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Abstract: Information on the impact of climate change on the growth of weed species and their
sensitivity to herbicides could help to establish an efficient weed management strategy. Due to
the excessive use of acetolactate synthase (ALS)-inhibitor herbicides, resistance to those herbicides
is increasing globally. It is, thus, crucial to find out whether the efficacy of these herbicides will
change in the future due to the increase in temperatures and carbon dioxide concentration. Therefore,
this work aimed to evaluate the impact of temperature and carbon dioxide (CO2) changes on the
growth of Amaranthus retroflexus, Bromus tectorum, Chenopodium album, and Echinochloa crus-galli,
including the assessment of sulfosulfuron 75% + metsulfuron methyl 5% efficacy in these weeds. A
factorial experiment was performed in a completely randomized design with a factorial arrangement
(2 × 2 × 6), including two CO2 concentrations (400 and 700 ppm), two temperature regimes (30/20 ◦C
and 34/24 ◦C day/night), and six herbicide rates (0, 25, 37.5, 50, 62.5, and 75 g ha−1). As a result, it
was seen that temperature and CO2 concentration changes influenced the morphological variables
of the weeds. The temperature regime affected the herbicide’s effectiveness on B. tectorum and
E. crus-galli. The herbicide’s efficacy on weed species was affected by the interaction of herbicide rates
and the temperature regime, except for on E. crus-galli; the highest efficacy was observed at 30/20 ◦C
and at a rate 50% higher (75 g ha−1) than the recommended one (50 g ha−1). Except for E. crus-galli,
increasing CO2 concentrations enhanced the herbicide efficacy and ALS enzyme activity inhibition in
all the weed species, but had the greatest effect on C3 weeds. We found that temperature and CO2

levels can alter the efficacy of weed control with herbicides, with clear differences between C3 and C4

plants. As a result, increased temperature and CO2 concentration will possibly allow better control
of weed species such as B. tectorum, C. album and A. retroflexus at lower doses of the ALS herbicide
under investigation.

Keywords: carbon dioxide; climate change; herbicide efficiency; temperature

1. Introduction

Global climate change is one of the main concerns for the future sustainability of
our development, because of its impact on numerous socioeconomic sectors of human
activity [1]. Changes in temperature, atmospheric carbon dioxide (CO2), and frequent and
extreme weather events could have significant impacts on weed populations and their
management [2–4]. From 1980 to 2020, atmospheric CO2 concentration increased from
340 ppm to 411 ppm, and it was estimated that CO2 would reach 600–1000 ppm at the
end of the 21st century [5]. High concentrations of CO2 improve plant growth, directly
affecting photosynthesis activity, this being decisively influenced by the photosynthetic
pathway of plants (C3 or C4). In general, C3 weeds will respond more favorably to increased
atmospheric CO2 than C4 ones [3]. Different responses of C3 and C4 plants to the increase in
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CO2 concentration and temperature could lead to important consequences for weed–crop
interaction [3].

Environmental conditions affect plant and herbicide interaction. Despite their impor-
tance, there is not much information on the effects of herbicides on weeds in the context
of climate change, like reduced efficacy and, eventually, herbicide resistance. High con-
centrations of CO2 reduce stomatal conductance, which can alter the efficacy of foliar
herbicides [6]. Some studies have indicated that the efficacy of glyphosate in controlling
Paspalum dilatatum, Conyza canadensis, and Chenopodium album could be reduced at high CO2
concentrations [7–9]. When herbicides are sprayed on weed leaves at high temperatures,
leaf cuticles become more fluid and more readily penetrated by fat-soluble compounds,
thus demonstrating low selectivity [10].

According to reports, herbicides of the sulfonylureas group were first introduced
to the market in 1982 and, in most cases, they exert a good control of weeds [11]. This
herbicide class inhibits the activity of the acetolactate synthase (ALS) enzyme, which is
responsible for the biosynthesis of leucine, isoleucine, and valine amino acids in plants.
Inhibition of ALS activity leads to the starvation of the plant for these amino acids, and it is
this which is thought to be the primary mechanism responsible for the plant death caused
by ALS-inhibiting herbicides. However, other secondary effects of ALS inhibition, such as
the buildup of 2-ketobutyrate and the disruption of protein synthesis and of photosynthate
transport, have also been implicated in plant death [12]. The mixture of sulfosulfuron
75% + metsulfuron methyl 5% as a post-emergence herbicide is one of the sulfonylurea
class herbicides used for controlling narrow and broadleaf weeds of wheat. However, there
is a lack of studies on the effect of climate change on sulfonylureas, and, in order to optimize
herbicide rates for acceptable weed control in the future, there is a need to gain more
understanding of the interactions between climate change and herbicide efficacy. Therefore,
this research was aimed at evaluating the effects of CO2 and rising temperature on the
performance of sulfosulfuron 75% + metsulfuron methyl 5% in controlling Chenopodium
album, Amaranthus retroflexus, Bromus tectorum, and Echinochloa crus-galli.

2. Materials and Methods
2.1. Plant Material, Growth Conditions, and Treatments

A factorial experiment was performed in a completely randomized design with
three factors (two CO2 concentrations, two different temperatures and six herbicide rates) in
four replications. Two C4 (A. retroflexus and E. crus-galli) and two C3 (C. album and B. tectorum)
plant species were used in this experiment. Seeds of barnyard grass (E. crus-galli) and cheat
grass (B. tectorum) as grass, and red-root pigweed (A. retroflexus) and common lambsquarters
(C. album) as broadleaf were collected from the Research Farm of the University of Zanjan
(35◦ 35′ N, 47◦ 15′ E).

Seeds of C. album and A. retroflexus were exposed to light and temperature fluctuation
treatments to break the dormancy, and scarification was used to break the dormancy of
E. crus-galli seeds. Seeds of B. tectorum did not showed dormancy. Ten seeds of each weed
were sown in plastic pots (25 cm × 35 cm), filled with the 75% perlite + 25% coco-peat
mixture. Pots were placed in a standard growth chamber (STC 1300, Noor Sanat Azma
Ferdous, Iran) under two concentrations of CO2 (400 and 700 ppm) and two temperatures
(day/night temperature 30/20 ◦C and 34/24 ◦C). The light required for the growth of the
plants was provided by LED bulbs installed inside the growth chamber. Also, the CO2
concentration was measured by CO2-sensitive sensors, and, if needed, it was automatically
injected from the CO2 gas capsule connected to the device. Pots were irrigated twice a
week with Hoagland solution (until the end of the growth stage). After seed germination,
they were thinned, and only four plants were kept in each pot. Finally, six rates of Total ®

herbicide (sulfosulfuron 75% + metsulfuron methyl 5%), including (1) the herbicide rate
recommended by the manufacturer (50 g ha−1), (2) 25% below it (37.5 g ha−1), (3) 25%
above it (62.5 g ha−1), (4) 50% below the recommended rate (25 g ha−1), (5) 50% above it
(75 g ha−1), and (6) distilled water as a control (no herbicide), were sprayed on plants at
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the six-leaf stage. Herbicide was applied with a backpack sprayer equipped with flood-jet
nozzle, calibrated to deliver 200 L ha−1 at 250 kPa. The distance between the nozzle and
the target was 50 cm. Ten days after spraying, plant parameters were measured.

Weeds were monitored daily after herbicide application. They started withering
3–5 days after herbicide application and showed chlorosis symptoms nearly 10–15 days
after spraying.

2.2. Herbicide Efficiency

Ten days after spraying, herbicide damage on weeds was assessed by the European
Weed Research Council (EWRC) scoring system [13] (Table 1). Scoring was carried out by
two people separately.

Table 1. Modified European Weed Research Council Ratings Scale used to score herbicide effectiveness.

Category Number Herbicide Effectiveness on Weeds Weed Control (%)

1 None 0–29.9
2 Very bad 30–54.9
3 Bad 55–69.9
4 Weak 70–81.9
5 Moderate 82–89.9
6 Good to acceptable 90–94.9
7 Very good 95–97.9
8 Excellent 98–99.9
9 Total plant death 100

2.3. Morphological Variable Measurement

At the end of the experiment, roots were removed from the soil and washed with
water, and their lengths and root volume were measured later by immersing the roots in a
graduated cylinder (500 ± 1 cc). Plant biomass was dried in an oven at 70 ◦C for 48 h, and
dry weights were determined. Analyses were conducted on total dry weights of root and
shoot, separately. Plant height was measured by a ruler.

2.4. Enzyme Assay

The activity of the acetolactate synthase (ALS) enzyme was determined by the
Milfin et al. [14] method with three replications. In brief, 100 mg of upper leaves sam-
ples from all treatments were used for the extraction and precipitation of protein. Next,
about 0.5 mg of the precipitated protein was incubated for 1 h at 30 ◦C in a buffer contain-
ing 40 mM Na-pyruvate, 0.32 mM thiamin pyrophosphate, 0.5 mM MnSO4, and 20 mM
Na-phosphate, pH 7.5. After that, the reaction was terminated by the addition of ZnSO4,
(5 mM). After centrifugation, the supernatant was acidified with HC1 (37%). Then, 1.7%
(w/v) a-naphthol and 0.17% (w/v) creatin were added and incubated at room tempera-
ture for 1 h. Finally, the absorbance was recorded at 530 nm with a spectrophotometer
(PerkinElmer-lambda 25, Waltham, MA, USA).

2.5. Statistical Analysis

The data were analyzed by ANOVA, and the means were contrasted by the Tukey
HSD test (p ≤ 0.05) using SAS ver. 9 (SAS Institute Inc., Cary, NC, USA).

3. Results

Temperature regimes affected the plant height, root/shoot ratio, root volume, and
enzyme activity of A. retroflexus (Table 2). The highest root volume and inhibition of ALS
enzyme activity were observed at 34/24 ◦C (Table 3). In contrast, the maximum plant
height and root/shoot ratio were obtained at 30/20 ◦C (day/night) (Table 3). Increasing the
CO2 concentration also affected plant height, total biomass, enzyme activity, and herbicide
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efficacy (Table 2). Herbicide rates also influenced plant height, shoot dry weight, total
biomass, root volume, enzyme activity, and herbicide efficacy in these species (Table 2).

Temperature and CO2 greatly affected the B. tectorum variables. The temperature
regimes affected the root dry weight, root volume, root/shoot ratio, enzyme activity,
and herbicide efficacy, and the CO2 concentration also affected the root dry weight, total
biomass, root volume, and herbicide efficacy. On the other hand, herbicide rates had a
notable impact on all variables, except for the root/shoot ratio (Table 2).

Table 2. Analysis of variance of the effects of temperature changes, CO2 concentration, and different
rates of sulfosulfuron 75% + metsulfuron methyl 5%on morphological characteristics, enzyme activity,
and herbicide efficacy in C3 and C4 weeds.

Mean Square

Species df Height
(cm)

SdW
(g pot−1)

RdW
(g pot−1)

Biomass
(g pot−1) R/S RV

(cm3)
ASL

Activity HE (%)

A
.r

et
ro

fle
xu

s

Temperature (T) 1 394.07 ** 0.49 ns 83.40 ns 0.02 ns 13.70 ** 1.66 ** 5536 ** 1.5 ns
CO2 1 195.51 ** 0.48ns 65.24 ns 1.45 ** 0.24 ns 0.002 ns 5236 ** 13.5 **

Herbicide rates
(H) 5 355.04 ** 8.62 ** 75.24 ns 15.98 ** 0.95 ns 2.67 ** 40,269 ** 142.1 **

T × CO2 1 21.57 ns 0.0001 ns 72.48 ns 0.003 ns 0.03 ns 0.13 ns 4 ns 0.37 ns
T × H 5 2.7 ns 0.038 ns 74.00 ns 0.022 ns 0.20 ns 0.01 ns 214 ns 0.12 ns

CO2 × H 5 0.82 ns 0.047 ns 74.3 ns 0.07 ns 0.35 ns 0.002 ns 3220 ** 1.92 **
T × CO2 × H 5 1.63 ns 0.041 ns 73.59 ns 0.043 ns 0.12 ns 0.001 ns 101 ns 0.3 ns

Error 72 9.33 0.175 74.28 0.18 0.58 0.083 407 0.51

B.
te

ct
or

um

Temperature (T) 1 20.18 ns 0.069 ns 0.43 ** 0.15 ns 2.25 ** 0.53 ** 1953 ** 2.04 *
CO2 1 0.35 ns 0.53 ** 0.43 ** 1.92 ** 0.11 ns 0.44 ** 244 ns 3.37 **

Herbicide rates
(H) 5 557.38 ** 5.25 ** 3.82 ** 17.99 ** 0.48 ns 4.37 ** 33,342 ** 202 **

T × CO2 1 6.42 ns 0.13 ns 0.083 ns 0.005 ns 1.17 * 0.21 * 667 ns 0.04 ns
T × H 5 9.77 ns 0.0068 ns 0.019 ns 0.04 ns 0.05 ns 0.04 ns 163 ns 0.64 ns

CO2 × H 5 13 ns 0.079 ns 0.042 ns 0.21 ** 0.04 ns 0.08 ns 998 ** 2.57 **
T × CO2 × H 5 4.54 ns 0.046 ns 0.003 ns 0.03 ns 0.12 ns 0.01 ns 292 ns 0.24 ns

Error 72 6.52 0.067 0.048 0.07 0.26 0.05 266 0.38

C
.a

lb
um

Temperature (T) 1 14.4 * 0.49 ns 0.15 * 0.001 ns 156 ns 6600 ns 1365 ns 0.042 ns
CO2 1 61.3 ** 0.48 ns 0.42 ** 0.63 ** 146.37 ns 6384 ns 155 ns 9.375 **

Herbicide rates
(H) 5 320.1 ** 8.62 ** 3.47 ** 22.86 ** 122.58 ns 6810 ns 38,040 ** 194.4 **

T × CO2 1 1.2 ns 0.0001 ns 0.0008 ns 0.04 ns 116.99 ns 6828 ns 45 ns 1.5 ns
T × H 5 3.52 ns 0.038 ns 0.0138 ns 0.002 ns 121.42 ns 6725 ns 207 ns 0.34 ns

CO2 × H 5 4.92 ns 0.047 ns 0.0334 ns 0.07 ns 119.07 ns 6688 ns 3386 ** 2.07 **
T × CO2 × H 5 1.19 ns 0.041 ns 0.0011 ns 0.005 ns 119.47 ns 6709 ns 591 ns 0.25 ns

Error 72 2.38 0.14 0.0274 0.03 119.01 6736 349 0.51

E.
cr

us
-g

al
li

Temperature (T) 1 38.76 ** 0.012 ns 0.026 * 0.002 ns 1.13 ** 0.57 ** 661 ns 3.37 **
CO2 1 34.41 ** 0.136 ** 0.161 ** 0.59 ** 0.29 ** 1.16 ** 2185 ns 15.04 **

Herbicide rates
(H) 5 281.71 ** 0.686 ** 0.494 ** 2.34 ** 0.11 ** 12.02 ** 54,925 ** 124.2 **

T × CO2 1 0.019 ns 0.0054 ns 0.0030 ns 0.06 ns 0.02 ns 0.032 ns 1218 ns 0 ns
T × H 5 1.105 ns 0.0017 ns 0.0028 ns 0.004 ns 0.023 ns 0.137 * 1181 ns 0.87 *

CO2 × H 5 1.961 ns 0.0058 ns 0.011 ** 0.030 ns 0.015 ns 0.308 ** 1010 ns 1.99 **
T × CO2 × H 5 0.414 ns 0.0014 ns 0.0031 ns 0.008 ns 0.017 ns 0.091 ns 702 ns 0.8 ns

Error 72 1.411 0.0058 0.0041 0.015 0.030 0.042 635 0.35

df (degree of freedom), HE (herbicide efficacy), ALS (acetolactate synthase), RV (root volume), R/S (root/shoot
ratio), RdW (root dry weight), SdW (shoot dry weight). ** significant at p = 0.01; * significant at p = 0.05;
ns not significant.
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Table 3. The main effects of temperature regimes, CO2 concentrations, and herbicide rates on weed
control efficacy.

Species Height (cm) SdW
(g pot−1)

RdW
(g pot−1)

Biomass
(g pot−1) R/S RV (cm3) ASL

Activity HE (%)

Temperature ◦C

A.
retroflexus

30/20 22.07 ± 2.14 a ns ns ns 2.70 ± 0.28 a 1.04 ± 0.01 b 252.20 ± 33.5 b ns
34/24 18.02 ± 1.45 b ns ns ns 1.94 ± 0.36 b 1.30 ± 0.02 a 267.39 ± 14.54 a ns

B.
tectorum

30/20 ns ns 0.97 ± 0.07 b ns ns ns 186.58 ± 17.7 b 1.16 ± 0.24 b
34/24 ns ns 1.10 ± 0.01 a ns ns ns 195.60 ± 31 a 1.31 ± 0.11 a

C. album
30/20 15.27 ± 2.19 a ns 0.50 ± 0.08 b ns ns ns ns ns
34/24 14.49 ± 2.01 b ns 0.58 ± 0.05 a ns ns ns ns ns

E.
crus-galli

30/20 17.06 ± 0.84 a ns 0.30 ± 0.02 b ns 1.48 ± 0.29 a ns ns ns
34/24 15.79 ± 1.28 b ns 0.34 ± 0.02 a ns 1.26 ± 0.2 b ns ns ns

CO2 (ppm)

A.
retroflexus

400 18.62 ± 2.02 b ns ns 1.89 ± 0.12 b ns ns ns ns
700 21.47 ± 1.6 a ns ns 2.14 ± 0.08 a ns ns ns ns

B.
tectorum

400 ns 1.46 ± 0.18 b 0.97 ± 0.02 b ns ns ns ns ns
700 ns 1.61 ± 0.32 a 1.10 ± 0.07 a ns ns ns ns ns

C. album
400 14.08 ± 1.33 b ns 0.47 ± 0.05 b 1.09 ± 0.13 b ns ns ns ns
700 15.68 ± 0.61 a ns 0.60 ± 0.03 a 1.25 ± 0.33 a ns ns ns ns

E.
crus-galli

400 15.82 ± 1.11 b 0.39 ± 0.04 b ns 0.67 ± 0.03 b 1.43 ± 0.17 a ns ns ns
700 17.02 ± 2.82 a 0.46 ± 0.04 a ns 0.83 ± 0.05 a 1.32 ± 0.12 b ns ns ns

Herbicide rates
(g ha−1)

A.
retroflexus

25 19.75 ± 2.57 c 1.40 ± 0.11 b ns 1.96 ± 0.17 b ns 1.10 ± 0.08 c ns ns
37.5 20.96 ± 0.79 bc 1.41 ± 0.08 b ns 2.04 ± 0.11 b ns 1.31 ± 0.03 b ns ns
50 15.73 ± 1.43 d 0.72 ± 0.02 c ns 1.11 ± 0.20 c ns 0.79 ± 0.07 d ns ns

62.5 22.98 ± 1.55 b 1.60 ± 0.06 b ns 2.35 ± 0.23 b ns 1.43 ± 0.1 b ns ns
75 14.01 ± 1.09 d 0.61 ± 0.01 c ns 0.93 ± 0.04 c ns 0.64 ± 0.02 d ns ns
0 26.85 ± 2.2 a 2.66 ± 0.12 a ns 3.71 ± 0.16 a ns 1.73 ± 0.03 a ns ns

B.
tectorum

25 19.89 ± 3.2 c 1.36 ± 0.08 c 0.87 ± 0.02 cd ns ns 1.11 ± 0.08 c ns ns

37.5 21.44 ± 0.29 bc 1.48 ± 0.27 bc 0.92 ± 0.04 c ns ns 1.16 ± 0.04
bc ns ns

50 17.18 ± 1.21 d 1.10 ± 0.26 d 0.75 ± 0.06 de ns ns 0.89 ± 0.03 d ns ns
62.5 22.63 ± 2.87 b 1.6 ± 0.07 b 1.08 ± 0.02 b ns ns 1.31 ± 0.03 b ns ns
75 15.41 ± 1 d 1.06 ± 0.08 d 0.60 ± 0.03 e ns ns 0.72 ± 0.07 ns ns
0 32.20 ± 0.9 a 2.63 ± 0.04 a 1.97 ± 0.04 a ns ns 2.21 ± 0.22 a ns ns

C. album

25 14.51 ± 1.66 c ns 0.32 ± 0.01 cd 0.59 ± 0.01 c ns ns ns ns
37.5 15.12 ± 0.79 bc ns 0.43 ± 0.02 bc 0.90 ± 0.03 b ns ns ns ns
50 11.64 ± 1.22 d ns 0.28 ± 0.03 d 0.51 ± 0.03 c ns ns ns ns

62.5 16.15 ± 0.85 b ns 0.52 ± 0.06 b 1.07 ± 0.01 b ns ns ns ns
75 9.390 ± 0.79 e ns 0.21 ± 0.02 d 0.41 ± 0.03 c ns ns ns ns
0 22.46 ± 1.88 a ns 1.46 ± 0.09 a 3.56 ± 0.35 a ns ns ns ns

E.
crus-galli

25 15.06 ± 1.05 d 0.34 ± 0.02 d ns 0.59 ± 0.04 d 1.45 ± 0.18a ns 195.8 ± 13.79 c ns

37.5 16.37 ± 1.33 c 0.42 ± 0.01 c ns 0.72 ± 0.03 c 1.38 ±
0.07ab ns 247.8 ± 24.45 b ns

50 13.21 ± 0.69 e 0.27 ± 0.04 e ns 0.46 ± 0.05 e 1.46 ± 0.11a ns 185.8 ± 9.8 d ns
62.5 17.76 ± 2.17 b 0.52 ± 0.03 b ns 0.94 ± 0.06 b 1.28 ± 0.24b ns 264.7 ± 30 b ns

75 12.22 ± 1.4 f 0.22 ± 0.09 e ns 0.38 ± 0.07 e 1.39 ±
0.05ab ns 174.5 ± 15.5 d ns

0 23.93 ± 1.96 a 0.79 ± 0.03 a ns 1.42 ± 0.02 a 1.26 ± 0.15b ns 327.4 ± 28.8 a ns

HE (herbicide efficacy), ALS (acetolactate synthase), RV (root volume), R/S (root/shoot ratio), RdW (root dry
weight), SdW (shoot dry weight). Means with the same letters are not significantly different from others (p < 0.05)
according to the Tukey HSD test. For the treatments whose interaction effects were significant, the mean
comparison of the main effects is not given in this table, and, for them, the comparison of the means is shown in
Figures 1–4. ns not significant.

For B. tectorum, a C3 plant, the lowest root volume was observed at 30–20 ◦C (day/night)
and 400 ppm CO2 concentration (Figure 1A). In contrast, the maximum root/shoot ratio was
reached at 30–20 ◦C (day/night) and 400 ppm CO2 concentration (Figure 1B). The highest
total biomass was obtained with the CO2 concentration of 700 ppm, which led to an increase
of about 15% of the biomass without any herbicide (Figure 1C).

In C. album, temperature regimes only influenced plant height and root dry weight.
Increasing the temperature from 30/20 ◦C to 34/24 ◦C increased the root dry weight of
C. album by 16.4%. The lowest ALS enzyme activity of C. album was observed at 34/24 ◦C.
The CO2 concentration impacted the height, root dry weight, total biomass, and herbicide
efficacy. Herbicide rates also influenced all measured variables of C. album, except shoot
dry weight, root/shoot ratio, and root volume (Table 2).
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Figure 1. Effects of different CO2 concentrations, temperatures, and herbicide (sulfosulfuron 75%
+ metsulfuron methyl 5%) rates on (A) root volume, (B) root/shoot ratio, and (C) biomass of
Bromus tectorum. The vertical bars represent the standard error. The column letters indicate the
differences between the treatments (p < 0.05) according to Tukey’s HSD test. Different capital letters
indicate a significant difference among different CO2 levels (A,B) or herbicide rate (C), and different
lowercase letters indicate a significant difference between the two temperature (A,B) and CO2 levels
(C) (p < 0.05).

Regarding E. crus-galli, the temperature influenced the plant height, root dry weight,
root/shoot ratio, root volume, and herbicide efficacy. Except for ALS activity, CO2
concentration affected all measured variables for this weed. Different rates of herbicide
also had a significant impact on all the traits (Table 2). Overall, the highest root dry
weight and volume were observed at the 700 ppm CO2 concentration, and 34/24 ◦C
temperature regime without herbicide application (Figure 2). Furthermore, herbicide
efficacy was affected by the interaction of temperature by herbicide rate, with the
maximum herbicide efficacy reached at 75 g ha−1 and the lowest temperature regime
(30/20 ◦C) (Figure 3).
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Figure 2. Effects of different CO2 concentrations, temperatures, and herbicide (sulfosulfuron 75%
+ metsulfuron methyl 5%) rates on (A) root dry weight, (B) root volume, and (C) root volume of
E. crus-galli. The vertical bars represent the standard error. The column letters indicate differences
among treatments (p < 0.05) according to the Tukey HSD test. Different capital letters indicate a
significant difference among different herbicide rate inside the CO2 levels (A,B) or temperature (C),
and different lowercase letters indicate a significant difference between the two CO2 levels (A,B) and
temperature (C) (p < 0.05).

Herbicide efficacy in all weed species was affected by the carbon dioxide concentration
and the herbicide rates (p < 0.01). The highest weed control was observed at 700 ppm of
CO2 and the rate of 75 g ha−1 of sulfosulfuron 75% + metsulfuron methyl 5%. In general,
with the increase of CO2 concentration, the effectiveness also increased at higher herbicide
rates. For example, herbicide efficacy increased by approximately 22% on A. retroflexus, 15%
on B. tectorum, 12% on C. album, and 16% on E. crus-galli compared to the manufacturer’s
recommended dose (50 g ha−1).

Except for E. crus-galli, CO2 concentration and herbicide rates affected ALS activity
(Table 2). In A. retroflexus and C. album, the highest inhibition of ALS enzyme activity was
obtained at 700 ppm of CO2 and 50% above the recommended rate (75 g ha−1) of SMM
(Figure 4), while, in B. tectorum, the lowest enzyme activity was observed at 700 ppm CO2
and 62.5 g ha−1 of SMM (Figure 4).
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Figure 3. Effects of different CO2 concentrations and temperatures on the efficacy of (sulfosul-
furon 75% + metsulfuron methyl 5%) rates on A. retroflexus, B. tectorum, C. album, and E. crus-galli.
The vertical bars represent the standard error. The column letters indicate differences among treat-
ments (p < 0.05) according to the Tukey HSD test. Uppercase letters indicate main effects and
lowercase letters indicate interaction effects between treatments.
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Figure 4. Effects of different CO2 concentrations and herbicide (sulfosulfuron 75% + metsulfuron
methyl 5%) rates on the activity of ALS enzyme in A. retroflexus, B. tectorum, and C. album. The vertical
bars represent the standard error. The column letters indicate differences among the treatments
(p < 0.05) according to the Tukey HSD test. Uppercase letters indicate simple effects and lowercase
letters indicate interaction effects between treatments.

4. Discussion

An increase in CO2 and temperature can cause a change in enzyme activity with a rise
in photosynthesis [15], affecting the growth and competitiveness of weeds. The increase
in the CO2 concentration stimulates carboxylation and, thus, reduces photorespiration;
commonly, C3 plants augment their net photosynthesis rates with a higher CO2 level.
Meanwhile, plants with the C4 photosynthesis pathway have alternate CO2 fixation mecha-
nisms, so that the CO2 is initially fixed in the mesophyll cells by phosphoenol pyruvate
carboxylase (PEPcase), which has a higher affinity for CO2 than ribulose 1,5-bisphosphate
carboxylase/oxygenase (Rubisco). CO2 is regenerated through the 4-carbon organic acid
formed in this reaction for fixation by Rubisco in the bundle sheath cells. Due to this inter-
nal mechanism, the CO2 concentration at the Rubisco enzyme activity site augments. As a
result, its carboxylation is greater than oxygenation, and its photorespiration is inhibited.
Therefore, increasing the CO2 concentration exerts a lesser effect on the net photosynthetic
rate of C4 plants, unlike in C3 plants. As a result of the increase in CO2, many C3 weeds
have shown significant increases in growth and have caused a greater decline in crop
yields. For example, an increase of approximately 65% in the biomass of C. album, as a
C3 weed, at elevated CO2 concentrations has been reported by Ziska [3]. This increase in
weed growth caused a 39% soybean yield lose. Similarly, increasing the CO2 concentration
caused increases in the competitive ability, biomass, and seed yield of wild rice compared
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with those of cultivated rice, which could lead to a further drop in the yield of cultivated
rice in the presence of C3 weeds [16].

It is expected that high concentrations of CO2 will increase global temperature and
extreme temperature events due to greenhouse effects in the future [6,17]. Plants will
probably be under high-temperature stress, which could affect their growth rates at different
stages. In this work, the degree of photosynthesis stimulation and growth response varied
between C3 and C4 plants as the temperature increased. In C3 plants, temperatures above
25 ◦C increase photorespiration and inhibit CO2 assimilation [18,19]. Therefore, C3 weeds
could benefit the most from higher concentrations of CO2, under temperate climates.

On the contrary, the increase in temperature in C4 plants has little effect on CO2
assimilation because CO2 pumping in mesophyll cells decreases the photorespiration rate
at all temperatures [20,21], As a result, C4 plants are better adapted to heat stress and may
show rapid canopy growth and root proliferation at high temperatures, compared to C3 [22].
Weeds may show a wider range of responses to increasing temperatures because of their
more extensive gene pool compared with crops, which enables them to adapt to diverse
environmental conditions [23]. Due to their rapid growth and establishment, they can
easily spread to new territories, and may induce changes in the biodiversity of ecosystems.
Since 1998, ALS inhibitors have surpassed all other herbicide classes in terms of the number
of weed species for which a resistant population was reported [24]. This resistance may
be due to mutations in the ALS enzyme, decreased affinity, synthesis of specific amino
acids, and herbicide transfer [25,26]. However, this study showed that increasing the
temperature and, especially, increasing the concentration of CO2 can increase the efficacy
of these herbicides and augment the inhibition of ALS activity. The decline in ALS activity
for C3 and C4 species was consistent with previous works [27–29], and it supported the
conclusions reached by Ainsworth et al. [22], that weeds can show a reduction in ALS
regardless of their photosynthetic pathway. Raising the temperature and elevating the CO2
concentration can increase photosynthesis, alter enzymatic activity, and affect the synthesis
of amino acids and pigment production [15,30,31]. A number of herbicide action sites have,
in turn, been specifically designed to disrupt these biochemical processes. Such herbicides
include tribenuron-methyl and sulfosulfuron + metsulfuron methyl (inhibitor of the ALS
enzyme), atrazine (Photosystem II inhibitor), and amitrole (pigment inhibitor). Thus, CO2-
or temperature-induced increases in growth could, potentially, increase the efficacy of
these herbicides.

The leaf orientation and surface are the first effective factors in absorption and displace-
ment after herbicide application. If the increase in the CO2 concentration or temperature
causes an increase in the leaf surface or in the number of leaves, such a change could
increase the absorption and interception of the herbicide. In addition, increasing the tem-
perature could improve the uptake and translocation of the herbicide by affecting the
fluidity of the cuticle and the plasma membrane [31]. Increasing CO2 or temperature can
also reduce herbicide absorption through changes in leaf surface characteristics, such as
reducing stomatal dimensions, increasing leaf thickness, or changing the cuticular wax’s
viscosity [32]. An increase in temperature can cause more herbicide absorption and transfer,
but, on the other hand, sufficiently high temperatures can reduce the effectiveness of the
herbicide by increasing its metabolism [33,34].

5. Conclusions

Climate change, with its severe impacts on crop growth and yield, can endanger food
safety. Weed management, as a main practice in crop production, is subject to climate
change effects and should also be considered. In this work, a higher CO2 concentration had
a greater effect on C3 weeds. ALS activity inhibition increased with growing concentrations
of CO2, except for in E. crus-galli. The efficacy of the sulfosulfuron 75% + metsulfuron
methyl 5% on the E. crus-galli decreased when increasing the temperature. As a result,
there is a need to adopt methods to enhance the effectiveness of this herbicide, or to find
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supplementary control methods in order to exert an acceptable control in the future to
prevent crop yield loss in the arable fields infested with this species.

In future climates, existing weed control techniques that rely heavily on herbicide use
may have very different effects on weed growth. In spite of comprehensive studies on the
possible effects of changing climate variables on various herbicide chemicals, this warrants
urgent action. In particular, to research the interactive effects of climate change on weed
regulation, it would be important to establish experiments with multiple climate variables.
Rather than basing hypotheses on single-factor studies, systematic research efforts from
the ecosystem to molecular levels will be required to investigate the interactive effects of
different climate variables on plant growth and herbicide efficiency.
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