4. Results). The
numerical simulations are performed using version 3.8.0 of the open-source DEM software



Polymers 2021, 13, 1540 9 of 20

LIGGGHTS® from DCS Computing GmbH in Linz, Austria. LIGGGHTS® is chosen as
the source code since it can be adapted to allow for contact model adjustments. As large
plastic deformation occurs in the compression zone, a new contact model is developed for
the simulation of the novel feed zone geometry. Existing contact models are not able to
realize such large plastic deformations.

For a better overview, some of the material properties that are ultimately used for the
simulation are summarized in Table 2. These parameters are used for virgin and regrind
material, as they are material properties not considered for their particle shape.

Table 2. Material parameters for the numerical simulation.

Simulation Parameter PE-HD PP

density in g/cm3 0.945 1 0.91 1

Young’s modulus in MPa 850 1 1850 1

Poisson’s ratio 0.443 2 0.399 2

internal coefficient of restitution 0.87 2 0.81 2

external coefficient of restitution 0.83 2 0.85 2

internal friction 0.498 2 0.432 2

external friction 0.303 2 0.304 2

1 from data sheet, 2 determined in Thieleke [52].

For the development of the novel contact model with plastic deformation, the hystere-
sis contact model of Walton and Braun [50,51] is selected as the basis. This consists of a
linear loading phase and a linear unloading phase (cf. Figure 7b). Different slopes of the
load and unload lines result in permanent deformation.

The experimental investigations on the tensile/compression testing machine are used
to set up the contact model for the test materials PE-HD virgin, PE-HD regrind, PP virgin,
and PP regrind. The deformation behavior is considered dependent on pressure and
temperature.

The pure linearization of Walton and Braun’s contact model results in a poor fit of
the bulk material compression for small forces. In addition, the deformation turns out
to be too small for large forces. For this reason, a two-stage hysteresis contact model is
selected for the loading and unloading phases (Figure 13a). The compression test of PE-HD
virgin material is used to explain the determination. It is carried out equivalently for the
remaining three bulk materials.

Two straight lines (g1 and g2) define the load curve of the compression test of PE-HD
(Figure 13, red curve) up to a maximum force of 20,000 N. The intersection point P12 is on
the load curve. With numerical approximation, the integral of the two straight lines g1 and
g2 with the load curve is minimized. Another boundary for the numerical approximation
is that both integrals of g1 and g2 with the experimental load curve are equal. This results
in P12.

A third straight line (g3), which passes through the intersection point P12 and the
point P3, is defined. P3 is described by the density and the volume obtained from the
pvT measurement on the respective material at a defined temperature ϑ2 measured in the
compression zone (see measurement of temperature 2 in Figure 11). The pressure of the
pvT curve was 300 bar. Thus, P3 denotes an assumed compacted solid bed and represents
a maximum bulk density.

In the loading phase, the two-stage model is formed starting from the straight line g1
up to the intersection point P12 with the stiffness K11, while the straight line g3 begins from
the intersection point P12 up to the point P3 with the stiffness K12. This is used to calculate
correct forces for small overlaps δn. For large particle overlaps, the second stage prevents
the forces from remaining very small.

For the unloading stage, Walton and Braun’s model is followed. The relation of the
coefficient of restitution is used to measure the change in stiffness. This results in the
straight line g4 with stiffness K21. At the same y-value as point P12, the second unloading
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curve starts with another stiffness (g5). In comparison to stiffness K12, stiffness K22 is also
determined via the coefficient of restitution.

The linear equations are established using the experimental compression of the bulk.
However, the contact model defines the force/deformation curve for a single particle. For
this reason, the intersection point P12 is iteratively shifted horizontally (P12,new) until the
resulting load curve from the numerical simulation of the bulk compression considerably
agrees with the experiment’s reference curve (Figure 13b).
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The ratio of the stiffnesses K11 and K12 is kept constant during the iteration. Due to the
simulation time, the iterations are performed solely for modeling the particles as spheres.
The obtained contact models for the particular bulk material are used for superquadrics
as well. The iteration starting values and the selected stiffnesses are listed in Appendix B
(Table A1).

Validation of the Numerical Simulation

The simulative determination of the bulk density will show if the particle shapes lead
to a realistic match. The experimental bulk density measurements serve as a reference. The
bulk density simulations are performed in the same way as the DIN EN ISO 60 [58] test.
The measuring cup with a depth of 51 mm is filled with granules until it is full. A wiper
strips off the protruding particles (Figure 14a).

After the stripping process, the mass of the particles in the measuring cup is deter-
mined. The mass divided by the volume results in the bulk density. The simulations are
performed with spheres and superquadrics for virgin material and regrind, respectively.
After the particle bulk density simulations, the compression test simulations are conducted.
The developed contact models are used for each material. The bulk material is compacted
to a maximum force of 20,000 N (approximately 138 bar). The pressure is set by the movable
pressure plate, which is force-controlled by a servo command (Figure 14b). In contrast
to the experiment, the influence of temperature is passively considered by the developed
contact model.

The simulation of the single-screw extruder solely considers the solids conveying in
the feed zone. It is comparable to the experimental investigation on the test stand. The
components have meshed using the meshing software Salome from Open Cascade SAS.
The screw and barrel meshing level of detail is set to a maximum element size of 7 mm.
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The hopper was coarsely meshed. Salome generates a triangle-based surface model in STL
format (Figure 15).
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In each case, the simulation time is 19.2 s in real-time to obtain a steady state and
be able to make reliable statements. In simulative preliminary investigations, it was
determined that the selected simulation time is sufficient for a constant throughput.
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5. Results

The results are divided into two categories: test stand experimental results and DEM
simulation results.

5.1. Experimental Results of the Feed Zone Geometry Variation

The trials run on the test stand with a grooved and smooth compression zone reveal
that the feed zone’s conical area must be grooved to ensure adequate solids conveying
(Figure 16). For PE-HD, no conveying takes place when the compression zone is smooth.
For PP, an unstable output was observed when the compression zone is without grooves.

A comparison of the compression zone’s angle variation is shown in Figure 17. The
diameter of the filling zone was kept constant at DZ,max = 50 mm. The chart demonstrates
that the angle can be used to influence the throughput. A flatter angle increases the
throughput. Trials with an angle of 5◦ achieved an even higher output. However, since
the results could not be taken for every material, the data were excluded. These findings
already illustrate that a 10◦ angle can be used to achieve an alignment of the specific
throughputs. That alignment of the specific throughputs of regrind and virgin material
with a grooved compression zone is also shown in Figure 16 for DZ,max = 50 mm and
ϕZ = 10◦.
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Further comparisons of the filling diameter indicate that a compression zone can in-
fluence the difference in throughput between regrind and virgin material. DZ,max = 38 mm
represents a standard feed zone with a difference of 37% (Figure 18). A larger filling diam-
eter reduces the throughput difference. At DZ,max = 50 mm, the throughputs are almost
equal. In contrast to virgin material (DZ,max = 65 mm), a larger diameter leads to an even
higher throughput of regrind.
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Proof of Theorem 1. With these findings, the aforementioned theorem is proven. With a
new type of compression zone in the feed zone, the different bulk material properties of
virgin granules and regrind material, in terms of internal friction and compressibility, are
exploited to achieve a complete alignment of the specific throughput within a compression
zone. �
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For the considered PE-HD and PP bulk materials, the optimum feed zone geometry
with a nominal diameter of 35 mm includes a grooved compression zone, a filling diameter
of DZ,max = 50 mm, and an angle of ϕZ = 10◦.

The pressure and temperature measurements in the novel feed zone geometry are
decisive for the DEM’s new contact model. The pressure level is evaluated by the axial
force measurement and temperature measurements at the test stand. Additionally, the
measurement setup in Figure 11 is used to determine the precise force and temperature
measurements.

To obtain the axial pressure from the radial pressure, the pressure anisotropy k must
be considered for bulk solids. According to [2,59,60], kvirgin = 0.5 is chosen for the moving
bulk material consisting of virgin material. Since the pressure anisotropy coefficient k for
regrind is larger than for virgin material, kregrind = 0.55 is determined for the regrind [2].
From the measurement of the radial force, the radial pressure at position 2 can be calculated
using the cross-section of the force application pin and the respective anisotropy coefficient
(Figure 19a). In addition, Figure 19b shows the measured temperature at position 2. The
results of the pressure and temperature measurements depict quite similar tendencies.
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Figure 19. (a) Radial and axial forces and (b) temperatures in the feed zone.

5.2. Result of the Validation of the Numerical Simulation
5.2.1. Bulk Density Simulation

The numerical determination of the bulk density reflects how well the approximation
with spheres and superquadrics achieved the real particle shape of the virgin granules
and the regrinds. For this purpose, Figure 20 compares the results of the experiment and
simulation. It can be seen that spheres are better suited to represent the real bulk density in
the case of virgin granules. The deviation is less than 1%. With the superquadrics’ more
accurate approximation of the real particle shape, the bulk density for PE-HD and PP is
slightly overestimated.

The simulative determination of the bulk density of regrind remains a challenge.
The bulk density of spheres and superquadrics is significantly overestimated. However,
superquadrics reduce the discrepancy between experiment and numerical simulation.
Superquadrics achieve better results due to the platelet shape. However, all superquadric
regrind particles are platelet-shaped in the simulation environment. In reality, these are
rather irregularly shaped, making them more likely to interlock and create hollow spaces
between particles. In the future, different shapes of regrind particles may be included to
achieve enhanced results for superquadrics, especially for regrind.

In terms of bulk density simulation, spheres can be recommended for virgin granules.
For regrind materials, the approximation of the particle shape with superquadrics leads to
better results.
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Figure 20. Bulk density comparison between experiment and simulation.

5.2.2. Compression Test Simulation

The developed contact model is checked for suitability through the compression test
simulations. A comparison of different state-of-the-art contact models is made (Figure 21).
The newly developed elastic-plastic contact model is compared to those of Hertz and
Walton and Braun.

Figure 21a shows the force/deformation curve for the compression of a single sphere
with a diameter of 45 mm. These results are used to describe the deformation behav-
ior of a single particle, which defines the respective contact model. In Figure 21b, the
force/deformation curve is plotted for the compression of the bulk virgin material of
PE-HD. In this case, the particles are defined as spheres.

If Hertz’s (red) purely elastic contact model is used, the simulated force/deformation
curve of the single sphere is identical to the load and unload curve. The particles’ rear-
rangement effects produce a hysteresis curve. However, there is no remaining deformation,
and the load and unload curves are much steeper compared to the other models.

This results in a poor approximation to the experimentally determined curve (dark
blue curve) in Figure 21b. The poor agreement is due to the model’s purely elastic behavior,
with no representation of plastic deformation. As a result, the model is extremely stiff. An
increasing force results in deformations that are too small compared to reality. Furthermore,
the temperature is not considered. The experimental curve (dark blue) of PE-HD represents
a temperature of 73 ◦C.

When using Walton and Braun’s (orange) elastic-plastic contact model, the different
stiffnesses for loading and unloading result in a residual deformation. It shows small
deformations for small forces and extremely large deformations for larger forces. The
approximation to the experiment is also not successful with this model.

The two-stage approach of Walton and Braun’s (gray) hysteresis model, which was
developed here, yields an excellent agreement with the obtained experimental curve. Due
to the two-stage loading phase, the deformation course of the bulk material can be efficiently
reproduced. Furthermore, the temperature influence can be optimally considered.

The additionally simulated force/deformation curves for PE-HD and PP in compari-
son to the experimental curves are shown in Appendix A (Figure A1). In comparison to
virgin material, a larger deviation can be observed for regrind. The reason for this is that
the model cannot be set arbitrarily soft, and the determined curves must be considered
optimum for a stable numerical calculation.
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Figure 21. (a) General compression behavior of the contact models for one sphere; (b) compression behavior of the contact
models for the bulk according to a compression test.

5.2.3. Extruder Simulations

The results of the extruder simulations are summarized in Figure 22. It shows the spe-
cific throughput of PE-HD and PP for virgin and regrind at a screw speed of 100 min−1. The
simulations were performed with spheres and superquadrics, using the newly developed
contact model with two-stage loading and two-stage unloading phases.

It appears that the specific throughput is generally underestimated. When spheres are
used, the deviation is significantly larger than with superquadrics. In the case of PE-HD
virgin material, for example, although the bulk density is optimally represented by spheres
and the compression curve highly corresponds to the compression experiment curve, the
numerical extruder simulation reflects a deviation of 26.8%. In the simulation, the particles
in the compression zone are assumed to slide away from each other. Therefore, fewer
particles are conveyed into the compression zone and ultimately compressed.

The specific throughput for PE-HD virgin material simulated with superquadrics
depicts a deviation of 15.1%. The non-spherical shape probably prevents early slippage
between the particles in the compression zone.

It is particularly apparent that superquadrics reproduce the alignment of the specific
throughput for virgin and regrind material, which was also obtained in the experiment.
This result is valid for PE-HD and PP.

In summary, numerical simulation with DEM generally under-predicts the through-
puts of the novel feed zone geometry. Since the bulk density and contact model achieve
outstanding agreements with the compression simulation, especially for the virgin gran-
ules, it can be assumed that either the remaining deformation (after plastic deformation) or
the conveying in the compression zone is not yet completely and realistically represented.
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Figure 22. Mass throughput comparison between experiment and simulation.

Concerning the conveying behavior of the bulk materials, further experimental inves-
tigations on flowing bulk materials could help to optimize the throughput in the numerical
simulation. Particularly for regrind approximated by superquadrics, the actual bulk den-
sity in the moving state could differ significantly from the static measurements, since the
platelet-shaped particles would form more hollow spaces between each other. This would
compensate for the discrepancy between experimentally and simulatively determined
bulk density in the static case. The work of Hennes [17], which investigates the pressure
anisotropy on moving bulk solids, could serve as a model for future research on moving
bulk solids in terms of bulk density and conveying behavior.

According to Walton and Braun’s new hysteresis model, a remaining deformation is
not stored after complete unloading. Consequently, if a new contact arises, the loading
starts again from the beginning. This will probably have the greatest influence on the
discrepancy between experiment and simulation throughputs. Another approach pursued
by DCS Computing GmbH, Linz, Austria, and the team of Christoph Kloss [61,62] is to
reduce a particle’s diameter after plastic deformation. Thus, each particle’s remaining
deformation is stored. However, this method is currently reserved for the premium version
of LIGGGHTS® and is not implemented in the open-source version. It is expected that this
approach will reduce the current gap between experimentally and simulatively determined
throughputs.

Furthermore, pressure and temperature rise in the compression zone. So far, a constant
value is used for the temperature, which is reflected in the contact model. In further
investigations, the resulting frictional heat could also be calculated to better implement
the temperature in the simulation. In line with this approach, reference can be made to
Trippe’s research [24].

6. Conclusions and Outlook

The investigations reveal the relevance of regrind processing in single-screw extrusion.
A novel feed zone geometry allows for the complete alignment of the specific throughput of
regrind and virgin material. It is achieved using an extruder with a nominal screw diameter
of 35 mm without adjustable elements. For this purpose, a new type of compression zone
is used in the feed zone of the extruder. Through experimental investigations on a specially
developed test stand, it was possible to determine the optimum feed zone geometry with
regard to the diameter of the filling zone DZ,max, the groove design, and the angle ϕZ of
the compression zone.

In contrast to the respective virgin material, a complete alignment of the specific
throughput is achieved for both PE-HD and PP regrind. The increased specific throughput
simultaneously increases the absolute throughput. It substantially expands the regrind
processing process window as summarized in Figure 23. The new process window for
regrind is defined by the green area.
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Superquadrics, rather than pure spheres, can better represent the real particle shape of
regrind in numerical simulations through DEM. This shows advantages in reference to bulk
density measurements and extruder throughput measurements. Based on compression
tests on real bulk materials, a new hysteresis contact model is set up for the DEM following
the approach of Walton and Braun. A two-stage loading and two-stage unloading process
are included in the model. Compression tests with temperature influence were used to
calibrate the model, which accurately represents plastic deformation. When using the new
contact model for the extruder simulations, the throughputs are generally underpredicted.

To improve the predicted throughput by numerical simulation using DEM, the parti-
cles’ remaining deformation through plastic deformation could be performed using a parti-
cle radius reduction. This approach is already implemented by DCS Computing GmbH,
Linz, Austria, and the team of Christoph Kloss in the premium version of LIGGGHTS®.

The investigations relate to an extruder size of d = 35 mm. Larger diameters should
be examined to transfer the findings of this work. Additionally, a temperature-dependent
contact model for the numerical simulation would be beneficial. Ideally, the temperature in
the DEM will be calculated through dissipation between the particles rather than indirectly
by the contact model. Trippe’s investigations [24] may be helpful in this regard.
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Figure A1. Comparison between experimental and simulation data of the compression test.

Appendix B

Table A1. Material parameters for the numerical simulation.

PE-HD Virgin PE-HD Regrind PP Virgin PP Regrind

P12,start 11.04/6182 18.64/4141 7.32/5625 16.68/5099
P3 20.20/47,713 28.13/47,713 20.40/47,713 31.40/47,713

P12,new 7.54/6182 16.96/4141 6.59/5625 19.66/5099
K11 0.62 0.32 0.72 9.16
K12 8.09 20.67 4.19 0.24
K21 10.68 27.28 6.37 0.36
K22 0.82 0.42 1.10 13.92
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