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Abstract: A two-dimensional mathematical model for a steady viscoelastic laminar flow in a confusor
was developed under the condition of swirled flow imposed at the inlet. Low density polyethylene
was considered as a working fluid. Its behavior was described by a two-mode Giesekus model. The
proposed mathematical model was tested by comparing it with some special cases presented in the
literature. Additionally, we propose a system of equations to find the nonlinear parameters of the
multimode Giesekus model (mobility factor) based on experimental measurement. The obtained
numerical results showed that in a confusor with the contraction rate of 4:1, an increase in the swirl
intensity at Wi < 5.1 affects only the circumferential velocity, while the axial and radial velocities
remain constant. The distribution pattern of the first normal stress difference in the confusor is
qualitatively similar to the one in a channel with abrupt contraction, i.e., as the viscoelastic fluid
flows in the confusor, the value of N1 increases and reaches a maximum at the end of the confusor.
Dimensionless damping coefficients of swirl are used to estimate the swirl intensity. The results show
that the swirl intensity decreases exponentially.

Keywords: viscoelastic flow; Giesekus model; swirl; confusor; contraction; normal stress difference

1. Introduction

Investigation of viscoelastic fluid flows in channels of various configurations is of
particular practical interest for polymer production. During extrusion, the polymer material
passes through a channel with a screw, thus creating a swirling flow directed to the die
nozzle. The nozzle geometry varies depending on the shape of the finished product, but a
convergent channel (confusor) is an integral part of die [1]. Since we only consider the flow
of initially swirled viscoelastic fluid in the convergent channel, our review is limited to the
results covering this specific subject.

The literature mainly considers individual extreme cases, namely viscoelastic flows
in channels with abrupt contraction (planar and axial symmetry flow), flow patterns in
viscoelastic fluids flowing in a limited space with a rotating wall (bottom or upper lid, pipe
surface), and cone-and-plate flows [2].

Interestingly, the research of viscoelastic fluid flows in channels with abrupt con-
traction is mainly concerned with planar flows, while the planar configuration is better
suited to visualization studies through birefringence strand techniques and particle image
velocimetry (PIV) [3,4]. Flow in a channel with abrupt contraction (as well as flow past a
cylinder [5]) is a well-known benchmark problem used for the testing of reliability of new
or modified numerical methods simulating the flows of viscoelastic fluid that employ mul-
timodal rheological equations of state, e.g., the Giesekus model [6], the Phan-Thien–Tanner
model (PTT) [7], Extended Pom-Pom [8], Oldroyd-B [9], and Fene-P [10]. A special feature
of viscoelastic flows in channels with abrupt contraction is a recirculation zone, the size of
which depends on the Weissenberg/Deborah number [11] and on extensional-flow proper-
ties [12]. The comprehensive review presented in [13] summarizes key factors influencing
secondary entry flows for polymer melts, while outstanding issues in numerical methods
and novel and challenging applications of viscoelastic fluids are discussed in [14].
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Here, we consider a viscoelastic flow in a channel with a 4:1 contraction ratio because
it has been extensively studied in the literature [12,15] and because it has been defined
as benchmark geometry for the workshop on the numerical simulation of viscoelastic
flow. For example, planar flow was investigated in [16–25], while axisymmetric flow was
considered in [12,26–30].

Earlier [19], it was found that the planar contraction flow gives rise to very low vortex
activity in the salient corner, unlike similar flows in circular contractions. Therefore, a
circular channel is the most interesting geometry, particularly as far as swirled flows are
concerned, because both the geometry and the system of equations describing hydrome-
chanical processes are invariant to a circumferential angle phi (angle of rotation about a
symmetry axis in a cylindrical coordinate system).

According to the literature, viscoelastic fluid flows in channels with abrupt contraction
have been studied extensively for the case when a developed velocity profile (Newtonian
or non-Newtonian) is set at the channel inlet, and when the inlet and outlet parts of the
channel are long enough so as not to affect the flow pattern near the contraction.

Lately, embedded software (e.g., ANSYS-Polymat) has become an increasingly popular
tool for the estimation of both the discrete spectrum of relaxation and non-linear parameters
of differential PTT and Giesekus models [1,29]. According to preliminary analysis, our
proprietary software approximates the viscosity curve with fewer modes and the same
error of approximation of numerical and experimental data. Normal stresses exist in
viscoelastic media, as discovered in experiments by Garner and Nissan [30] and interpreted
by Weissenberg [31]. These results triggered the research of the structure of swirled
viscoelastic flows in a confined cylinder with a rotating bottom lid [32–37]) or pipe wall [38].
Laminar pipe flow with a controllable wall swirl has been studied in [39] to explore the
behavior of inelastic shear-dependent fluids. A vortex shedding regime was illustrated
using experimental data in [35]. It was also observed that the dimensionless circumferential
velocity decreases with the increase in the Weissenberg number, We [34]. The obtained
results were employed for the development of advanced rotary rheometers with plate-plate
and cone-plate measurement systems.

Three-dimensional numerical simulation [33], contrary to earlier experiments in [32],
demonstrated that the structure of swirled flow in a confined cylinder with a rotating
bottom lid is axisymmetric. It should be mentioned that numerical results obtained in [33]
were validated by checking the stability criterion [40] for the case of highly unsteady spiral
vortex flow of viscoelastic fluid. Thus, our two-dimensional approach to the construction
of a mathematical model for a swirled flow of two-mode Giesekus fluid is consistent with
the physical pattern of flow.

Numerical analysis [1] of screw swirling effects on fiber orientation in large area
additive manufacturing polymer composite deposition is the most similar in its content
to our study. The authors [1] considered a 3D problem using the exponential form of
the Phan-Thien–Tanner model (PTT) and commercial software ANSYS PolyFlow. They
had to use three-dimensional formulation because it is impossible to modify the standard
rheological equation of state in ANSYS PolyFlow when using an axisymmetric problem
statement to take fluid rotation into account.

The present work aims to develop a two-dimensional mathematical model of swirled
viscoelastic fluid flow in a circular convergent channel (confusor). Using this model, the
distribution of hydrodynamic parameters is obtained more easily, and it complies with the
results obtained for a 3D problem.

2. Materials and Methods

Let us consider a steady-state swirled flow of a two-mode viscoelastic fluid in a
confusor with a contraction rate of 4:1 (Figure 1). At the inlet, the swirled flow is prescribed
by the boundary conditions, which are invariant with respect to variable ϕ, so the main
problem can be reduced to a two-dimensional form since the governing equations for the
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considered problem are also invariant to variable ϕ. Thereby, the mathematical model of
viscoelastic fluid flow in the confusor is as follows:
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where Vr, Vϕ, Vz are radial, circumferential, and axial velocity, respectively; r, ϕ, z are
cylindrical coordinate system variables (axis z is the axis of rotation); p is pressure, ρ f
is fluid density; σrr(m), σrϕ(m), σrz(m), σϕϕ(m), σϕz(m), σzz(m) are components of extra stress

tensor (T); T = σij =
2
∑

m=1
σm +σN is a total mode number that is equal to two, σN = 2ηND

is a Newtonian component of tensor T; ηN is the viscosity of σN .

Figure 1. Sketch of the confusor geometry (contraction rate 4:1).

Boundary conditions:

Vr = 0, Vϕ =
K ·Va

R1
· r, Vz =

2Va

R2
1

(
R2

1 − r2
)
(at the inlet) (5)

Vr = 0, Vϕ = 0, Vz = 0 (at the pipe wall); (6)

The shear stresses and pressure are assumed to be zero at the outlet.
Here, Va = Q/

(
πR2

1
)

is a mean velocity over the channel cross-section, and Q is the
flow rate (m3/s).

Boundary condition (5) is an ideal model with K = ωR1/Va. In this study, we
simplified this condition as follows:

Vϕ = ω · r ·
(

1−
(

r
R1

)30
)

, ω =
K ·Va

R1
− angular velocity. (7)
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In this study, we use the two-mode Giesekus model [7].

σm + λm
∇
σm +

αmλm

ηm
σm ·σm = 2ηmD, (m = 1, . . . , 2) (8)

For the case of stationary flows ∂σ
∂t = 0, then the upper convective derivative takes the

form
∇
σm = (∇σm ·V)−

(
σm · ∇VT)− (∇V ·σm), D = 0.5

(
∆V + ∆VT) is the strain rate

tensor; (λm,ηm) are the relaxation spectra, αm is the rheological parameter of the Giesekus
model.

Equation (8), written in a cylindrical coordinate system for the considered case (ax-
isymmetric formulation), is presented in the Appendix A.

As a specific liquid, we are going to consider DSM Stamylan LD 2008 XC43 low-
density polyethylene (LDPE) melt with ρ f = 921 [kg/m3] [6]. The authors of [5] defined
the parameters of the four mode Giesekus model, but such a high number of modes may
cause a convergence problem. So, we defined the parameters of the two-mode Giesekus
model (Table 1) for this fluid using the following algorithm. The pairs of
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are numerical data, ηN , ηVi
, λi are the solution to the optimization problem (9), j = 1 . . . n is

the number of an experimental point, and m is the mode number.

Table 1. Parameters of Giesekus model.

m ηk [Pa·s] λk [s] αk ηN [Pa·s]

1 694.01 0.01 0.495 88.05
2 3590.41 1 0.25 -

We used the relative deviations of the experimental and calculated values of the
dynamic moduli that allowed the improvement of the accuracy of the approximation [41].
The parameters αk (k = 1, m) were calculated from:

F(α1, . . . , αm) =
n
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→ min, (10)
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point, and k = 1...m is the mode number.
The relation between the shear stresses of the k-th mode and the shear rate for a

torsional flow of Giesekus fluid between two parallel plates (measurement system of
rheometer) can be written as follows:
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(11)



Polymers 2021, 13, 630 5 of 12

where bi =
ηi
λi

,
.
γ is the shear rate (1/s), and τ is the shear stress (Pa).

Figure 2 presents the comparison between experimental results and the numerical

prediction of the viscosity curve. According to the well-known expression λ =

(
2
∑

k=1
λkηk

)
·(

2
∑

k=1
ηk

)−1

and the obtained parameters of the two-mode Giesekus model, the relaxation

time is equal to λ = 0.84 [s].

Figure 2. Viscosity curve: experiment and fitting with two and four-mode Giesekus model.

3. Approbation

The obtained parameters of the two-mode Giesekus model were tested on a classic
problem of a viscoelastic fluid flowing around a cylinder located between two infinite
plates [5]. Numerical results were obtained using the OpenFoam with the viscoelastic
package (planar flow). As Figure 3 shows, the distribution and value of the velocity
components in the flow according to the two-mode Giesekus model are consistent with both
experimental data and numerical results obtained using the four-mode Giesekus model.

Figure 3. Cross-section axial velocities (a) and centerline velocity (b) solid line—4-mode Giesekus model with λ = 1.74,
dashed line—2-mode Giesekus model with λ = 0.84, dots—experiment [5] (Va = 1.975 mm/s).

The numerical implementation of the problem (1)–(8) is carried out in the Comsol
Multiphysics package, which allows us to solve the custom equations by using the partial
differential equations (PDE) package. The computational domain of the channel was
subdivided using quadrangular elements with a minimum element quality of 0.78; the total
number of elements was 45,300. The PARDISO method was used as a solver. The problem
was solved on the XeonGold computational server with 24 cores and 512 Gb RAM.

As an approbation of our mathematical model (1)–(8), a comparison was made with the
results of the problem-solution of the viscoelastic fluid flow in a circular channel (Figure 4a),
and we also compared our results with the problem-solution of the circumferential velocity
decay along the pipe length in a power-law fluid flow (Figure 4b). The figure shows good
agreement between the calculated and published data; the approximation error does not
exceed 0.9%. The test problems we have chosen have axial symmetry and are invariant
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with respect to the angle ϕ. In the literature, comparisons with the results of the problem
of the viscoelastic fluid flow in a flat channel are given quite often, but the mathematical
model we have developed does not allow us to study planar flows.

Figure 4. Comparison with literature data: (a) steady viscoelastic flow in a pipe [42], (b) swirl decay in a pipe (water, K = 1,
Re = 98.8) [43].

4. Results and Discussion

In this work, we considered the fixed geometry of the confusor: L1 = 1/4 · R1,
L2 = D1 = 2R1, L3 = 10D2, D1 : D2 = 4 (contraction rate), D1 = 0.04 m, D2 = 0.01 m
(Figure 1). According to the preliminary data, the length of the outlet part is L3 = 10D2 and
it is sufficient for the outlet boundary conditions to have no effect on the solution inside
the confusor.

Figure 5 shows the profiles of the normalized velocities: axial (a), circumferential
(b), and radial velocity (c). The profiles shown in the figure are plotted in cross-sections
of the channel (Figure 1), equidistant from each other at a distance of 0.01 m. It should
be mentioned that the z-axis of the cylindrical coordinate system is centered in the cross-
section corresponding to the outlet of the confusor and oriented in the flow direction.
The components of the velocity vector are normalized by the mean velocity calculated
for each cross-section Va (i) (i indicates the cross-section of the confusor). It is known
that at a constant liquid flow rate, a decrease in the channel cross-section leads to an
increase in mean velocity. For example, if for z = −0.045 (inlet) the velocity is given as
Va (inlet) = 0.03 (m/s), then at z =−0.02 (R1 ≈ 0.01248 (m)) the mean velocity will increase
to Va (z=−0.02) ≈ 0.07704 (m/s). All primary data were processed in Excel to reduce the
accumulation of errors.

Figure 5 shows a comparison of the obtained results (K = 6) with similar results in
a confusor without swirling (K = 0). As can be seen from the figure, the profile of the
normalized axial velocity (Figure 5a) stretches as the fluid flows in the confusor due to the
channel narrowing, then drops sharply and tends to the distribution corresponding to the
steady flow in a round pipe. The behavior of axial velocity is similar to that in a channel
with sudden contraction. An analysis of the obtained data revealed that the swirl intensity
(parameter K in Equation (7)) affects only the circumferential velocity (Vϕ), the distribution
of which sharply tends to zero as the fluid flows in the confusor, i.e., the swirl intensity
drops abruptly. The presence of radial velocity is a characteristic feature of fluid flow in a
convergent channel (confusor) (Figure 5c). The figure demonstrates that the radial velocity
is comparable to the axial one up to the value of z = −0.01 (3/4 of the confusor length).
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Figure 5. Normalized axial (a), circumferential (b) and radial (c) velocities distribution, normal stresses of extra stress tensor
T (d,e) in the confusor for various initial swirl intensities, Wi = 5.04 (inlet) (Va = 0.03 m/s at the inlet).

Normal stress profiles for viscoelastic fluid flow in a convergent channel differ signifi-
cantly from the similar profiles for fluid flow in a straight pipe (Figure 5c,d). For example,
as the fluid flows in the confusor, the component Tzz (a component of the extra stress
tensor) takes on progressively higher values, with the maximum located in the middle
region between the axis of symmetry and the channel wall. The Trr component over the
channel cross-section, on the contrary, takes negative values, the highest absolute value
of which is also concentrated in the region between the axis of symmetry and the channel
wall. The presence of flow swirling (K = 6) insignificantly increases the value of the local
extremum, which is consistent with the distribution of the velocity components.

The following figure illustrates the influence of the Weissenberg number on the
distribution of axial velocity and normal stresses when the swirling viscoelastic fluid
flows in a confusor. We considered Wi = 1.68 and Wi = 5.04 that were calculated by the
formula Wi = λVa(R2)

−1 for the velocities Va (inlet) = 0.01 m/s and Va (inlet) = 0.03 m/s,
respectively. Here, the value Va (inlet) is calculated for R1 (inlet) = 0.02 (m). In the considered
cross-sections, the greatest difference in the profiles of the normalized axial velocity is
observed at z = −0.03, i.e., in the inlet region, which is apparently related to the selected
boundary conditions at the channel inlet (Figure 6a). It was found (Figure 6b,c) that with
an increase in the Weissenberg numbers, there is a significant increase in normal stresses,
especially in the outlet region of the confusor. In this case, the stress profile with an
increase in the Weissenberg number is characterized by the presence of a pronounced
local extremum: for Tzz this is a local maximum, for Trr this is a local minimum. In
particular, for z = −0.01 the ratio Tzz (max)/Tzz (axis symmetry) = 1.47 for Wi = 5.04 and
|Trr |(max)/|Trr |(axis symmetry) = 1.12 for Wi = 1.68.
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Figure 6. Normalized axial velocity (a) and normal stresses of extra stress tensor T (b,c) in the confusor for various initial
swirl intensities, Wi = 5.04 (inlet) (Va = 0.03 m/s at the inlet).

Figure 7 most clearly illustrates the influence of the swirl intensity and the Weissenberg
number on the flow structure in a convergent channel. The distributions of the normalized
axial velocity and the first normal stress difference are plotted on the channel symmetry
axis (central axis). It should be noted that, here, the current values of the axial velocity were
also normalized by the actual mean velocity corresponding to a considered cross-section
(meaning that as the fluid flows in the confusor, the mean integral flow velocity for the
entire section increases due to the channel narrowing). As can be seen from Figure 7a, the
flow of viscoelastic fluid is characterized by an increase in the axial velocity on the channel
axis as it flows in the confusor, then a sharp drop and stabilization of the flow, i.e., after the
outflow from the confusor, the velocity distribution tends to the one in steady pipe flow.
The obtained results are in good agreement with similar results in the channel with sudden
contraction. As can be seen from the figure, an increase in the Weissenberg number leads
to a sharper increase in the axial velocity inside the confusor and the presence of a local
maximum in the output region. As shown by the numerical results, for the considered case,
the presence of flow swirl does not affect the distributions of both the axial velocity and
the first normal stress difference. Note that N1 (i−max) was calculated for each distribution
individually, so the maximum value of N1 /N1 (i−max) does not exceed unity. Similar to
the axial velocity distribution, an increase in the Weissenberg number leads to a sharper
increase in the value of N1 /N1 (i−max).

Figure 7. Normalized axial velocity (a) and first normal stress difference (b) along the centerline for
various swirl intensities (K) and Weissenberg numbers (Wi).
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When studying swirling flows, it is convenient to use Equation (12) to estimate the
swirl intensity [43].

m(z) =
1∫

0

vϕvz r̃2dr̃/
1∫

0

(vz)
2r̃dr̃ (12)

where vϕ = Vϕ/Va, vz = Vz/Va, r̃ = r/Ri (Ri—for different cross-sections of the confusor).
It should be noted that when substituting vϕ = Vϕ/Va and vz = Vz/Va in Equation (9),
the value Va cancels out, so there is no need to recalculate Va for the cross-sections inside
the confusor.

For the convenience of analysis, Figure 8 shows the distribution of m(z)/K, which
made it possible to bring together the investigated relationships for K = 2, 4, 6. It can be
seen from the figure that the dependences m ∗ (z) = m(z)/K for Wi = 5.04 and Wi = 1.68
are satisfactorily described by the formula of the form m ∗ (z) = AeB, which is consistent
with the results of [43], in which the damping of the power-law fluid flow in a circular
tube was studied. The calculations have shown that the presence of a confusor leads to a
faster decrease in the swirl intensity. For example, in Figure 8, the results for the similar
fluid flow in a straight pipe with the same boundary conditions at the inlet (Wi = 5.04) are
shown in green. Thus, the presence of a convergent channel leads to the suppression of the
swirl intensity and the flattening of the velocity profile.

Figure 8. Axial variation of damping coefficients of swirling.

5. Conclusions

In this paper, we developed a two-dimensional mathematical model of a steady
laminar viscoelastic flow in the confusor under the condition of swirled flow imposed
at the inlet. The parameters of the two-mode Giesekus model were obtained using the
proposed relation. Approbation of the mathematical model showed good agreement
with the literature data. It was observed that swirl intensity imposed at the inlet of the
confusor with a contraction rate of 4:1 does not affect axial and radial velocities. The
distribution of axial velocity along the axial direction is the following: it stretches along the
channel axis and then becomes more flattened in the outlet section of the confusor. The
magnitude of radial velocity is comparable to the magnitude of axial velocity up to 3/4
of the confusor length. The circumferential velocity distribution depends on boundary
conditions; it decreases extensively along the axial direction and nearly disappears after
1/2 of the confusor length. A significant increase in normal stresses is observed with an
increase in the Weissenberg number. Near the outlet of the confusor, the magnitudes of
the Tzz component in the central region prevail over the corresponding magnitudes in the
near-boundary region, which is fundamentally different from the flow of viscoelastic fluid
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in a straight pipe. The post processing of numerical results showed that the damping of
the swirled flow in the confusor is more intense compared to a straight pipe. In this case,
the distribution of damping coefficients of swirling along the length of the confusor can
be described by an exponential function. The proposed mathematical model makes the
estimation of hydrodynamic parameters a lot easier compared with a 3D statement.
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Appendix A

Two mode Giesekus model for a particular case (axisymmetric swirl flow in the confusor)
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