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Abstract: Chitosan is a deacetylated polymer of chitin that is extracted mainly from the exoskeleton of
crustaceans and is the second-most abundant polymer in nature. Chitosan hydrogels are preferred for
a variety of applications in bio-related fields due to their functional properties, such as antimicrobial
activity and wound healing effects; however, the existing hydrogelation methods require toxic
reagents and exhibit slow gelation times, which limit their application in biological fields. Therefore,
a mild and rapid gelation method is necessary. We previously demonstrated that the visible light-
induced gelation of chitosan obtained through phenol crosslinking (ChPh) is a rapid gelation method.
To further advance this method (<10 s), we propose a dual-crosslinked chitosan hydrogel obtained
by crosslinking phenol groups and crosslinking sodium tripolyphosphate (TPP) and the amino
groups of chitosan. The chitosan hydrogel was prepared by immersing the ChPh hydrogel in a TPP
solution after phenol crosslinking via exposure to visible light. The physicochemical properties of
the dual-crosslinked hydrogels, including Young’s moduli and water retentions, were subsequently
investigated. Young’s moduli of the dual-crosslinked hydrogels were 20 times higher than those of the
hydrogels without TPP ion crosslinking. The stiffness could be manipulated by varying the immersion
time, and the water retention properties of the ChPh hydrogel were improved by TPP crosslinking.
Ion crosslinking could be reversed using an iron chloride solution. This method facilitates chitosan
hydrogel use for various applications, particularly tissue engineering and drug delivery.

Keywords: chitosan; hydrogel; phenol group; tripolyphosphate

1. Introduction

Hydrogels are three-dimensional networks of polymer chains that are filled with water.
Hydrogels are soft and biocompatible owing to their abundance in water. In particular,
polysaccharide-based hydrogels have attracted considerable attention for various bio-
related applications, such as tissue engineering and biosensors [1–4]. Unlike synthetic
polymers, polysaccharides can be extracted from renewable sources, are inexpensive [5,6],
and have excellent biofunctional and physicochemical properties [5,7–9].

Among them, chitosan hydrogels exhibit excellent physicochemical properties for
bio-related applications [10–12]. Chitosan is a deacetylated polymer of chitin, the second-
most abundant polysaccharide in nature [11,13]. Chitosan/chitin is extracted mainly from
the exoskeleton of crustaceans, such as crabs and shrimp. Insects and fungi are also
sources of chitosan [14,15]. Chitosan hydrogels exhibit desirable properties for various
bio-related applications, including drug delivery and tissue engineering, owing to their
cationic, antimicrobial, and antioxidant properties [13,16–18].
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Chitosan hydrogels have been obtained using various methods, including physical
crosslinking, which is a widely used method [19–22]. For example, chitosan is soluble in
acidic aqueous solutions, and a chitosan hydrogel is obtained with an increase in pH due to
its solubility change [23]. Chemical crosslinking has also been used [24]. Genipin, a natural
crosslinker from Genipa americana, forms covalent bonds between chitosan polymer chains
and is prepared by mixing chitosan aqueous solutions with genipin [25,26]. However, these
gelation processes are slow (more than 1 h), which could be the rate-determining step
in the overall process of chitosan application [25]. To obtain the homogeneous hydrogel,
mixing the crosslinker with the polymer solution is required; therefore, the process is
time-consuming. In addition, crosslinkers that are toxic and harsh in the presence of animal
cells [23], such as NaOH, are required, which limits the properties of the hydrogels, as well
as the crosslinker concentration. Therefore, rapid and mild gelation is desirable to widen
their applications.

To overcome these limitations, we developed a phenolic derivative of chitosan
(ChPh) [27]. The phenol groups introduced to chitosan were crosslinked with sodium
persulfate (SPS) and Ru(bpy)3 through visible light exposure, resulting in the formation
of a chitosan hydrogel. In this reaction, an electron of Ru(bpy)3 is excited by light
irradiation, promoting a SPS radical that promotes crosslinking between the phenol
groups introduced to the polymers. The light-induced gelation process enables rapid
and homogeneous gelation, unlike the other crosslinking processes described above.
The gelation time of this method was fast (<1 min), which is suitable for fabricating
various 3D structures [28,29]. However, the hydrogel exhibited low stiffness [30,31], and
a hydrogel with a higher stiffness is required for stable and long-term use.

In this study, we propose a dual-crosslinked chitosan hydrogel obtained by phenol and
sodium tripolyphosphate (TPP) crosslinking (Figure 1). TPP crosslinking is induced by the
ionic interactions between the tripolyphosphate anion and the protonated amino groups
of chitosan [32,33]. We evaluated the synergistic effect of phenol and ionic crosslinking
on several properties, including stiffness and swelling behavior, for understanding the
hydrogel stability in physicochemical and physiological environments. These results will
facilitate the use of chitosan hydrogels in various applications.
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Figure 1. Dual-crosslinked chitosan hydrogel obtained by phenol and TPP crosslinking.

2. Materials and Methods
2.1. Materials

Chitosan (high molecular weight chitosan from crab, 500 kDa, deacetylation degree 75%,
purity ≤ 100%), sodium persulfate (purity ≥ 98%), Ru(bpy)3·Cl2·6H2O (purity ≥ 99.95%), 1-
ethyl-3-(3-dimethylaminopropyl)carbodi-imide hydrochloride (EDC·HCl, purity ≥ 97%), 3-(4-
hydroxyphenyl) propionic acid (HPP, purity ≥ 96%), N,N,N′,N′-Tetramethylethylenediamine
(TEMED, purity = 98%), and TPP (purity = 98%) were purchased from Sigma Aldrich (St.
Louis, MO, USA). Escherichia coli (OP50) was cultured in a Luria Broth (LB) medium containing
0.5 wt% NaCl, 1 wt% Bacto tryptone (Becton Dickinson and Company, Franklin Lakes, NJ,
USA), and Bacto yeast extract (Becton Dickinson and Company, Franklin Lakes, NJ, USA).
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2.2. ChPh Synthesis

The phenol group was introduced with chitosan, based on a previously reported
method [29,34,35]. Briefly, chitosan was dissolved in 20 mM HCl at a concentration of
2.0 wt%. TEMED was added to the solution at 2.0 wt%, and the pH was adjusted to 5
using NaOH and HCl. Thereafter, EDC·HCl, lactobionic acid, and HPP were added to
the solution at 1, 0.04, and 1.5 wt%, respectively. After stirring for 20 h, the reaction was
stopped by adding excess acetone. The precipitate was rinsed several times with an 80 wt%
EtOH aqueous solution. The solution was dehydrated with pure ethanol and dried in the
oven at 45 ◦C overnight. The modification of phenol groups to chitosan was confirmed
(Figure S1) by UV–Vis spectrometry, and the amount was 7.5 × 10−6 mol/g–ChPh, as
calculated from the absorbance of phenol groups according to the method described in the
literature [36].

2.3. Comparison of Chitosan Hydrogels Obtained Using Different Crosslinking Methods

The chitosan hydrogels were prepared using the following four gelation methods:
(a) 125 µL of ChPh aqueous solution (2.0 wt%) was poured into the circle mold with
a 12 mm diameter and 5 mm depth, and 1.5 wt% TPP aqueous solution was added
to the ChPh aqueous solution; (b) 125 µL of ChPh aqueous solution containing 4 mM
of SPS and 1 mM of Ru(bpy)3 was poured into the well and exposed to visible light
(λ = 452, 8.0 W/m2) for 20 min; (c) 125 µL of ChPh aqueous solution containing 4 mM of
SPS and 1 mM of Ru(bpy)3 was poured into the well, and 1.5 wt% TPP aqueous solution
was added to the ChPh aqueous solution; after 5 min, the sample was exposed to visible
light for 20 min; and (d) 125 µL of ChPh aqueous solution containing 4 mM of SPS and
1 mM of Ru(bpy)3 was poured into the well and exposed to visible light for 20 min.
These reagent concentrations and light irradiation conditions were based on previous
studies [29,37]. Subsequently, 1.5 wt% TPP aqueous solution was added to the ChPh
aqueous solution.

2.4. TPP Phenol-Crosslinked Hydrogel Preparation

Approximately 125 µL of sample aqueous solution (2.0 wt% of ChPh), 1–4 mM of SPS,
and 1 mM of Ru(bpy)3 were poured into the mold. The sample was then exposed to the
visible light (λ = 452 nm, 8.0 W/m2) for phenol crosslinking for 20 min. The sample was
removed from the mold with a spatula and immersed in 30 mL of 1.5 wt% TPP aqueous
solution for TPP crosslinking for 1, 5, and 10 min (denoted as ChPh–TPP1, ChPh–TPP5,
and ChPh–TPP10, respectively). These samples were used for the series of experiments
described below.

2.5. Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared (FTIR) spectra of ChPh, ChPh–TPP1, ChPh–TPP5, and
ChPh–TPP10 were measured by using a FT/IR-4100 instrument (JASCO, Tokyo, Japan).
Each hydrogel sample was dried and milled, and a KBr tablet containing each sample (KBr:
sample = 100:1) was prepared for the measurement. Thirty scans at a resolution of 4 cm−1

were conducted.

2.6. Young’s Modulus

The mechanical properties of the ChPh–TPP1, ChPh–TPP5, and ChPh–TPP10 hydro-
gels were determined by measuring the repulsive forces toward compression (6 mm/min)
using a tabletop materials tester (EZ-test, Shimadzu, Kyoto, Japan). The SPS and Ru(bpy)3
concentrations were 1–4 mM and 1 mM, respectively. Young’s moduli were calculated
using the stress data when 1–10% strain was applied to the sample. The Young’s modulus
of each sample was compared with ChPh without ionic crosslinking. Three samples from
each group of hydrogels were evaluated, and the average value was recorded.
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2.7. Degree of Swelling

The degree of swelling was measured according to a previously described method [38].
ChPh–TPP1, ChPh–TPP5, and ChPh–TPP10 hydrogels were prepared at 1–4 mM SPS and
1 mM Ru(bpy)3. The sample hydrogel was immersed in phosphate-buffered saline (PBS,
pH 7.4) at 20 ◦C for 5 h. After that, the residual water on the surface of the hydrogel was re-
moved with a paper towel. The wet weight (Ww) was measured, and the weight ratio of the
hydrogel against the initial hydrogel weight was calculated using the following equation:

Swelling degree [−] =
Ww

W0
(1)

where W0 is the initial weight, and Ww is the wet weight of the sample. When this value is
higher than 1, it shows the swelling of the hydrogel. Three samples from each group of
hydrogels were evaluated, and the average value was recorded.

2.8. Water Retention

The water retention was measured using a previously described method [38]. The
hydrogel sample was placed in a 24-well plate and incubated at 20 ◦C for 5 h. SPS and
Ru(bpy)3 concentrations of 4.0 mM and 1 mM, respectively, were used. The weights of the
hydrogels were measured, and water retention was evaluated using the following equation:

Water retention [%] =
Wt

W0
(2)

where W0 is the initial weight, and Wt is the weight of the samples after t h. Five samples
from each group of hydrogels were evaluated, and the average value was recorded.

2.9. Antimicrobial Activity

The antimicrobial activity of each sample was evaluated using the Gram-negative
bacteria E. coli. The bacteria were cultured in a (LB) medium. A sample hydrogel (ChPh,
ChPh–TPP1, ChPh–TPP5, and ChPh–TPP10 at 4 mM SPS) was immersed in 2 mL of the LB
medium containing the bacteria at 108 CFU/mL at 37 ◦C overnight in a shaking incubator.
The OD600 of each medium was measured, and the CFU value was calculated based on
a previously described method [39]. Three samples from each group of hydrogels were
evaluated, and the average value was recorded.

2.10. Removal of Ionic Crosslinking

It has been reported that chitosan hydrogels crosslinked with TPP chelate metal
ions [40,41]. To test whether ionic crosslinking could be removed, ChPh–TPP5 at 4 mM SPS
was immersed in 1 wt% FeCl3 aqueous solution for 15 min. After immersion, the residual
water on the surface of the hydrogels was removed with a paper towel and they were
observed to check for shape changes.

2.11. Statistical Analysis

Statistical analysis was performed using the Student’s t-test. A p-value of < 0.05 was
considered statistically significant. A spreadsheet software, Excel (ver16.79, Microsoft,
Redmond, WA, USA), was used for the analysis.

3. Results and Discussion
3.1. Comparison of Chitosan Hydrogels Obtained Using Different Crosslinking Methods

First, we compared the stability of chitosan hydrogels obtained using four different
crosslinking methods. In the first crosslinking method, 125 µL of ChPh aqueous solution
(2.0 wt%) was poured into a circle mold with a 12 mm diameter, and 1.5 wt% TPP aqueous
solution was added to the ChPh aqueous solution. We observed shrinkage of the sample
5 min after adding the TPP solution (Figure 2a). In the second method, 125 µL of ChPh
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aqueous solution with 4 mM of SPS and 1 mM of Ru(bpy)3 was poured into the mold and
exposed to visible light (λ = 452, 8.0 W/m2) for 20 min (Figure 2b). The sample was stable,
and no shrinkage was observed. In the third method, 125 µL of ChPh aqueous solution
containing 4 mM of SPS and 1 mM of Ru(bpy)3 was poured into the mold, and 1.5 wt% TPP
aqueous solution was added to the ChPh aqueous solution. After 5 min, the sample was
exposed to visible light for 20 min. Shrinkage was observed, similar to that observed in the
first sample (Figure 2c). In the fourth method, 125 µL of ChPh aqueous solution containing
4 mM of SPS and 1 mM of Ru(bpy)3 was poured into the mold and exposed to visible light
for 20 min. Subsequently, 1.5 wt% TPP aqueous solution was added to the ChPh aqueous
solution. After 5 min, no shrinking was observed (Figure 2d). For the successful application
of chitosan hydrogels, it is desirable for the hydrogel to retain its shape for the fabrication
and stabilization of the structure [42,43]. Our findings suggest that the chitosan hydrogel
obtained by TPP crosslinking after phenol crosslinking is more versatile than that obtained
by TPP and phenol crosslinking after TPP crosslinking, as it retains its shape.
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Figure 2. Comparison of chitosan hydrogel obtained using four different crosslinking methods:
(a) sodium TPP crosslinking for 5 min (left top), (b) phenol crosslinking and exposure to visible light
for 20 min (right top), (c) phenol crosslinking after TPP crosslinking for 5 min (left bottom), and
(d) TPP crosslinking for 5 min after phenol crosslinking with exposure to visible light for 20 min
(right bottom). Scale bar = 5 mm.

3.2. FTIR Spectroscopy

We showed the crosslinking order was important to obtain a stable hydrogel, as
described above. FTIR spectroscopy was used to understand the chemical structures of
the dual-crosslinked chitosan hydrogels obtained by TPP crosslinking after light-induced
crosslinking (ChPh, ChPh–TPP1, ChPh–TPP5, and ChPh–TPP10). In ChPh, a broad peak
was observed at around 3300 cm−1, which is attributed to –NH2 and –OH groups streching
(Figure 3). The charcteristic bands at around 2900 cm−1 are attributed to C–H symmetry
and asymmetry streching. The band at around 1645 cm−1 is attributed to C=O stretching
of amide I. The band at around 1580 cm−1 is attributed to N–H bending of the primary
amine. The characteristic band at around 1060 cm−1 is attributed to C–O streching. These
resuts corresponded well to the previous literature [44,45]. In ChPh–TPP1, ChPh–TPP5, and
ChPh–TPP10, sharp peaks were observed at 890 cm−1 attributed to P–O–P stretching, which
shows the presence of TPP inside the hydrogels [46,47]. However, any other significant
difference was not observed among the samples.
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3.3. Young’s Modulus

To understand the effect of TPP immersion time on the mechanical properties of the
dual-crosslinked chitosan hydrogel, the Young’s modulus was measured. The Young’s
modulus increased with an increase in the TPP immersion time (Figure 4). For example,
the Young’s modulus of ChPh–TPP1 at 1 mM of SPS was 10.7 ± 3.1 kPa, while that of ChPh
at the same SPS concentration without TPP crosslinking was 0.53 ± 0.06 kPa (p < 0.05).
The maximum Young’s modulus was 23.7 ± 7.6 kPa at ChPh–TPP10 at 2 mM of SPS.
These results suggest that the Young’s modulus of ChPh–TPP was approximately 20 times
higher than that of the hydrogel without TPP crosslinking. Reportedly, hydrogels obtained
through phenol crosslinking are biocompatible; however, their stiffness is weak and fragile
(<10 kPa) [48,49], thereby limiting their application in biological fields. The mechanical
properties are an important factor in the rigidity of the hydrogel and play an important role
in cell growth and proliferation [50,51]. We demonstrated that the mechanical properties
of ChPh improved after TPP crosslinking and could be manipulated by changing the
immersion time in the TPP aqueous solution.
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Figure 4. Effect of TPP immersion time on the Young’s modulus. The ChPh aqueous solutions
containing SPS and Ru(bpy)3 were gelated by exposure to visible light and were subsequently
immersed in TPP solution for 1, 5, and 10 min (denoted as ChPh–TPP1, ChPh–TPP5, and ChPh–TPP10,
respectively). Data: ±mean S.D. (n = 3–5), * p < 0.05.

3.4. Degree of Swelling

We investigated the degree of swelling of the ChPh–TPP hydrogel to understand its
swelling behavior at room temperature (Figure 5). Each sample was immersed in PBS. The
equilibrium of the swelling degree was confirmed at 5 h (Figure S2). The weights of the
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samples are listed in Table S1. We found that the dual-crosslinked chitosan hydrogel shrunk
in the solution, whereas the hydrogel without TPP crosslinking expanded. For example,
the weight ratio of ChPh was 197 ± 59% at 1 mM of SPS, whereas that of ChPh–TPP10 was
55 ± 5% at the same SPS concentration (p < 0.01). Similar shrinkage effects were observed
for ChPh–TPP1 at 2 and 4 mM SPS (p < 0.01). There was no significant difference between
the degree of swelling of ChPh–TPP5 and ChPh–TPP10 at any SPS concentration (p > 0.1).
These findings suggest that TPP crosslinking occurred inside the ChPh hydrogel even after
its removal from the TPP solution, causing the hydrogel to shrink until the interaction
between TPP and the amino group of chitosan reached equilibrium. This was also likely
caused by the hydrophobicity of the phenol groups, as it has been reported that phenol
groups are hydrophobic [52,53]. However, the amino groups of chitosan are hydrophilic
because they are protonated and interact with water. This hydrophilic interaction was
reduced by ionic crosslinking between the amino group and TPP anion, which enhanced
the hydrophobic interaction of the phenol group introduced with chitosan. Hydrophobic
materials have been widely used as drug carriers for cancer because of their hydrophobicity,
which is a result of their molecular structures and functional groups [54,55]. These findings
suggest that this dual-crosslinked hydrogel has the potential for use as a drug carrier owing
to its hydrophobicity.
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3.5. Water Retention

In addition to the swelling degree measurements, water retention was measured to
further understand the properties of the ChPh–TPP hydrogel (Figure 6). ChPh hydrogels
with different TPP immersion times were prepared using a 4 mM SPS and 1 mM Ru(bpy)3
solution. Each sample was placed in a 24-well plate at 20 ◦C, and the weight of the hydrogel
was measured hourly. The weights of the samples are listed in Table S2. The ChPh sample
became dry in 5 h. The water retention of ChPh was higher than those of ChPh–TPP5 and
ChPh–TPP10 (p < 0.01, Figure 5) after 1 h. No significant differences were observed between
ChPh and ChPh–TPP1 (p > 0.1). Our results suggest that ChPh–TPP5 and Ch–TPP10 shrank
owing to internal TPP crosslinking, even after being removed from the TPP solution, as
described in Section 2.3. In contrast, after 5 h, the ChPh hydrogel without TPP crosslinking
exhibited the lowest water retention, while ChPh–TPP1 exhibited the highest value. In
addition, the decrease in the water retention of ChPh–TPP5 and ChPh–TPP10 was steady
and slow, and the final water retention values of these samples were higher than those
of ChPh (p < 0.01) after 5 h. In general, the density of the crosslinking network strongly
affects the swelling and shrinking of the hydrogel. At a high crosslinking density, the
diffusion of the solvent inside the hydrogel into the atmosphere is disturbed owing to
the presence of resistant paths [45,46]. Hence, it was suggested that the paths inside
ChPh–TPP5 and ChPh–TPP10 improved the water retention with an increase in the TPP
immersion time, although they still shrunk. The water retention of hydrogels is an important
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property for the long-term use and controlled release of nutrients and drugs in bio-related
applications [56,57]. Our results revealed that the immersion of the ChPh hydrogel in TPP
solution improved the water retention.
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Figure 6. Effect of TPP immersion time on water retention. Data: ±mean S.D. (n = 5), * p < 0.05.

3.6. Antimicrobial Activity

The antimicrobial activity of each sample was tested. As a control sample, E. coli was
cultured overnight in a LB medium for one night. In addition, the ChPh and ChPh–TPP
hydrogels were placed in a LB medium containing E. coli and were cultured for one night.
Subsequently, the OD600 of each medium was measured, and the colony-forming units (CFUs)
were calculated based on the literature [39]. The CFU value of ChPh was lower than that of
the control (p < 0.05; Figure 7). This result corresponded to that of our previous study [29];
ChPh hydrogel has antimicrobial activity. In contrast, the chitosan hydrogels obtained by TPP
and phenol crosslinking exhibited no significant difference in CFU values compared to the
control. The antimicrobial activity of chitosan originates from its cationic properties owing
to its protonated amino groups [13,18,58]. Upon the addition of TPP, the tripolyphosphate
anion interacts with the amino cation. We believe that this interaction neutralizes the cationic
properties of chitosan. Cationic properties are important for drug carriers and cell attachment.
Although this cationic property was not controlled in this study, it may be possible to control
it by changing the immersion time and TPP concentration [32].

Polymers 2024, 16, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 7. Effect of TPP immersion time on antimicrobial activity. Data: ±mean S.D. (n = 3), * p < 0.05, 

n.s. > 0.1. 

3.7. Removal of Ionic Crosslinking 

To investigate the reversibility of TPP ionic gelation, the ChPh−TPP5 hydrogel was 

immersed in a FeCl3 solution. The hydrogels swelled after 15 min and shrank again when 

immersed in TPP solution (Figure 8). These results indicate that TPP ionic crosslinking is 

reversible. Metal adsorption by chitosan for metal removal has been widely reported 

[40,59]. Chelates are formed between iron ions and amino and hydroxy groups of chi-

tosan. This suggests that the TPP anions interacting with the amino groups of chitosan are 

replaced by iron ions. Chitosan hydrogels obtained via physical or ionic crosslinking have 

been used for this purpose. However, these hydrogels are generally physicochemically 

unstable, because their stability critically depends on the pH environment around the hy-

drogel [60,61]. In contrast, phenol crosslinking involves covalent bonds, facilitating phys-

icochemical stability. In addition, the phenol group can be introduced on stable substrates, 

such as graphene and glass [62,63]. Hence, the ChPh−TPP hydrogel could be fixed on such 

a substrate and used as a filler material for metal absorption, as it maintains the hydrogel 

state owing to phenol crosslinking, even after cleavage of the TPP anion and absorption 

of the metal iron. In addition, the state of hydrogel−absorbed iron could be visually ob-

served. This property may enable the sensing of iron in aqueous solutions based on its 

appearance. However, this is just a qualitative analysis, and further investigation will be 

required for its practical application.  

 

Figure 8. Removal and reversibility of TPP crosslinking using FeCl3 (scale bar = 5 mm). 

 

4. Conclusions 

In this study, we propose a chitosan hydrogel with covalent bonds between phenol 

groups and ion bonds between the TPP anions and amino cations of chitosan. We demon-

strated that the Young’s modulus of the dual−crosslinked hydrogel was approximately 20 

Figure 7. Effect of TPP immersion time on antimicrobial activity. Data: ±mean S.D. (n = 3), * p < 0.05,
n.s. > 0.1.

3.7. Removal of Ionic Crosslinking

To investigate the reversibility of TPP ionic gelation, the ChPh–TPP5 hydrogel was
immersed in a FeCl3 solution. The hydrogels swelled after 15 min and shrank again when
immersed in TPP solution (Figure 8). These results indicate that TPP ionic crosslinking is
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reversible. Metal adsorption by chitosan for metal removal has been widely reported [40,59].
Chelates are formed between iron ions and amino and hydroxy groups of chitosan. This
suggests that the TPP anions interacting with the amino groups of chitosan are replaced by
iron ions. Chitosan hydrogels obtained via physical or ionic crosslinking have been used for
this purpose. However, these hydrogels are generally physicochemically unstable, because
their stability critically depends on the pH environment around the hydrogel [60,61]. In
contrast, phenol crosslinking involves covalent bonds, facilitating physicochemical stability.
In addition, the phenol group can be introduced on stable substrates, such as graphene
and glass [62,63]. Hence, the ChPh–TPP hydrogel could be fixed on such a substrate and
used as a filler material for metal absorption, as it maintains the hydrogel state owing
to phenol crosslinking, even after cleavage of the TPP anion and absorption of the metal
iron. In addition, the state of hydrogel-absorbed iron could be visually observed. This
property may enable the sensing of iron in aqueous solutions based on its appearance.
However, this is just a qualitative analysis, and further investigation will be required for its
practical application.
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4. Conclusions

In this study, we propose a chitosan hydrogel with covalent bonds between phenol
groups and ion bonds between the TPP anions and amino cations of chitosan. We demon-
strated that the Young’s modulus of the dual-crosslinked hydrogel was approximately
20 times higher than that of the ChPh hydrogel without TPP, and the mechanical properties
of the gel could be manipulated by changing the immersion time. The result indicates that
this dual-crosslinking method expands the application potential of the phenol-crosslinked
chitosan hydrogel. In addition, the degree of swelling and water retention of the hydrogels
were evaluated. Although the swelling of the ChPh hydrogels with TPP crosslinking de-
creased, their water retention properties improved with an increase in the TPP immersion
time. Furthermore, ion crosslinking could be reversed by immersing the hydrogel in an
iron chloride solution. Our findings suggest that this material has the potential to be used
for various applications, including as a drug carrier and filter material for metal. However,
further investigation would be needed, such as a drug load/release amount test, pore size
measurement, and spectroscopic measurements.
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swelling degree of ChPh, ChPh–TPP1, ChPh–TPP5, and ChPh–TPP10 (n = 3, Data: ±S.D.); Table S1:
Weight (mg) comparison of ChPh, ChPh–TPP1, ChPh–TPP5, and ChPh–TPP10 after 5 h of immersion
in PBS, n = 3. Data: ±S.D.; Table S2: Weight (mg) comparison of ChPh, ChPh–TPP1, ChPh–TPP5, and
ChPh–TPP10 after 5 h of incubation at 20 ◦C, n = 5. Data: ±S.D.
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