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Abstract: To enable grasslands to serve a larger ecological and service role against the backdrop of
climate change and human activity, management is essential following long-term fencing. Using
desert grassland that had been fenced for 20 years, we conducted experiments on different mowing
frequencies (once, twice, and three times a year) and different amounts of vegetation coverage
(mowing removal, mowing, and in situ mulch; and mowing, in situ mulch, and additional coverage)
and control (no mowing, no removal, and no cover). In 2021 and mid-August 2022, the aboveground
biomass, species diversity, and vegetation cover of each species were assessed, and the impacts of
species complementarity and competition on the productivity of the fenced grassland were examined.
Our findings revealed several significant outcomes: (1) Two and three times of mowing per year
promoted growth and development of annual or biennial plants and increased species diversity of
the community. (2) The interaction impact of mowing and covering two and three times a year was
the most important, as it encouraged compensatory development of plants, particularly the dominant
species, and increased aboveground biomass of the fenced grassland (p < 0.05). (3) The number
of complementary species groups was c. 11% lower for mowing and covering than for mowing
removal, indicating that the interspecific relationship for the mowing and covering interaction was
dominated by competition, which was more beneficial to the increase in community productivity.
(4) Lespedeza potaninii Vass. (which dominated the semi-shrubs) and Agropyron mongolicum Keng
(which dominated the tufted grasses) exhibited compensatory growth, which alleviated the change
of mowing disturbance and precipitation fluctuation on the productivity of this grassland ecosystem.
(5) Adding vegetation cover after mowing positively influenced community production but did not
significantly impact litter decomposition. Our research provides data support for the sustainable
development of long-term fenced desert grasslands.

Keywords: fenced grassland; mowing; community structure; dominant species; productivity

1. Introduction

Grazing and mowing are the most important human disturbance factors affecting
grassland ecosystem characteristics. Studies have shown that long-term overgrazing has
seriously damaged the structure of grassland ecosystems and caused a series of ecological
problems [1–3]. Since the 1970s, China has attached greater importance to reducing grazing
pressure and restoring degraded grasslands in northern China; several policies have been
promulgated, including “returning grazing land to grassland” and “ecological compen-
sation” [4]. The large-scale application of these policies provides important benefits for
ecosystem restoration. For example, a ban on grazing and the fencing of natural grasslands
in northern China have significantly improved productivity of grassland ecosystems [5,6].
However, fenced grassland litter accumulation is also one of the major causes of species
extinction and changes in species composition in grassland ecosystems, and threatens
ecosystem stability [7]. Therefore, long-term fencing is not always beneficial to grassland
health and the sustainable development of grassland animal husbandry [8].
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After the implementation of grazing prohibition measures, mowing management has
become one of the most important and common grassland utilization methods [9,10]. The
mowing process primarily decreases resource utilization by removing the aboveground
parts of dominant plants, alters the level of interspecific and intraspecies competition,
increases the exposure of low-growing herbs to light, strengthens photosynthesis, and
increases relative density, all of which will play roles in compensating the overall biomass
of the community [11].

By decreasing the photosynthetic canopy of plant communities and removing above-
ground litter, mowing restricts the entry of soil ecosystem carbon, which degrades the
soil microhabitat [12,13]. In addition, mowing can reduce the amount of standing litter
and litter in the community, and then affect plant growth by changing the surface temper-
ature, humidity, winter snow cover, and other surface environments [14]. These mainly
affect the change of dominant species, changing community structure and causing further
change of ecosystem functions [15]. The sustainability of grassland ecosystems and the
stability of productivity are largely maintained by grassland community diversity [16].
The impact of mowing on grassland community diversity shows differences due to dif-
ferent community types, mowing intensity and frequency, growth conditions, and other
factors. Previous studies have shown that infrequent mowing of plants after they have
reproduced might lessen the detrimental impacts of fencing on species richness; however,
continuous mowing will lead to the increase of mowing-tolerant species and the decrease
of mowing-sensitive species, eventually leading to evolution of the grassland community
in a new stable state [17–19]. Mowing at the right time can result in better biomass yields
as well as beneficial compensatory plant growth, which raises forage biomass in the fol-
lowing year. Plants respond to mowing by compensatory growth, which can be equal,
undercompensated, or overcompensated [20]. The productivity of grasslands is increased
by moderate mowing, which encourages overcompensated growth in plants. The plants
on grasslands show reduced height and individual miniaturization when subjected to an
extreme disturbance (mowing), which affects community structure. However, plants can
alter their physiological or morphological traits to lessen the negative impacts of external
harm [21] and promote compensatory development.

Additionally, soil aggregate structure is easily disrupted after mowing due to the
absence of vegetation to buffer the impact of rain or sun exposure. This causes the soil to
become more compacted and the number of soil voids to decrease, which is detrimental to
soil ventilation [22]. However, while redistributing soil water and fertilizer, air, and heat,
adequate land cover can create a barrier layer on the soil surface to stop the exchange of
water and heat with the atmosphere. The decomposition of aboveground and underground
litter in the following year has a positive impact on the formation of soil humus, and so
soil structural properties, net primary productivity (NPP), and water use efficiency can
be improved [12,23]. In addition, surface vegetation cover can directly change the contact
form between the surface and the atmosphere and prevent loss of soil moisture. Meanwhile,
vegetation cover on the surface can play a role in collecting water and conserving soil
moisture [24,25]. In addition, studies have shown that vegetation cover can control the
longitudinal transport capacity of soil water in the critical water demand period of plant
growth, and surface vegetation cover can guarantee a better soil water environment,
promote plant growth, and help form high yields [10,26].

Anthropogenic disturbance is gradually changing ecosystems, which may signifi-
cantly change the makeup of biological communities and impair an ecosystem’s ability to
perform a steady function and offer a service [27,28]. Maintaining species diversity and
community stability is a huge challenge for the sustainable management of grasslands
worldwide. It has been asserted that the stability of dominant species influences community
stability at least as much as biodiversity [29]. It has been extensively documented how
plant community traits and soil physicochemical qualities respond to mowing intensity,
frequency, and duration, but little is known about the ecological consequences of vege-
tation cover on natural grassland following mowing. Therefore, mowing and covering
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treatments without affecting the material or energy of the ecosystem were used in this study
to explore the impact of vegetation productivity on ecosystem stability in fenced desert
grassland. The following assumptions were tested: (1) the different mowing intensities and
subsequent degrees of vegetation removal influence community structure and productivity
and (2) community productivity in the presence of human disturbance is mainly governed
by dominating species. This is expected to give management and theoretical foundations
for bettering the ecosystem service function of fenced grassland.

2. Materials and Methods
2.1. Study Site

The study area was located in the desert steppe of the Sidunzi ecological field station
of Ningxia in China (37◦76′ N, 107◦28′ E), with terrain high in the south and low in the
north (Figure 1). It is adjacent to the Mu Us Sandy Land in the north and the Loess Plateau
in the south; it transits from the hilly area of the Loess Plateau to the Ordos Platform
from south to north, and this is a key transition zone of agricultural and pastoral areas
in northern China [30]. The topography of the experimental area is flat, with an average
elevation of 1600 m, a mean annual temperature of 8.1 ◦C, an annual precipitation of
289 mm (with more than 60% concentrated in July–September), annual evaporation of
2132 mm, an annual accumulated temperature ≥0 ◦C, which is 3430 ◦C, and a typical
temperate continental climate [31]. The zonal vegetation type is desert grassland, and the
zonal soil is calcareous soil, with soil texture mostly sandy soil and silty soil, and with low
fertility. Vegetation is mainly xerophytic and mesoxerophytic, mainly Lespedeza potaninii
Vass., Agropyron mongolicum Keng, Artemisia scoparia Waldst. et Kit., and Polygala tenuifolia
Willd. et al. (Table 1). The study area is a desert grassland and the functional groups are
classified as subshrubs, perennial herbs (including tufted grass, rhizomatous grass, and
herbs), and annual or biennial herbs.
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Table 1. Plant composition (Pi) under mowing and covering treatments.

Functional
Group Species A1 A2 A3 B1 B2 B3 C1 C2 C3 CK

Subshrub Lespedeza potaninii Vass. 0.11 0.11 0.10 0.11 0.13 0.14 0.08 0.09 0.14 0.08

Perennial

Agropyron mongolicum Keng 0.10 0.13 0.12 0.16 0.13 0.09 0.18 0.22 0.08 0.18
Polygala tenuifolia Willd. 0.06 0.03 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.02

Glycyrrhiza uralensis Fisch. 0.02 0.01 0.03 0.02 0.01 0.02 0.01 0.02 0.02 0.02
Lipschitzia divaricata (Turcz.) Zaika,

Sukhor. and N. Kilian 0.01 0.01 0.06 - 0.02 0.05 0.02 0.02 - 0.01

Echinops gmelinii Turcz. - - - - - - - - - 0.01
Peganum harmala L. - 0.02 0.01 0.02 0.02 0.02 0.02 0.05 0.02 0.02

Vincetoxicum mongolicum Maxim. 0.01 - - 0.01 - - 0.02 0.01 - -

Annual or
biennial

Artemisia scoparia Waldst. et Kit. 0.49 0.46 0.41 0.43 0.35 0.50 0.40 0.39 0.45 0.36
Euphorbia esula L. 0.13 0.15 0.16 0.10 0.11 0.11 0.16 0.12 0.16 0.21

Allium mongolicum Regel - - 0.01 - 0.01 0.01 - 0.01 - 0.02
Kali collinum (Pall.) Akhani and Roalson 0.01 - 0.01 - 0.02 0.02 0.02 0.02 - 0.01

Cenchrus echinatus L. 0.09 0.04 0.04 0.02 0.06 0.02 0.02 0.04 0.03 0.01
Eragrostis minor Host 0.01 0.01 0.01 0.03 0.01 - 0.02 0.01 0.01 -
Euphorbia maculata L. - 0.04 0.03 0.09 0.10 0.10 0.03 0.10 0.05 0.08

Note: Pi = (RDi + RCi + RHi + RBi)/4, RDi represents relative density, RCi represents relative coverage, RHi
represents relative height and RBi represents relative biomass.

The experimental area had been fenced since 1 November 2002 to exclude large
animals from grazing. The precipitation and temperature during the test are shown in
Figure 2.
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Figure 2. Mean monthly precipitation and temperature during the experiment.

2.2. Experimental Design

This study utilized temperate fenced desert grassland in Yanchi County in a random-
ized block design. The four treatments were as follows: mowing and removing vegetation
(A1–A3); mowing and in situ mulching (B1–B3); mowing and in situ mulching and adding
A, (C1–C3); and the control (CK; no mowing, no removal, and no cover). The additive
“A” came from treatment A. Mowing was performed each time using a mower (Honda
GXV160, Foshan Maiwei Long Machinery Co.,Guangdong, China) with a stubble height of
2 cm, and each treatment was repeated three times. After each mowing, the vegetation was
artificially spread evenly over the plots to be covered according to the experimental design.
The A1, B1, and C1 represent mowing once a year; A2, B2, and C2 represent mowing twice
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a year; and A3, B3, and C3 represent mowing three times a year. The mowing treatment
commenced in September 2020, with mowing time in July, September, and November
of each year. The C treatment proportionally adds the vegetation removed from the A
treatment: in the first mowing, the C1 plots of each block added 1/6 (A1+A2+A3), the
C2 plots added 2/6 (A1+A2+A3), and the C3 plots added 3/6 (A1+A2+A3). In the second
mowing, the C1 plots of each block were added with 1/6 (A2+A3) of this block, the C2 plots
were added with 2/6 (A2+A3), and the C3 plots were added with 3 /6 (A2+A3). In the
third mowing, the C1 plots of each block group added their own block 1/6A3, the C2 plots
added 2/6A3, and the C3 plots added 3/6A3 (Figure 3). Treatment A was mowing removal,
and treatments B and C were mowing and covering interaction treatments, in which C had
more vegetation coverage than B.
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We selected a plot with uniform vegetation growth measuring 73 m× 21 m in a fenced
and sealed desert grassland in Yanchi County. Each plot was 5 m × 5 m, walkway spacing
between groups was 1.5 m, and the cell spacing within groups was 1 m. To reduce the test
error, two plots with uneven vegetation growth were removed from each group, and a total
of 30 test plots were used. The vegetation growth status and quantity of each treatment
plot were basically consistent, with no significant difference in soil moisture.

2.3. Data Collection and Analysis

Between 2021 and 2022, samples used to determine density (number of individuals of
each species in the sample), coverage (acupuncture method), height (measurement of the
natural height of 5 plants of each species in the sample), and aboveground biomass (drying
and weighing method) were taken using a 1 m × 1 m quadrat randomly placed in each
plot without a spatial overlap of quadrats among years and at least 1 m inside the border of
each plot to avoid edge effects. This was conducted during 15–20 August (peak sampling of
aboveground biomass due to aboveground plant tissues dying during winter). After being
categorized by species, all living plants were oven dried at 65 ◦C for 48 h to a consistent
weight, and weighed. In the same quadrat used to quantify aboveground biomass, species
richness (defined as the number of plant species per m2) was recorded. The calculation
formula and indexes used are as follows:

Pi = (RDi + RCi + RHi + RBi)/4

RDi = densityi/total density
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RCi = coveragei/total coverage

RHi = heighti/total height

RBi = biomassi/total biomass

Shannon–Wiener index (H) = −∑s
i=1 PilnPi

Margalef index (R) =
S− 1

log10 N

Pielou index (E) =
H

ln S

Simpson index (C) = 1−∑(Pi)2

The terms relative density (RDi), relative coverage (RCi), relative height (RHi), and
relative biomass (RBi) are used in the calculation; S is the total number of species present in
each quadrat, Pi is the weighted average of the relative importance of each species inside
the quadrat, and N is the total number of individuals belonging to each species.

Maschinski et al. [32] believed that a compensation effect would occur after plants
were injured, and defined overcompensation as the phenomenon of biomass and seed
yield increase after plants are eaten or mowed. The compensation index was expressed as
CI = G/C. Hjalten et al. [33] divided compensation into overcompensation, equal compen-
sation, and undercompensation (Table 2).

Table 2. Division of compensatory effects.

Ratio of Treated Biomass to Control Biomass Compensatory Effect

G/C > 1 Overcompensation
G/C = 1 Equal compensation
G/C < 1 Undercompensation

Note: G represents the sum of biomass of each mowing and C represents the biomass of the control group.

The coefficient of variation in each plot was defined as µ/σ, where µ and σ are the
interannual mean and standard deviation of aboveground biomass, respectively [13].

2.4. Statistical Analysis

The calculation of species importance value refers to the method of [34]. Plant pro-
ductivity and plant diversity indexes of different mowing and covering treatments all
used one-way analysis of variance. Pearson correlation analysis was used to determine
the biomass complementary relationships between species and functional groups. Lin-
ear and polynomial fitting were used to analyze the relationships between biomass and
Shannon–Wiener, Margalef, Pielou, and Simpson indexes. Graphs were plotted using
Origin 2023.

3. Results
3.1. Community Aboveground Productivity with Mowing and Covering

The aboveground biomass increased with the number of mowings in the B and
C treatments, respectively, when mowing and vegetative cover were combined. The
community aboveground biomass treated once and twice a year with mowing and in situ
mulch was higher than that treated once and twice a year with mowing, in situ mulch,
and additional coverage (Figure 4a). Mowing and removal had the highest coefficient of
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variation (0.171), followed by mowing and in situ mulching (0.155) and then mowing, in
situ mulching, and adding cover (0.140) (Figure 4b).
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Figure 4. Community productivity and coefficient of variation. (a) Aboveground biomass of com-
munity of treatments, (b) coefficient of variation of treatments. The diamond shapes in (a) represent
treatment data, The shapes in (b) represent different treatment. Different lowercase letters indicate
significant differences at p < 0.05. The same applies to other figures below. * represent the correlation
is significant at the p = 0.05 level.

Further analysis on the maintenance of stability of community aboveground biomass
showed that for mowing and removal and for mowing and covering, the larger was the
relative biomass of species (Ar. Scoparia, Ag. Mongolicum, L. potaninii, and P. tenuifolia) and
the smaller was the variability (Figure 5). In addition, some plant species had a relatively
small biomass and large coefficient of variation (Figure 5a,b).
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Figure 5. Relationship between a species’ relative biomass and coefficient of variation. (a) Mowing
removal, (b) mowing and covering, and (c) no mowing, no removal, and no covering.
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3.2. Relationship between Species Diversity and Biomass under Mowing and Covering

The Shannon–Wiener index showed a strong positive association with community
aboveground biomass following mowing and covering treatment (p < 0.001) and a signifi-
cant unimodal correlation with aboveground biomass of the dominant species (p < 0.05).
The aboveground biomass of the community and the dominating species had a substantial
positive connection with the Margalef index (p < 0.001). The Simpson index revealed no
link between community aboveground biomass and dominant species biomass, but the
Pielou index showed a favorable positive association with the community aboveground
biomass (Figure 6).

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

3.2. Relationship between Species Diversity and Biomass under Mowing and Covering 
The Shannon–Wiener index showed a strong positive association with community 

aboveground biomass following mowing and covering treatment (p < 0.001) and a signif-
icant unimodal correlation with aboveground biomass of the dominant species (p < 0.05). 
The aboveground biomass of the community and the dominating species had a substantial 
positive connection with the Margalef index (p < 0.001). The Simpson index revealed no 
link between community aboveground biomass and dominant species biomass, but the 
Pielou index showed a favorable positive association with the community aboveground 
biomass (Figure 6). 

 
Figure 6. Relationship between species diversity and biomass of desert grassland for mowing and 
mulching treatment. (a) The relationship between the Shannon -Wiener index and the aboveground 
biomass, (b) the relationship between the Margalef index and the aboveground biomass, (c) the 
relationship between the Pielou index and the aboveground biomass, (d) the relationship between 
the Simpson index and the aboveground biomass. 

3.3. Compensation Effects of Mowing and Covering 
Mowing and covering encouraged overcompensatory development of the plants on 

the fenced grassland. The compensation index increased with the increase of mowing fre-
quency for the mowing and in situ mulching treatment. Compared to once per year mow-
ing and removal, the compensation index for the two and three times a year mowing and 
in situ mulching treatments increased by 22.45% and 25.05%, respectively (p < 0.05); the 
compensation index for the two and three times a year mowing, in situ mulching, and 
adding cover increased by 19.14% and 22.72%, respectively (p < 0.05) (Figure 7). 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0

20

40

60

80

100

120

140

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

20

40

60

80

100

120

140

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

0

20

40

60

80

100

120

140

0.4 0.5 0.6 0.7 0.8 0.9

0

20

40

60

80

100

120

140

Shannon-Wiener index

Y=47.48x-24.29
R2=0.39,P<0.001,n=54

Y=-63.34x2+234.15x-174.60
R2=0.14,P<0.05,n=54

A
bo

ve
gr

ou
nd

 b
io

m
as

s(
g·

m
-2

)

 Aboveground biomass of communicty(g·m-2)   Aboveground biomass of dominant species(g·m-2) 

(a)

Margalef index

Y=13.93x+17.77
R2=0.38,P<0.001,n=54

Y=9.25x+10.72
R2=0.22,P<0.001,n=54

A
bo

ve
gr

ou
nd

 b
io

m
as

s(
g·

m
-2

) (b)

(c)

Pielou index

Y=84.88x-24.53
R2=0.09,P<0.05,n=54

A
bo

ve
gr

ou
nd

 b
io

m
as

s(
g·

m
-2

)

Simpson index

A
bo

ve
gr

ou
nd

 b
io

m
as

s(
g·

m
-2

) (d)

Figure 6. Relationship between species diversity and biomass of desert grassland for mowing and
mulching treatment. (a) The relationship between the Shannon -Wiener index and the aboveground
biomass, (b) the relationship between the Margalef index and the aboveground biomass, (c) the
relationship between the Pielou index and the aboveground biomass, (d) the relationship between
the Simpson index and the aboveground biomass.

3.3. Compensation Effects of Mowing and Covering

Mowing and covering encouraged overcompensatory development of the plants on
the fenced grassland. The compensation index increased with the increase of mowing
frequency for the mowing and in situ mulching treatment. Compared to once per year
mowing and removal, the compensation index for the two and three times a year mowing
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and in situ mulching treatments increased by 22.45% and 25.05%, respectively (p < 0.05);
the compensation index for the two and three times a year mowing, in situ mulching, and
adding cover increased by 19.14% and 22.72%, respectively (p < 0.05) (Figure 7).
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3.4. Compensability of Community Productivity of Mowing and Covering

Pearson correlation analysis of the relative biomass of 15 plant species under the mow-
ing and removal treatment showed that 46 species had no significant relationship between
species. There were 31 groups with significant negative correlations, accounting for 29.52%
of the total groups (Figure 8a), and these groups may have had complementary productivity.
Pearson correlation analysis of the relative biomass of 14 species under the interaction of
mowing and covering showed 17 groups with significant negative correlations, accounting
for 18.68% of the total groups (Figure 8b).

3.5. Compensation of Dominant and Sub-Dominant Species with Mowing and Covering

Agropyron mongolicum and L. potaninii had high negative correlations when treated
with mowing and covering (Figure 8). When the relative biomass of L. potaninii decreased,
the relative biomass of Ag. mongolicum increased (Figure 9), confirming compensation
between the two species, which compensated for the instability of community biomass
caused by the decline in biomass of one species.

3.6. Compensation between Dominant and Other Plant Species with Mowing and Covering

Agropyron mongolicum and eight other species showed negative correlations under the
treatment of mowing and removing, and L. potaninii and five other species had negative
correlations (Figure 8a). Agropyron mongolicum and four other species had negative cor-
relations when mowing and covering were combined, as did L. potaninii and seven other
species (Figure 8b). These negatively correlated species somewhat offset the variation in
community production due to the shifting biomass of dominant species. Therefore, from
the perspective of community productivity, these negatively correlated species are merged,
and these populations formed a complementary relationship with the relative biomass of
two dominant populations (Ag. mongolicum and L. potaninii). Further analysis showed that
the combination of these species with Ag. mongolicum (or L. potaninii) supplemented the
fluctuation of L. potaninii (or Ag. mongolicum) biomass, thus maintaining stability of the
grassland community (Figure 10).
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Figure 9. Complementary analysis of the relative biomass of dominant and sub-dominant species for
mowing and covering.
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Figure 10. Compensation analysis between dominant and compensatory species. (a) Complementary
relationship between L. potaninii and compensating species, (b) complementary relationship between
Ag. mongolicum and compensating species.

3.7. Compensability between Functional Plant Groups with Mowing and Covering

Vegetation may be broken down into subshrubs, perennial herbs (including tufted
grass, rhizomatous grass, and herbs), and annual or biennial herbs in the research region.
The productivity compensation between functional groups of desert grassland plants under
mowing and covering treatment was examined. There was a negative connection between
the subshrubs dominated by L. potaninii and the tufted grasses dominated by Ag. mon-
golicum, a very strong negative correlation between tufted grasses and rhizomatous grasses,
and large negative correlations between annual or biennial grasses and subshrubs and
rhizomatous grasses under the mowing and removal. Only subshrubs and herbs exhibited
a very strong negative connection when mowing and covering were combined (Table 3).
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Table 3. Complementarities between biomass of desert grassland functional groups.

Subshrubs Tufted Grasses Rhizomatous
Grasses Herbs Annual or

Biennial Herbs

Subshrubs 1 −0.57 (−0.53) 0.67 * (0.15) 0.53 (−0.90 **) −0.74 * (0.40)
Tufted grasses 1 −0.92 ** (−0.13) 0.52 (0.21) 0.64 * (0.56)

Rhizomatous grasses 1 −0.62 (−0.30) −0.64 * (−0.54)
Herbs 1 0.43 (−0.60)

Annual or biennial herbs 1

Note: Data indicated outside of the brackets are the complementarities between the biomass of functional groups
under the mowing and removal; the data in brackets are the complementarities between the biomass of functional
groups under the interaction of mowing and covering. *, p < 0.05, **, p < 0.01.

4. Discussion

We investigated effects of mowing and covering on natural community biomass and
dominant species compensatory growth in a fenced desert grassland in China and found
that mowing helped boost aboveground biomass. The interaction treatment of mowing
and covering with greater frequency had the most pronounced effect, consistent with
studies performed in temperate steppes [35]. The relative biomass coefficient of variation
for mowing and covering was lower than that for mowing and removing, indicating that
the community’s aboveground biomass fluctuation was largely steady: that is, plant cover
can preserve the relative stability of community aboveground biomass in desert grasslands
despite disruption from mowing [36]. However, we acknowledge that the plot area in
our study (5 m × 5 m, separated by 1 m or 1.5 m aisles) may not be large enough for
plants and soil to completely avoid the interaction among the plots, as plants such as Ag.
mongolicum may have lateral root or rhizome growth which can possibly transfer nutrients
among plots. The extent of impacts that the possible transfer of nutrients among the
plots have on the community aboveground biomass performance warrant further studies,
possibly using large plots. Further analysis of community biomass stability revealed that
variability decreased as relative species biomass increased (i.e., L. potaninii, Ag. Mongolicum,
Ar. Scoparia, and P. tenuifolia), demonstrating that dominant and sub-dominant species
played a significant role in the community’s function and that even minor variability under
interference will contribute to stability of the entire community [37,38]. Additionally, some
plant species with relatively low biomass and high coefficients of variation can mitigate the
effects of extreme fluctuations in biomass of the dominant species on productivity of the
entire grassland. These species’ rapid rates of reproduction also serve to buffer instability
of the productivity of the entire grassland community, which helps maintain stability of
the grassland ecosystem [37]. The species richness with mowing and in situ mulching was
higher than that for mowing removal and mowing, in situ mulching, and adding coverage,
indicating that moderate mowing after long-term fencing was beneficial to plant community
composition [13]. The Margalef index demonstrated significant positive biodiversity–
biomass relationships, demonstrating a positive correlation between species richness and
productivity under low-resource environments in fenced desert grasslands, consistent with
the findings of most research sites on Inner Mongolian grassland [39]. After two years, Kali
collinum (Pall.) Akhani and Roalson, and Cenchrus echinatus L. and other species, started
to appear in the mowed desert grassland, because mowing removes some biomass from
aboveground parts of tall plants and damages their vegetative organs, photosynthetic
capacity, and competitiveness [11,12], and mowing reduces soil organic matter (C and
N) by removing aboveground biomass, thus reducing plant residues that can return to
soil and photosynthetic C transfer to roots. Additionally, mowing eliminated the shelter
provided by standing litter and the accumulation of litter in the community, enhancing
the light and water conditions for lower-level plants, expanding the opportunities for
new seeds to come into contact with the soil, and fostering the growth and development
of annual or biennial dwarf plants [40]. It was also confirmed that mowing disturbance
can change the interspecific relationship by increasing spatial heterogeneity [39], thereby
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changing diversity of communities, and reducing litter is also beneficial for germination
of dormant seeds in soil and the regeneration and reproduction of species [41]. After
two years of mowing and covering, the newly emergent annual or biennial herbs did
not clearly contribute to the community, because the rarest species, which make up the
majority of a community, may have little impact on community composition due to their
low abundance [39].

The plant community displayed overcompensated growth, but the positive effect of
mowing removal was weak in the mowing and covering treatment, possibly because mow-
ing removes a significant amount of nutrients (e.g., nitrogen, phosphorus, and potassium)
from the plant’s aboveground parts, reduces the nutrients in soil, and ultimately affects
community aboveground biomass [17]. The interaction of mowing and covering two and
three times a year was beneficial to the increase of grassland NPP, but this increase was
weakened by adding cover, showing that too much vegetation coverage on the soil surface
is unfavorable to the accumulation of plant nutrients [35]. The reason may be that under
the interactive treatment of mowing and covering of grassland, the vegetation cover on the
surface is the only carbon source input to the soil, and a large amount of nitrogen is required
in the process of vegetation decomposition [42], causing a carbon and nitrogen imbalance
in the process of vegetation decomposition, in turn intensifying the nitrogen competition
between microorganisms and plants, which is not conducive to plant growth [43]. Mowing
encourages the growth of more new tissues, which increases the net photosynthetic rate
and NPP, and also removes aboveground biomass of tall plants as well as the tops of the
middle and lower layers of plants, eliminating any height advantage [11]. Community
production will continue at a relatively consistent level when the decrease in biomass of
tall plants is about equivalent to the rise in biomass of the middle and lower layers, and
may be why Ag. mongolicum grew tall, L. potaninii grew short, and the dominant species
were asynchronous after mowing in the study area.

Research found that the stability of NPP declined in desert grasslands [44] because
grassland productivity is closely related to local climate conditions (such as precipitation)
in addition to being affected by management measures [45,46]. It is generally believed
that the north of China is warm and humid [47,48], and the “rainfall threshold” required
for the rapidly responsive Ar. scoparia is low [49], making it vulnerable to the impact of
inter-annual rainfall fluctuations (Figure 2). Long-term sentinel experiments are needed
to study more closely the effects of mowing and mulching on the productivity of desert
grassland vegetation. Additionally, this species can extremely easily develop into a ben-
eficial species in the area and has a high ability to adapt to severe situations. We found
that a substantial negative connection between dominating species under mowing and
mulching was discovered in a supplementary investigation of species’ relative biomass.
Compared with mowing and removing, 14 pairs of species with negative correlations
between relative biomass of mowing and mulching were reduced, indicating that under
mowing and mulching, the compensation between species was weak, but there may be
greater competition [50]; the species with negative correlations supplement the fluctuation
of community productivity caused by the change of biomass of dominant species.

Species’ compensatory growth properties are beneficial to community productivity be-
cause decreased biomass in one species can be compensated by increases in others [51,52],
thus maintaining productivity of the grassland community. As a result, from the per-
spective of community productivity, these species with negative correlations formed a
complementary relationship with the relative biomass of the two dominant species (i.e.,
Ag. mongolicum and L. potaninii). The functional categories of desert grasslands exhibited
varying degrees of productivity complementation and had a substantial compensatory
connection with the dominant plant species for mowing removal and for the interaction of
mowing and mulching. The complementary analysis of biomass among functional groups
showed that the species mainly compensated each other with the mowing and removal,
and the competition was dominant under the mowing and covering interaction.
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5. Conclusions

For a fenced desert grassland, this study clarified how mowing and covering plants
affected productivity and compensatory growth across species. The results showed that the
interaction of mowing and covering twice and three times a year has particularly encour-
aged compensatory growth of dominant species, increasing the aboveground biomass of
fenced desert grasslands. However, we acknowledge that long-term sentinel experiments
are needed to study more closely the effects of mowing and mulching on the productivity of
desert grassland vegetation. Concerning the tufted grasses Ag. mongolicum and L. potaninii,
which were predominantly semi-shrubs, compensatory growth helped to reduce the am-
plitude of change in community productivity caused by mowing disturbance. Long-term
field study is needed to further understand how community structure and species diversity
affect productivity in a fenced desert grassland. The results of this study can provide robust
data support and essential theoretical guidance for promoting the sustainable utilization of
fenced desert grasslands and the functioning of grassland ecosystems in arid and semi-arid
zones.
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