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Abstract: Barley (Hordeum vulgare L.), a diverse cereal crop, exhibits remarkable versatility in its
applications, ranging from food and fodder to industrial uses. The content of cellulose in barley is
significantly influenced by the COBRA genes, which encode the plant glycosylphosphatidylinositol
(GPI)-anchored protein (GAP) that plays a pivotal role in the deposition of cellulose within the cell
wall. The COBL (COBRA-Like) gene family has been discovered across numerous species, yet the
specific members of this family in barley remain undetermined. In this study, we discovered 13 COBL
genes within the barley genome using bioinformatics methods, subcellular localization, and protein
structure analysis, finding that most of the barley COBL proteins have a signal peptide structure
and are localized on the plasma membrane. Simultaneously, we constructed a phylogenetic tree
and undertook a comprehensive analysis of the evolutionary relationships. Other characteristics
of HvCOBL family members, including intraspecific collinearity, gene structure, conserved motifs,
and cis-acting elements, were thoroughly characterized in detail. The assessment of HvCOBL gene
expression in barley under various hormone treatments was conducted through qRT-PCR analysis,
revealing jasmonic acid (JA) as the predominant hormonal regulator of HvCOBL gene expression. In
summary, this study comprehensively identified and analyzed the barley COBL gene family, aiming
to provide basic information for exploring the members of the HvCOBL gene family and to propose
directions for further research.

Keywords: barley; cellulose; COBRA-Like; genome-wide analysis

1. Introduction

COBRA is a crucial glycosylphosphatidylinositol (GP-I) anchor protein (GAP), which
plays a vital role in plant cellulose synthesis and significantly impacts the mechanical
strength of plants. COBL (COBRA-Like) specifically localizes on the exterior surface of
the plant plasma membrane, receives signals from the cell wall, and promptly transmits
them to the plasma membrane [1]. There are four conserved domains contained within
the COBRA protein, as follows: (1) the N-terminal protein-targeting domain, which can
localize proteins in the endoplasmic reticulum. (2) The carbohydrate-binding motif domain,
the main region interacting with cellulose [2]. (3) The conserved CCVS domain, which
is thought to be involved in disulfide bond formation or metal ion binding [3]. (4) The
hydrophobic C-terminal domain, where the connection region of anchoring proteins that
promote the transport of certain proteins to the cell wall exist [4].

The COBL gene was initially discovered in Arabidopsis thaliana, and COBL mutation
causes abnormal root cell expansion [5]. Subsequent research has shown that COBL is
crucial for the orientation of cellulose microfibrils and for anisotropic expansion during
plant morphogenesis [6]. Absence of the COBL protein in A. thaliana typically results
in a reduction in the thickness of the secondary wall and a decrease in the content of
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cellulose [7,8]. Mutation of COBL10 in A. thaliana results in gametophytic male sterility,
indicating the significance of COBL10 in guiding growth and directional perception within
the female reproductive tract of pollen tubes as well as its crucial role in intercellular
communication within plants [9].

The COBL genes were originally identified as “brittle stalk” genes in O. sativa and
Z. mays. The “Os brittle culm 1” mutant and the “Zm brittle stalk 2” mutant all exhibit the
characteristics of reduced cellulose content and cell wall thickness, and the mechanical
strength of their stems is greatly compromised [10,11]. COBL plays a crucial role in the
deposition of cellulose within the mucilage secretory cells of the seed coat in angiosperms.
It serves as a vital component in the production of seed mucilage, thereby contributing
significantly to the adaptation of plants to their diverse environments [12]. Notably, COBL
also plays a role in plant fruit development. The COBL gene found in tomatoes, which
plays a major role in the early development of fruit cell walls, has been shown to enhance
the hardness and prolong the storage time of tomato fruits in overexpression transgenic
lines [13].

Cellulose, the primary constituent of plant cell walls, serves as the foundation for the
spatial structure of plant tissues and confers mechanical strength to plants, ensuring the
orderly development of plants while bolstering their resilience against environmental stress.
Barley is a cereal crop that thrives at elevated altitudes, serving as a dual-purpose resource
for both human consumption and animal feeding. The abundant cellulose in barley is of
utmost importance, crucial in averting lodging, maintaining consistent yields, and acting
as a precious industrial raw material [14].

In barley (H. vulgare L.), the influence of cellulose synthase and cellulose synthase-like
enzymes on the roots, stems, and associated biological reaction processes, achieved through
their regulatory role in cellulose content, has been elucidated [15–17]. However, although
one COBL gene associated with cellulose synthesis was pinpointed through genome-
wide association studies (GWAS) conducted to investigate cellulose content in barley [18],
the information on COBL family genes and their effect on cellulose in barley remains
unclear. In this study, we performed a comprehensive genome-wide identification of the
COBL gene family in the barley genome, resulting in the discovery of 13 candidate COBL
genes. Subsequently, we conducted detailed studies encompassing various aspects such as
domains, motifs, gene structure, phylogenetic relationships, and cis elements. In addition,
signal peptide, transmembrane helix, and subcellular localization analyses indicate that
most COBLs are membrane proteins in barley. Quantitative reverse-transcription PCR
(qRT-PCR) analysis was employed to further validate the expression patterns of HvCOBL
genes across various organs and under different abiotic stress conditions. This investigation
provides a robust foundation for future studies aimed at elucidating the functional roles of
COBL genes in barley.

2. Results
2.1. Identification of the COBL Gene Family in the Barley Genome

HvCOBL family genes are distributed across six barley chromosomes except chromo-
some 1. ExPASy online software was used to predict the physicochemical properties of
the HvCOBL family proteins. The lengths of the 13 identified HvCOBL proteins ranged
from 222 to 673 aa, and their molecular weights ranged from 23.96 to 74.57 kDa. The
predicted isoelectric point ranged from 5.02 (HvCOBL1) to 9.02 (HvCOBL12), and the
instability index ranged from 27.41 (HvCOBL5) to 57.86 (HvCOBL4). The hydrophilicity
values of all HvCOBL proteins except HvCOBL1 are less than 0, indicating that most of
them are hydrophilic proteins. The Aliphatic index, which indicates the solubility and
stability of proteins, ranged from 64.52 (HvCOBL12) to 79.71 (HvCOBL1). In addition, the
size, location, and orientation of the HvCOBL family genes on chromosomes are shown in
Table 1, the gene IDs corresponding to the gene name are listed in Table S3, and the CDS
sequences and protein sequences of the HCOBL genes are shown in Table S4.
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Table 1. HvCOBL gene family gene and protein properties.

Gene
Name Chr Gene Location

(from to) Size
Number of

Amino
Acids

Mw (KD) pI Instability
Index

Aliphatic
Index GRAVY

HvCOBL1 2 30,152,814 30,154,812 1998 665 71.02 5.02 39.35 79.71 0.039
HvCOBL2 2 11,084,0647 110,844,319 3672 452 50.35 8.23 33.83 74.25 −0.208
HvCOBL3 2 110,845,455 110,847,441 1986 444 48.93 8.96 32.58 73.13 −0.111
HvCOBL4 2 572,266,296 572,268,346 2050 528 58.99 7.14 57.86 75.68 −0.216
HvCOBL5 3 14,401,920 14,403,700 1780 449 49.2 8.86 27.41 74.32 −0.112
HvCOBL6 4 47,365,044 47,368,680 3636 463 51.25 8.87 32.07 78.75 −0.097
HvCOBL7 4 438,450,414 438,452,859 2445 673 72.2 6.2 33.56 79.48 −0.034
HvCOBL8 5 126,154,671 126,156,383 1712 450 49.55 8.86 31.2 74.96 −0.1
HvCOBL9 5 458,128,527 458,131,155 2628 444 49.55 8.65 36.79 76.82 −0.161
HvCOBL10 5 528,702,303 528,706,060 3757 457 50.74 8.97 39.28 68.32 −0.208
HvCOBL11 5 528,808,215 528,811,208 2993 222 23.96 8.97 40.74 73.87 −0.063
HvCOBL12 6 548,235,850 548,239,243 3393 420 47.45 9.02 33.69 64.52 −0.242
HvCOBL13 7 51,952,323 51,954,724 2401 672 74.57 8.93 43.76 71.03 −0.3

GRAVY value is a parameter that evaluates the overall hydrophobicity of a protein.

2.2. Chromosomal Location and Collinearity Analysis of COBL Family Genes in Barley

The identified HvCOBL family gene members are distributed on six chromosomes
(2H–7H) in barley, including four COBL genes on chromosomes 2 and 5, two COBL genes
on chromosome 4, and only one COBL gene each on chromosomes 3, 6, and 7. As shown
in Figure 1, the HvCOBL family genes are, mostly, relatively close to the telomeric region
of the chromosome. Furthermore, the four HvCOBL gene pairs situated on chromosomes
2 and 5, respectively, exhibit a remarkable proximity to each other, hinting at a potential
genetic linkage among them.
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Figure 1. The position of HvCOBL gene family members on chromosomes. The scale on the left is
used to indicate the length of chromosomes. The HvCOBL gene family members on the chromosomes
(gray bar) are marked in red, and the blue numbers represent chromosome numbers.

To clarify the collinear relationship between COBL family gene species, we performed
collinearity analysis using the genomes of A. thaliana, Zea mays, and Oryza sativa, as well as
the barley genome. Only one collinearity associated with COBL genes was detected between
barley and A. thaliana (Figure 2A), while four were identified with O. sativa (Figure 2B) or Z.
mays (Figure 2C). This result indicates that compared to A. thaliana, the COBL family genes
of barley, maize, and rice, which are also gramineous plants, are more closely related to the
evolutionary process. Furthermore, it seems that the common ancestor of O. sativa and H.
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vulgar have one copy (HvCOBL2 in the Chr2 in H. vulgar) that after separation originated
two copies in O. sativa by duplication (one in Chr3 and the other in Chr7); HvCOBL11 (in
the Chr5 in H. vulgar) appears to exhibit a comparable phenomenon, with the homologous
genes of maize undergoing separation during evolution, resulting in the production of two
copies located on Chr1 and Chr5.
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Figure 2. Interspecific collinearity relationship between HvCOBL gene family members and A.
thaliana (A), O. sativa (B), and Z. mays (C). The chromosomes of H. vulgare are marked with green.
The chromosome number is marked above the chromosome. The collinear relationships between the
COBL gene family members of different species and the HvCOBL gene family members are connected
by red lines.The gray line links all genes that exhibit collinear relationships between different species,
excluding the COBL family.

2.3. Phylogenetic Relationship Analysis of COBL Proteins

To investigate the phylogenetic relationships between the COBL proteins, we con-
structed a phylogenetic tree using COBL protein sequences from different species, includ-
ing A. thaliana (13 proteins), Z. mays (12 proteins), O. sativa (14 proteins), and H. vulgare
(13 proteins), respectively. All the protein sequences are shown in Table S5. As shown
in Figure 3, the phylogenetic tree was divided into three subfamilies. There are 11 COBL
proteins belonging to subfamily I, including 3 HvCOBL proteins (HvCOBL3, HvCOBL5,
HvCOBL8), 2 OsCOBL proteins, 4 AtCOBL proteins, and 2 ZmCOBL proteins; 15 COBL
proteins belong to subfamily II, including 6 HvCOBL proteins (HvCOBL2, HvCOBL6,
HvCOBL9, HvCOBL10, HvCOBL11, HvCOBL12), 5 OsCOBL proteins, and 4 ZmCOBL
proteins; and 20 COBL proteins belong to subfamily III, including 4 HvCOBL proteins
(HvCOBL1, HvCOBL4, HvCOBL7, HvCOBL13), 4 OsCOBL proteins, 3 ZmCOBL proteins,
and 9 AtCOBL proteins.
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Figure 3. The phylogenetic analysis of COBL family proteins in four species. The neighbor-joining
tree was constructed from the protein sequences of COBLs using MEGA7 with 1000 bootstrap copies.
Bootstrap analysis values over 0.70 that are displayed in the tree indicate robust nodes. The different
colors represent four different subfamilies of the COBL gene family.

2.4. Analyses of Locations, Structures, and Conserved Motifs of HvCOBL Genes

To further reveal the structural characteristics of the HvCOBL family genes, we an-
alyzed the conserved motifs of the 13 HvCOBL genes using the MEME online tool. All
13 HvCOBL proteins shared two common motifs (motif 2 and motif 4) (Figure 4A), indi-
cating that these two motifs are important for HvCOBL proteins. In addition, motif 5 (red
boxes), which contains the CCVS conserved motif of the COBRA protein, is a key amino
acid region for function. The exon–intron structures of HvCOBL genes were analyzed by
using the CDS and genome sequences. As shown in Figure 4, among all the COBL family
gene members in barley, there are up to six exons with five introns (HvCOBL2, HvCOBL4,
HvCOBL6, HvCOBL9, HvCOBL10, HvCOBL12) for a gene and as few as one with no intron
(HvCOBL 1, HvCOBL 8). Indeed, introns serve to elongate genes and enhance the frequency
of recombination among them, thereby playing a pivotal role in promoting the evolution
of a species. Among the COBL family genes in barley, five genes (HvCOBL2, HvCOBL6,
HvCOBL10, HvCOBL11, HvCOBL12) possess relatively longer introns, followed by another
five genes (HvCOBL3, HvCOBL4, HvCOBL5, HvCOBL9, HvCOBL13) with shorter but still
present introns. Notably, three genes (HvCOBL 1, HvCOBL 7, HvCOBL 8) completely lost
their introns during the process of evolution.
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Figure 4. Gene structure, domain, and conserved motifs in HvCOBL gene family members. (A) Phylo-
genetic tree of HvCOBL gene family members. Distribution of conserved motifs of HvCOBL genes.
The different colored boxes indicate different conserved motifs. (B) Distribution of COBRA domain.
The orange box indicates the location of the COBRA domain on the peptide chain. (C) Distribution of
UTRs and CDSs of HvCOBL gene family members. The gray boxes represent UTRs, the green boxes
represent exons, and the gray lines represent introns. The axes at the bottom are used to compare the
lengths of different genes and proteins.

2.5. Prediction of Signal Peptide, TMHs, and Subcellular Localization of HvCOBL Family Proteins

To acquire information on the signal peptide and transmembrane domain of HvCOBL
family proteins, we employed the amino acid sequences of HvCOBL proteins to predict
them using the SignalP 4.0 and TMHMM-2.0 websites, respectively. The signal peptide
prediction and TMHMM results of the HvCOBL proteins are shown in Table 2. The
predicted score values strongly support that all the HvCOBL members contain N-terminal
signal peptides with the exception of HvCOBL4 (Table S6). The TMHMM prediction results
reveal that among the 13 HvCOBL proteins, 7 members do not possess transmembrane
helices, while 4 HvCOBL proteins are predicted to have one transmembrane helix, and
2 HvCOBL proteins are predicted to exhibit two transmembrane helices. The positions of
the transmembrane helices on the peptide chain of HvCOBL protein are shown in Table S7.
In addition, the hydrophobicity of each amino acid in the HcCOBL protein sequences was
predicted using an online tool, and the results are displayed in Table S8.

The presence of signal peptides and transmembrane helices exerts an influence on the
subcellular distribution of proteins. To further elucidate the subcellular localization patterns
of the HvCOBL family proteins, we employed three online bioinformatics tools (WOLF
PSORT, Plant-mPLoc, and CELLO) to predict the subcellular localization of HvCOBL
proteins in barley. The results of the subcellular localization predictions from various
subcellular localization prediction tools exhibit consistent trends, and the predicted scores
suggest that most members of HvCOBL are likely to localize in the plasma membrane,
lysosomes, and extracellular space (Table S9).
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Table 2. Prediction of signal peptides and TMHs of HvCOBL family proteins.

Protein Name
Signal Peptide Prediction TMHs Prediction

C-Score S-Score Signal Peptide TMHs Number TMhelix Location

HvCOBL1 0.856 0.978 YES 1 84~106
HvCOBL2 0.826 0.994 YES 0 -
HvCOBL3 0.67 0.972 YES 0 -
HvCOBL4 0.155 0.186 NO 2 5~27, 434~456
HvCOBL5 0.834 0.967 YES 0 -
HvCOBL6 0.869 0.995 YES 0 -
HvCOBL7 0.78 0.954 YES 2 2~24, 649~671
HvCOBL8 0.865 0.96 YES 0 -
HvCOBL9 0.737 0.981 YES 1 642~664
HvCOBL10 0.748 0.955 YES 0 -
HvCOBL11 0.777 0.937 YES 0 -
HvCOBL12 0.796 0.977 YES 1 7~24
HvCOBL13 0.837 0.968 YES 1 7~24

Note: C-score: cleavage site score; S-score: signal peptide score; TMhelix: position of transmembrane helix.

2.6. Analysis of Cis-Acting Elements of HvCOBL Promoter

Cis-elements on gene promoters, which are important for gene transcription, serve as
binding sites for transcription factors, enabling the activation or repression of gene expres-
sion patterns during plant growth, development, and adaptation to external environmental
stresses. To investigate the expression profiles of HvCOBL family genes, a 2000 bp sequence
upstream of each gene was used to predict cis-acting elements through the PlantCARE
website. As shown in Figure 5, we found that a total of 36 cis-acting elements involved
in hormone response were predicted in the promoters of 13 HvCOBL genes, including
10 auxin-responsive elements, 44 abscisic acid-responsive elements, 64 MeJA-responsive el-
ements, 9 gibberellin-responsive elements, and 6 salicylic acid-responsive elements. Among
the 13 HvCOBL genes, all of their promoters contain more than one MeJA response element,
indicating that the expression of COBL genes in barley is closely related to jasmonic acid.
Furthermore, the promoter of the HvCOBL gene contains numerous MYB elements that
are associated with drought response, thereby implying that the expression of the HvCOBL
genes may be modulated by drought stress. Details of cis-acting elements in the promoter
region of HvCOBL genes shown in Table S10.
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2.7. Expression of HvCOBL Genes under Different Plant Hormone Treatments

Plant hormones, including auxins and abscisic acid, etc., play a pivotal role in regulat-
ing plant growth, development, and stress response mechanisms. The promoter sequences
of HvCOBL gene family members encompass numerous cis-acting elements that are asso-
ciated with plant hormone response, indicating that hormones potentially influence the
expression of HvCOBL genes. To delve into the impact of plant hormones on HvCOBL
gene expression, we administered diverse hormones to barley seedlings at the four-leaf
stage and subsequently employed RT-qPCR to assess the expression levels of HvCOBL
genes. AS shown in Figure 6, the expression of all the HvCOBL family members is induced
by jasmonic acid (JA), albeit the expression level of HvCOBL12 did not attain statistical
significance. This observation suggests that JA plays a pivotal regulatory role in plant
cellulose accumulation when compared to other plant hormones. Furthermore, HvCOBL1,
HvCOBL6, HvCOBL8, and HvCOBL13 were strongly upregulated by indole-3-acetic acid
(IAA); HvCOBL5, HvCOBL7, HvCOBL12, and HvCOBL13 exhibited sensitivity to gibberellin
signaling; and the expressions of HvCOBL3, HvCOBL4, and HvCOBL11 were associated
with abscisic acid (ABA). These results suggest that plant hormones have great potential in
regulating plant cellulose content.
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3. Discussion
3.1. Functions of Cellulose in Stem Development and Stress Responses

Cellulose, an essential morphogenic polysaccharide and the main component of plant
cell walls, determines the size of cells, provides structural support for the plant body,
protects cells from pathogens, and serves as a communication bridge between the apoplast
and symplast [19]. Owing to their primary composition of carbohydrates, the profuse
abundance of cell walls establishes them as the largest carbon sink on Earth. Once cellular
growth ceases, specific cell types deposit thick secondary cell walls (SCWs) as a means of
bolstering a cell’s resistance to both mechanical and biotic stresses [20]. The crucial role
of COBL family members in cellulose synthesis has been elucidated in multiple species,
and the content of cellulose determines the stem breakage resistance of plants [11,21,22].
The drought resistance of plants is influenced by the opening and closing of stomata,
which are mediated by guard cells. The dynamic reorganization of cellulose microfibrils
within these guard cells occurs during stomatal movement, and the levels of cellulose
and xyloglucan have a direct impact on the kinetic properties of guard cells [23]. The
A. thaliana COBL7 protein and COBL8 protein jointly participate in the processes of cell
division and stomatal development, influencing the formation of stomatal pores and the
morphological development of stomata through the regulation of cellulose deposition and
cell wall modification [24]. Cellulose plays a pivotal role in plants’ responses to gravity,
while brassinolide regulates the content of cellulose and mannan in response to gravity,
serving as one of the key mechanisms underlying plants’ gravitational responsiveness [25].
Additionally, overexpression of the COBL gene significantly boosts cellulose synthesis and
deposition, effectively promoting plant cell elongation and thickening and, consequently,
enhancing the overall biomass of a plant. This approach offers a promising avenue for
the improvement of crop yield and quality [26]. The rice DROT1 gene encodes a COBL
protein that enhances drought tolerance in rice by modulating cell wall structure, elevating
cellulose content, and preserving cellulose crystallinity [27]. Additionally, members of the
COBL gene family exhibit responsiveness to abiotic stimuli, including heat and cold [28,29].
The analysis of the promoter sequences of HvCOBL gene family members in barley revealed
the presence of anaerobic response elements associated with waterlogging stress, as well
as drought stress response elements (Figure 5); this indicates that the accumulation of
cellulose in barley may be one of the key factors in its response to drought or waterlogging.

3.2. COBL Family Genes Involved in Cellulose Synthesis

The COBL family proteins, although not direct cellulose synthases, exert a direct
influence on cellulose content within the plant body and possess the ability to regulate
the orientation of cellulose microfibrils [6,30]. Cellulose synthase is composed of cellulose
synthase subunit A (CesA) and cellulose-like synthase (Csl), which are encoded by the
cellulose synthase family genes, and these catalytic processes occur in the Golgi apparatus
and plasma membrane [31–33]. Unlike hemicellulose and pectin, which are assembled in
the Golgi apparatus and subsequently exported to the cytoplasm via exocytosis, cellulose
is produced on the plasma membrane [34]. The expression of COBL family genes is
observed throughout the developmental stages of both dicots and monocots, and this
expression can be modulated by environmental conditions [3,35]. Brittle Culm1 (BC1),
a COB-like protein, possesses a carbohydrate-binding module that specifically interacts
with crystalline cellulose and exhibits the function of altering microfibril crystallinity,
suggesting that the COBL protein participates in the assembly of cellulose microfibrils
by modulating the crystallinity of cellulose [4]. The cellulose synthase complex (CSC)
serves as the primary catalyst in the biosynthesis of cellulose within plant cell walls and
comprises numerous cellulose synthase (CesA) subunits. Despite ongoing research, there
remains no consensus on the precise assembly model of the CSC. While the COBL protein
is essential for maintaining the correct orientation of microfibrils, the intricacies of its
interaction with the CSC complex remain an area of active investigation, awaiting further
elucidation. As a pivotal growth regulator for plants, hormones exert a crucial influence on
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the expression of the HvCOBL genes in barley. Cis-acting elements pertaining to diverse
auxin responses, encompassing IAA, ABA, JA, and GA, were discovered on the HvCOBL
gene’s promoter (Figure 5). Subsequently, qRT-PCR validation confirmed the stimulatory
impact of hormones on HvCOBL gene expression, with jasmonic acid emerging as a
particularly significant hormone in this regard.

3.3. Regulating Cellulose Content to Assist Barley Production

Barley, a crucial grain and forage crop, finds extensive application in the brewing
industry and biomass energy production, leading to a gradual expansion of its cultivation
area across the globe [36]. The effect of cellulose content on barley production is profound.
On one hand, abundant cellulose provides the necessary structural support for barley,
enhancing its lodging resistance and adaptability to adverse conditions such as drought
and cold, thus positively contributing to the growth and yield of barley. On the other hand,
the regulation of cellulose content can also affect the quality of barley, including protein
and fat content [37,38]. By regulating the synthesis and decomposition of cellulose, it is
possible to influence the growth rate and morphology of barley, ultimately optimizing
both its yield and quality. As an illustration, during the tillering stage, the synthesis of
cellulose plays a crucial role in strengthening the cell wall, thereby fostering the formation
and healthy growth of tillers. As a feed source, a reduced cellulose content in barley is
preferred to facilitate the utilization of the entire plant for silage. The hay derived from
this process boasts a comparably high protein content alongside a lower cellulose content,
rendering its overall nutritional value superior to that of other crops like rice and corn.
Nevertheless, for ruminants such as cattle and sheep, a moderate increase in cellulose
content is essential to sustain the healthy functioning of their digestive systems. Cellulose
can be used in industrial production, as pulp production, and in textile raw materials; it can
be converted into biomass fuel to replace traditional fossil energy, which is a new direction
for the development of renewable energy.

4. Materials and Methods
4.1. Identification of COBL Genes in Barley

The genome sequences of H. vulgare were obtained from the EnsemblPlants database
(https://plants.ensembl.org/index.html, accessed on 2 January 2024). The published
protein sequence of A. thaliana COBL family members were downloaded from the NCBI
database (http://www.ncbi.nlm.nih.gov/, accessed on 2 January 2024). The HMM file
corresponding to the COBL domain (PF04833) was downloaded from the Pfam protein
family database (https://www.ebi.ac.uk/interpro/, accessed on 2 January 2024). Possible
COBL family members were obtained according the COBL domain (PF04833) by using
the HMM search function of ToolKit Biologists Tools (TBtools, v2.086) software (https:
//github.com/CJ-Chen/TBtools, accessed on 2 January 2024). In detail, we blasted the
genome database of barley using the COBL protein sequences of A. thaliana, O. sativa,
and Z. mays, and took the intersection of the results to verify the comparison with the
Hidden Markov Model (HMM) (PF04833) to ensure that the identified genes contain the
CORBA domain. The gene accession numbers, coding sequence lengths, and amino acid
numbers were derived from the rice genome database, and the sequence information of
the COBL candidate genes was obtained from Phytozome (https://phytozome-next.jgi.
doe.gov, accessed on 2 January 2024). The molecular weight and isoelectric point were
obtained from Expasy (http://web.expasy.org/cgi-bin/protaparam/protparam, accessed
on 2 January 2024).

4.2. Phylogenetic Analysis and Classification of HvCOBL Genes in Barley

The COBL family protein sequences of A. thaliana, Z. mays, and O. sativa were down-
loaded from the Phytozome database (https://phytozome-next.jgi.doe.gov/, accessed on
5 January 2024), and the multiple amino acid sequence alignment of the HvCOBL pro-
teins was performed using the ClustalW method implemented in Molecular Evolutionary

https://plants.ensembl.org/index.html
http://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/interpro/
https://github.com/CJ-Chen/TBtools
https://github.com/CJ-Chen/TBtools
https://phytozome-next.jgi.doe.gov
https://phytozome-next.jgi.doe.gov
http://web.expasy.org/cgi-bin/protaparam/protparam
https://phytozome-next.jgi.doe.gov/
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Genetic Analysis software (MEGA 7). The phylogenetic tree was constructed by using
MEGA7 with a bootstrap of 1000 replications using the neighbor-joining (NJ) method. The
generated tree was displayed using the iTOL website (https://itol.embl.de/upload.cgi,
accessed on 5 January 2024).

4.3. Collinearity Analysis and Chromosomal Mapping of the HvCOBL Family Genes

The annotation information and the whole-genome protein sequences of A. thaliana, Z.
mays, O. sativa, and H. vulgare were obtained from the EnsemblPlants database (https://
plants.ensembl.org/index.html, accessed on 5 January 2024). The collinearity relationships
of the COBL genes between H. vulgare, Z. mays, O. sativa and A. thaliana genomes were
determined and visualized by using the Multiple Collinearity Scan toolkit (MCScanX) of
TBtools software with default parameters. The physical positions of the HvCOBL genes
on the 7 chromosomes of the barley genome were determined and visualized using the
TBtools software according to the genome annotation file.

4.4. Gene Structure, Domain Analysis, Motif Analysis, and Cis-Regulatory Analysis

The whole-genome sequences and CDS sequences of HvCOBL genes were downloaded
and used for gene structure analysis with TBtools software. The motif of the HvCOBL family
protein was analyzed by using the MEME website (http://meme-suite.org/tools/meme,
accessed on 6 January 2024). The domain of the HvCOBL family protein was analyzed by
using Batch CD-Search (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi,
accessed on 6 January 2024). The promoter sequences 2000 bp upstream of the ATG
start codon of the HvCOBL genes were extracted and submitted to Plant CARE (http:
//bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 10 January 2024)
for cis-element analysis. The type and quantity of cis-elements were visually represented
through a heat map generated using the TBtools software.

4.5. Protein Three-Dimensional Structure, Signal Peptide, and Transmembrane Helices Prediction
of HvCOBL Proteins

The prediction of transmembrane helices in the HvCOBL proteins was performed us-
ing online software TMHMM-2.0 (https://services.healthtech.dtu.dk/services/TMHMM-
2.0/, accessed on 8 January 2024). Prediction of the signal peptides in the HvCOBL proteins
was performed using the online software SignalP-4.1 (https://services.healthtech.dtu.dk/
services/SignalP-4.1/, accessed on 8 January 2024). Detailed results of the signal peptide
and transmembrane helices of the HvCOBL proteins are shown in Tables S6 and S7. The
hydrophobicity of each amino acid in the HcCOBL protein sequences was predicted using
an online tool (https://www.novopro.cn/tools/protein-hydrophilicity-plot.html, accessed
on 8 January 2024).

4.6. Plant Treatment and Quantitative RT-PCR

Barley seeds were germinated at 25 ◦C for 60 h and were then transplanted into soil
and grown to the four-leaf stage under 16 h light (1000 ± 100 µmol·m−2·s−1)/8 h dark
at 25 ◦C. For exogenous hormone treatment, four-leaf stage seedlings were investigated
in separate 10 mM hormone solutions (specifically, IAA, ABA, JAor SA) at 25 ◦C for 6 h.
Total RNA was extracted from the leaves of the barley using RNAiso Plus (Takara, Japan).
About 0.4 g of basal internodes from the leaves were ground into powder in liquid nitrogen
and transferred to 800 µL of RNAiso Plus. The final extracted RNA was dissolved in 25 µL
of DEPC water. Total RNA (1.5 µg) was used to synthesize cDNA, and dilutions of it
were used for real-time RT-PCR. The expression levels of the tested genes, HvCOBL1 to
HvCOBL13, were all normalized to HvActin (a constitutively expressed gene in barley). The
primers and HvCOBLs are listed in Table S2. Gene expression levels were calculated by
using the formula (EHvActin)CT

HvActin/(ETarget)CT
Target [39].

https://itol.embl.de/upload.cgi
https://plants.ensembl.org/index.html
https://plants.ensembl.org/index.html
http://meme-suite.org/tools/meme
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https://services.healthtech.dtu.dk/services/SignalP-4.1/
https://services.healthtech.dtu.dk/services/SignalP-4.1/
https://www.novopro.cn/tools/protein-hydrophilicity-plot.html
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15050612/s1, Table S1: The list of abbreviations. Table S2:
The list of primers used for qRT-PCR. Table S3: The list of Gene ID. Table S4: The list of proteins and
CDs sequences of HvCOBL. Table S5: The list of protein sequences for constructing the phylogenetic
tree. Table S6: The prediction of protein signal peptides. Table S7: The prediction of protein TMHs.
Table S8: The Prediction of amino acid hydrophobicity of HvCOBL protein. Table S9: The prediction
of subcellular localization of HvCOBL protein. Table S10: Information on cis-acting elements on
the promoter.
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