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Abstract: The ENSO phenomenon is associated with below average rainfall and influences the climate
regime of southern Africa. With the advent of climate change, drought frequencies and magnitudes
have worsened in the developing world and this in turn negatively impacts the natural environment
and communities’ livelihoods. This study evaluated the relationship between El Niño-induced
drought and reservoir water levels over the Albasini Dam Catchment (ADC) areas in Limpopo
Province, South Africa. Standardised indices (i.e., SPI and SSI) were used to define drought events
over the study area. Mann–Kendall and Sequential Mann–Kendall were used for trends analysis as
well as correlation and wavelet coherence to evaluate the relationship between variables of interest.
There exists a relationship between El Niño-induced drought event and reservoir water levels. This
was shown by the correlation between drought indices and reservoir water levels with the coefficient
of determination being stronger at the 12th timescale (i.e., 0.743 and 0.59) compared to the 6th
timescale (i.e., 0.07 and 0.44) for both precipitation and streamflow indices, respectively. Wavelet
analysis further showed that there existed a phased relationship between the two variables. Although
there are other factors that may affect reservoir water resources, these study findings show that El
Niño-induced drought also negatively affect water resources. Therefore, this study recommends
the development of multidimensional and multiscale management strategies to minimise drought
impacts and adaptation in the region.

Keywords: drought; water resource management; water levels; wavelet analysis; streamflow; trends

1. Introduction

The El Niño–Southern Oscillation (ENSO) influences the global climatic regime [1]
and is characterised by a cool (La Nina) and warm phase (El Niño). The phenomenon
results from the fluctuating equatorial Pacific Ocean temperatures and large-scale air
pressure changes [2,3]. The ENSO phenomenon impacts the southern Africa climatic
regime, with regional and international events [1]. It is associated with drought hazards, a
recurrent feature of the region’s climate. This may be influenced by higher-than-normal
global temperatures associated with the phenomenon [4], which are frequently associated
with below-average rainfall in southern Africa [5]. As a result, countries in the region
experience severe and extensive droughts, and in the case of South Africa, some of the
major drought events over the last four decades occurred in 1982/84, 1991/92, 2004/05,
2015/16, and the most recent one was experienced in 2018/20 [6]. The consequences of
increased drought events linked to El Niño events include impacts on the availability
of water resources, communities’ livelihoods, and environmental and human health [7].
Previous studies have described a strong and consistent teleconnection among ENSO
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and temperature patterns worldwide [2,8,9] while [10] reported this at a regional scale.
This can be further justified by the work of Halpert and Ropelewski [11], which was one
of the first studies to establish a teleconnection between El Niño events to southeastern
Africa temperatures. Teleconnections have the capability to modify regional circulation
patterns [12], and as such, an El Niño signal has evidently modulated fluxes of moisture
advected onto the southern African plateau [13,14]. Notable El Niño events that have been
associated with severe droughts occurred in 1991/92, 2002/03, and 2015/16, with the one
occurring in 1997/98 resulting in dry conditions [14]. In 1992, a more critical El Niño event
was reported compared to those experienced in 2016, 1998, and 1983 [5]. On a regional scale,
the 2014/15 and 2015/16 El Niño events exacerbated agricultural production challenges
around the Limpopo Province. This resulted in drought events that affected different
water-dependent sectors, i.e., recreational, agricultural, industrial, and domestic. While
water security in South Africa is diverse, the least developed and rural areas experience
severe and direct risks. This is a result of the high spatial–temporal variability of rainfall
and general semi-arid climate characteristics of the country [15]. South Africa’s water
resources are linked through inter-catchment transfers and managed as large integrated
systems. Such a management system is helpful in decreasing the probable risk of collapse
through the collective use of resources and harmonising climatic variability over vast
geographic areas [16].

The Luvuvhu River Catchment (LRC) in the northernmost part of South Africa, which
hosts the Albasini, Nandoni, and Vondo dams, experienced a decrease in mean annual
precipitation (MAP) of 14% between 1991 and 1992 [17], resulting in the severe 1991/92
event. Since rainfall is a major contributor to reservoir water resources, a reduction in
annual precipitation negatively impacts water supply to different water users. Studies
focused on drought such as [18–22] have been conducted in the LRC. However, these
aimed to characterise, assess, and predict drought events and not much attention has been
directed to evaluate the relationship between El Niño-induced drought and reservoir water
resources. There are studies that have examined El Niño-induced drought in various part
of the world, e.g., [23,24]; meanwhile, Ref. [25] examined water resource management
strategies in times of ENSO over the transboundary Santa Cruz River Basin. The latter
studies focused on the impacts of ENSO on agricultural production, water quality, and
reservoirs, with less attention on the statistical correlation between reservoir water resources
and El Niño-induced drought. From a water management perspective, a study that seeks
to investigate drought impacts on reservoir water resources is significant, more so now that
the frequency of such events has been predicted to be on an increasing trend due to climate
change-related disasters [26]. In the case of Sub-Saharan Africa, drought episodes are
often linked to desertification, which may result in serious land degradation of semi-arid
and arid environments emanating from climate change, as well as human activities such
as unsustainable and inefficient farming practices [27]. The latter further indicate that
exacerbate desertification from an increase in drought frequency and severity resulting
from climate change could lead to a loss in vegetation cover, a reduction in carbon sinks,
and the release of additional greenhouse gases to the environment. The management of
droughts resulting in El Niño events is one of the significant challenges of the 21st century.
Thus, information on the influence of El Niño on drought occurrence can aid in disaster
risk reduction and management. This study aims to explore the critical impact of drought
on reservoir water resources in the semi-arid region of South Africa.

2. Materials and Methods
2.1. The Study Area

The Albasini Dam as shown in Figure 1 is located 22 km southeast of the town of
Louis Trichardt within the Luvuvhu River Catchment (LRC) in Limpopo Province. The
Albasini Dam is found 45 km west (upstream) of the most recent constructed Nandoni Dam
in the Luvuvhu River. Constructed on the Luvuvhu River stem in 1952, the Albasini Dam
covers a surface area of 350 ha with a maximum carrying capacity of 252 × 105 m3. The
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biggest consumer of the Albasini Dam freshwater is the irrigated agriculture in the Levubu
Valley [28]. This area is known for its richness in tropical fruits such as bananas, avocados,
mangos, and macadamia nuts amongst others. More water from the dam is used by trees
that may result in lowered reservoir water levels (RWLs) as the dam is characterised by
a high downstream tree density [29]. Average temperatures in summer are in the 30 ◦C
ranges whilst the winter temperatures vary between 20 ◦C and 25 ◦C with a mean annual
precipitation of 608 mm.
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Figure 1. Map of the study area showing the location of Albasini Dam in the context of South Africa,
Limpopo Province and the LRC (accession numbers).

2.2. Datasets

To achieve the objective of this study, secondary monthly mean rainfall, streamflow,
and reservoir storage data from 1990 to 2020 were obtained from the National Department
of Water and Sanitation, South Africa. The Niño 3.4 monthly climate time series was
downloaded from National Oceanic and Atmospheric Administration repository (https:
//psl.noaa.gov/data/timeseries/monthly/NINO34/ accessed on 15 June 2022). Rainfall
and streamflow data were used determine the standardised precipitation index (SPI) and
standardised streamflow index (SSI), respectively. Meanwhile the reservoir water levels
were correlated with the SPI and SSI to determine the influence of drought episodes on
reservoir water resources.

2.3. Data Analysis Methods
2.3.1. Standardised Indices

The SPI and SSI were used to describe meteorological and hydrological drought,
respectively. These were formulated at the 6- and 12-month timescales. The 6-month

https://psl.noaa.gov/data/timeseries/monthly/NINO34/
https://psl.noaa.gov/data/timeseries/monthly/NINO34/
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SSI and SPI indicate medium-term changes in streamflow and precipitation time series,
respectively, whereas the 12-month SPI and SSI indicate long-term patterns [30]. The
SPI was used to evaluate rainfall patterns within respective reservoir catchment areas for
30 years. The SPI [31] was developed for drought monitoring in the USA; however, the
index has been extensively adapted in many regions of the world. The authors of [32]
reported that the gamma distribution better fitted the precipitation time series than the
exponential time series, and as such, this former distribution was adopted for this study. The
probability density function that defines the Gamma distribution is given by Equation (1):

G(x) =
1

βατα
xα−1e−x/b (1)

where α > 0, α is a shape factor and β > 0, β is a scale factor.

Ґ(α) =
∫ ∞

0
ya−1e−y (2)

where, Ґ(α) is the gamma function. Computation of the SPI involves fitting a gamma
probability density function to a given frequency distribution of a precipitation total for a
particular station. The cumulative probability is given by Equation (3):

G(x) =
∫ x

0
g(x)dx =

1

β
.
ατ

.
α

∫ x

0
xα−1e−x/b (3)

By letting t = x/β, Equation (3) becomes Equation (4):

G(x) =
1

Ґ
.
α

∫ x

0
ta−1e−tdt (4)

The gamma function is undefined for x equal to 0 and a precipitation distribution may
contain zeros. Therefore, to compute the cumulative probability, Equation (5) is used:

H(x) = q + (1 − q)Gx (5)

where q is the probability of a zero. If m is the number of zeros in a precipitation time series,
then q can be approximated by m/n. The cumulative probability, H(x), is then altered to
the standard normal arbitrary variable Z with the mean equal to zero and a variance of
one, which is the value of the SPI [33]. SSI was computed by following the same steps as
applied in computing SPI using streamflow data, and like SPI, this index shows a proper
gamma distribution [34]. McKee [31] defined different drought SPI values to a drought
category, i.e., −0.99 to 0.99 is classified as near normal or mild conditions, −1 to −1.49
shows moderate category, while −1.50 to −1.99 and −2.0 or greater depict severe and
extreme drought categories, respectively.

2.3.2. Drought Characterisation

To characterise historical droughts, the standardised indices time series were used.
For this study, drought events will be characterised based on duration, severity, and
intensity. Drought duration denoted by M is the months between the beginning and an
end of a drought event; the beginning is included in the computations, whereas the end is
excluded [35]. To obtain drought duration, the total of the durations of each drought event
is divided by the number of drought events [36] as shown in Equation (6):

M =
∑n

i=1 di

n
(6)
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where di is the duration of the i-th drought event in a particular area and n is the total
number of drought events in that area. Drought severity (Se) is the absolute value of sum
of an index value during a drought event and is given by Equation (7):

Se
∫
=|∑m

j=1 indexj|e
(7)

where e is the drought event, j is the month, and indexj is the index value in month j.
Drought intensity is given by the division of drought severity with drought duration.
Intensity is directly proportional to severity of drought: when one increases, the other also
increases [37]. Intensity is calculated using the following Equation (8):

DIe =
Se

M
(8)

where M is the drought duration, Se drought severity, and DIe the intensity of a drought event.

2.3.3. Trend Analysis

The Break for Additive Seasonal and Trend (BFAST) method as presented in Equation
(9) was used to decompose reservoir water levels and drought indices time series.

ya = m + Ta + Sa + Ra (9)

In Equation (9), m is the mean, T is trend component, S is seasonal component, and R
is the random component of the time series. Mann–Kendall (MK) non-parametric trend
test [38,39] was used for drought trend analysis. This trend analysis method has been
recommended by the WMO as an approach to computing trends of hydro-meteorological
time series. The method has been widely applied in testing trends of climatological time
series [40]. The test statistic S is calculated using Equation (13).

S = ∑n−1
k=1 ∑n

j=k+1 sng
(

yj − yk

)
(10)

Sng
(

yj − yk

)
=


+1 if

(
yj − yk

)
> 0

0 if
(

yj − yk

)
= 0

−1 if
(

yj − yk

)
< 0


The average value of S is E[S] = 0. The value of the S statistic is associated with the

test statistics τ, and this is computed using Equation (11):

τ =
S

n(n − 1)/2
(11)

This study considered a 5% confidence level, where the null hypothesis of no trend was
rejected if |z| > 1.96. The extended MK trend, known as the Sequential MK (SQMK) [41] is
used to detect the turning points of trend in the time series. The SQMK creates two-time
series, a progressive (u(t)) and a retrograde

(
u’(t)

)
. Equation (12) defines the statistic ti:

ti = ∑i
j=1 ni (12)

Equations (13) and (14) are used in calculating the mean and variance ti:

E(ti) =
i(i − 1)

4
(13)

and

Var(ti) =
i(i − 1)(2i − 5)

72
(14)
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Statistic u(ti) sequential values, which are standardised, are calculated by Equation (15):

u(ti) =
ti − E(ti)√

Var(ti)
(15)

Equation (15) gives a forward sequential progressive statistic. To calculate the back-
ward/retrograde statistic values (u

′
(t)), the same time series (x1, x2, x3, . . . , xn) is used;

however, the tail end of the time series is the starting point in this calculation. By combin-
ing the forward and backward sequential statistics, it makes it possible for the recognition
of the estimated start of a developing trend [42]. When plotted, if (u(t)) and

(
u

′
(t)

)
cross

each other and diverge beyond the ±1.96 (95% confidence interval) threshold, a statistically
significant trend exits in a time series. The region where they cross each other is the time
where the trend turning point begins.

2.3.4. Wavelet Analysis

The wavelet transform coherence (WTC) is presented by a ratio of the cross-spectrum
to the product of the spectrum of each time series and further proposes local correlation
between two variables’ time series within frequency bands and time intervals [43]. In
comparison with other correlation techniques, wavelet coherence analysis can acquire the
coherence coefficients at different spatial locations and scales while considering the spatial
phase, thereby obtaining the spatial heterogeneity of the association across scales [44].
The WTC technique has frequency and phase variation analysis capabilities across time
in a signal at several scales [45,46]. Since climatic variables vary over space and time, the
authors of [47] suggested that WTC offers improved analyses of climate time series as
these features can be identified through the frequency domain. Therefore, the Morlet Carlo
wavelet and coherence analysis was used to quantify the relationship between El Niño-
induced drought and water resources for the current study. Additional information and
the mathematics on the wavelet analysis applied in this study can be obtained in [48,49].

3. Results
3.1. Drought Assessment

SPI time series were analysed at two timescales (6 and 12 months) in this study, and
these were used to analyse historical drought in the Albasini Dam Catchment for a duration
of 30 hydrological years (January 1990 to December 2020). Figure 2 shows SPI and SSI results
for stations A9E002 and A9H023, respectively. The analysis of all SPI timescales detected all
the major drought events between 1990 and 2020 (1991/92, 1995–1996, 2002–2003, 2005–2006,
and 2015–2016). The SPI-6 drought classification’s percentage occurrence of mild, moderate,
severe, and extreme drought conditions ranged between 66.49%, 23.94%, 8.51%, and 1.06%,
respectively. The SPI-12 had a percentage occurrence of 66.28% for mild drought, 21.51% for
moderate drought, and 12.21% for severe drought conditions. The most extreme drought
cases were in 2006 for SPI-6 and between 2002 and 2004 and 2005 and 2006 for SPI-12. The
station reported 36, 25, and 24 drought months between 2002 and 2006, 2008 and 2010, and
2015 and 2016, respectively. These three droughts months’ durations are the highest in the
SPI-12 analysis. The results of the highest duration in 2002–2006 for SPI-12 were similar to
findings by Kumar et al. [50]. Catchment A91A at the SPI-12 timescale did not detect any
extreme dry drought months, but the SPI-6 timescale detected two extreme dry months.
Moderate droughts for SPI timescales had a minimum of −1.49 and SPI-6 had a maximum of
−1, whereas SPI-12 had a maximum of −1.04.
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Figure 2. Meteorological (SPI) and hydrological (SSI) drought time at 6- and 12-month timescales for
stations A9E002 and A9H023, respectively.

The SSI detected all the major drought events (1991/1992, 2002/2003, and 2015/2016)
that have been previously reported in literature over the study period [11,51,52]. SSI
reported that the 1991/92 drought had the highest magnitude for both 6- and 12-month
timescales, which can be categorised similarly to the extreme drought found by the authors
of [51]. The 2004/05 drought is also seen as an extreme drought event, and this agrees with
the findings of [52]. The drought period of 2014/15 for this study experienced mild drought
and 2016/17 showed severe streamflow drought conditions, particularly from the month
of May 2016 to April 2017. The SSI-6 indicates that the ADC experienced mild drought
for 160 months and 30 months of moderate drought, with 12 and 5 months of severe and
extreme drought, respectively, from 1990 to 2020. SSI-12 has numerous mild droughts than
the SSI-6 timescale between 1990 and 2020. Both indices at both timescales detected that
mild drought was more dominant throughout the entire study period. This means that the
study area experienced mild drought for a majority of the months in the study period. This
study found that the increase in timescales increases with drought severity since a majority
of the severe droughts were reported at both the 6- and 12-month timescales considered in
this study.

3.2. Historical Drought Characterisation

Three drought characteristics (i.e., duration, severity, and intensity) were analysed in
this study for both SPI and SSI and the results are presented in Table 1. The table shows
the longest duration, strongest severity, and highest intensity of drought events for the
indices considered at 6- and 12-month timescales. The longest drought duration between
2010 and 2014 was shown for SSI-6 and between 2010 and 2020 for SSI-12. SPI reported the
lowest duration between 2002 and 2003 and 2002 and 2006 at SPI-6 and SPI-12, whereas SSI
recorded the highest duration for both timescales.

Table 1. Duration, severity, and intensity of drought events for different periods as depicted by SPI
and SSI.

Station
Drought Indicator

Longest Strongest Highest

Year Duration Year Severity Year Intensity

A9E002 SPI 6 2002–2003 19 2004–2005 −18.36 2016 −1.18
12 2002–2006 36 2002–2006 −39.21 1992–1993 −1.18

A9H023 SSI 6 2010–2014 50 1992–1993 −20.34 2005 −1.35
12 2010–2020 150 2010–2020 −89.36 2010–2020 −3.57
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The SSI showed the strongest severity between 2010 and 2020, which was −89.36, and
was then followed by 2002–2006 (−39.21), and the one with the least severity was observed
between 1992 and 1993 (−20.34). This therefore shows that the 2014/2016 drought was
more severe compared to the 1992 drought. Drought severity was found to increase with
increasing timescale. SSI reported the highest intensity of −1.35 for SSI-6 and −3.57 for
SSI-12. In the case of drought intensity increasing with an increased timescale, the results
were more evident between 2010 and 2020, and 2005. The relationship between duration
and severity is important for the drought intensity results and analysis. Intensity is directly
proportional to severity, which means high intensity corresponds to high severity.

3.3. Drought Trends and Their Significance

The trends for both SPI and SSI indices were found to be negative. The study found
that at both timescales, the decreasing trends were significant. Figure 3 shows that the
BFAST extracted non-linear trend fitted with a linear regression line to show the direction
of trend. Like the MK trend findings, the BFAST non-linear trend depicts a downward
trend which signifies that over the 30 years of study, drought events were on an increase in
catchment A91A.
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Sequential Mann–Kendall (SQMK) test statistic for monthly mean standardised indices
at the 6th and 12th timescales time series clearly detects the statistically significant change
points, and this is shown in Figure 4. Figure 4a,b show a trend increase in 1995; this was
followed by a continuous significant decreasing trend after 2005. The SSI at both timescales
showed a significant negative trend from the early 2000s. This therefore indicated that
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streamflow drought is increasing in the study area. These findings are consistent with the
MK test and BFAST as well as the drought periods reported in the literature.
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3.4. Correlation of Drought Events and Reservoir Water Levels

Figure 5 shows a comparison between reservoir water levels and SPI and SSI at 6- and
12-month timescales for major drought events reported over the study area (i.e., 1991/1992,
1995/1995, 2003/2004, 2005/2006, and 2014/2016). For all the drought periods, reservoir
water levels decreased as SSI and SPI decreased at both timescales. For the 1995/1996 and
2005/2006 droughts, an increase in reservoir water levels was noted at the end of 1995
and 2005.
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Figure 6 shows the Pearson correlation between the reservoir water levels, Niño 3.4,
SSI, and SPI for the study period between 1990 and 2020. The correlation was low at
the 6-month timescale compared to the 12-month timescale. Niño time series showed a
moderate negative correlation of −0.4 with SPI and a low positive relationship with SSI at
both timescales. The correlation between indices and reservoir water levels was found to
be 0.36 for SPI-12, while the rest were low and ranged between 0.16 and 0.21.
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To further illustrated the relationship between drought and reservoir water levels, the
study computed the coefficient of determination as shown in Figure 7. The SPI-12 and
water levels possess a strong correlation with an R2 of 0.7343. The correlation for SSI-6 and
SSI-12 timescales are considered to have a moderate correlation with reservoir water levels.
The correlation categories based on [53] relates an R2 of 0.00–0.10 as negligible, 0.10–0.39 as
a weak correlation, 0.40–0.69 as moderate correlation, 0.70–0.89 as strong correlation, and
0.90–1.00 as a very strong correlation. This, therefore, shows that there exists a relationship
between reservoir water resources and drought over the catchment and this correlation is
more pronounced at higher drought indices timescales.
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3.5. Wavelet Coherence Analysis

To investigate the interdependence among SSI, SPI, RWLs, and Niño 3.4, WTC was
used. The wavelet coherence analysis between SSI and SPI at the 6th and 12th timescales
with Niño 3.4 time series and reservoir water levels is shown in Figure 8a–h. The u-shaped
solid line in all the figures represents the cone of influence (COI) [54] and is the only region
considered for analysis. The thick solid line within the COI represents the 95% significance
regions of the confidence interval [49], and it is within this area where the significance
interdependence between Niño 3.4 and the drought indices as well as reservoir water
level is studied. Wavelet coherence reveals that the coherence and phase lag between
two time series are both a function of time and frequency [55]. SPI showed an anti-phase
relationship with the Niño 3.4 time series at both timescales between the 32nd and 64th
month. Meanwhile, a high wavelet coherence is observed between the 22nd and 28th
month in Figure 8e,f and the upward arrows in the same figures indicate that Niño 3.4 leads
the streamflow drought in the study area. SPI showed a strong in-phase relationship with
reservoir water level compared to SSI and this was the strongest at the 6th timescale. This
in-phase relationship is seen roughly after the 32 months, and this intensified between 2006
and 2016.
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Figure 8. Wavelet coherence between (a) Niño 3.4 and SPI12, (b) Niño 3.4 and SPI12, (c) SPI6 and RWLs, (d) SPI12 and RWLs, (e) Niño 3.4 and SSI6, (f) Niño 3.4 and
SSI12, (g) SSI6 and RWLs, and (h) SSI12 and RWLs. The phase relationship is represented by arrows (in-phase _; anti-phase ^). The black solid line is the cone of
influence and indicates a 95% confidence level; contours delimit the region where there is a strong correlation.
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4. Discussion

Using SPI and SSI as drought quantifying parameters, this study evaluated the rela-
tionship between El Niño-induced drought and reservoir water level. Both indices detected
that a majority of drought events were reported to have occurred over the region at the
6th and 12th timescales and these were classified at different categories. From the findings
of the study, high streamflow drought duration was observed between 2010 and 2020
and this coincided with one of the strongest El Niño event experiences in the southern
hemisphere. Furthermore, as this is the longest duration observed on the streamflow index,
this will have convoluted effects on the amount of water making its way to the reservoir. It
should be noted that, in addition to natural controls, anthropogenic activities, e.g., reservoir
operations and abstractions, can influence streamflow drought event characteristics [56].
However, the authors of [57] suggested different approaches to investigate human influ-
ences on streamflow drought. One such approach is the straightforward comparison of
meteorological droughts with streamflow droughts as demonstrated in this study. Although
studies such as [58,59] critiqued this approach, this study considered both meteorological
and hydrological relationship deficits at different timescales. Further statistical analyses
were employed to demonstrate the usefulness and effectiveness of the applied approach.

Over the considered study period, trends of both streamflow and rainfall drought show
a negative linear trend and this is further supported by the SQMK findings which shows
a negative progressive trend at both timescales for SPI and SSI. The general relationship
shown in Figure 5 indicates a proportional relationship between the drought indicators
and reservoir water level. This relationship is supported by [60] which looks at the “Day
zero” phenomenon in Cape Town; the study reported a significant drop in the storage
of reservoirs supplying water to 3.7 million people in the metropolitan area. This drop
was the result of a three-year rainfall deficit, which resulted in the 2015–2017 drought
in southwestern South Africa. The study findings further show a correlation between
reservoir water levels and the drought quantifying parameters. With the coefficient of
determination showing a higher correlation at the 12th timescale, and the 6th timescale
of the SPI showing the least correction. Wavelet coherence analysis showed a significant
relationship between reservoir water levels and SPI at both timescales, while the same was
not the case for SSI. This strong relationship between SPI and reservoir water levels was
observed between 2006 and 2016 in the region of the 20th and 40th months. Moderate-to-
strong correlations between hydrological and climatic drought indices point to other factors
having an effect on the water levels [61]. Such factors may be attributed to anthropogenic
abstraction such as water reservoir abstractions for domestic and agricultural demand. Due
to reservoir water levels dropping significantly during the major drought periods, this is
an indication of the influence which the phenomenon has on water resource availability.
This is evident from the wavelet coherence analysis, which showed that the Niño 3.4 time
series leads to streamflow drought, which may affect surface water availability. This is
therefore a further indication that during drought events, there is a deficit in rainfall, which
affects the amount of water flowing into the reservoirs. This may further be exacerbated by
anthropogenic drought. Anthropogenic drought is the compound multidimensional and
multiscale phenomenon governed by a combination of factors (i.e., natural water variability,
climate change, human decision and activities, and altered micro-climate conditions due to
changes in land and water management) [62].

5. Conclusions

This study explored the impacts of drought on reservoir water resources in the Albasini
Dam Catchment in the Levubu Valley. The study findings showed a positive relationship
between rainfall and streamflow drought with reservoir water levels. A further decreasing
trend of streamflow and rainfall was observed. These findings have an implication of
surface water availability and sustainability in this area, where there is a critical need for
agricultural water demand. In addition to the observed decreasing trends of hydroclimatic
variables, together with unpredictable impacts of climate change on rainfall and drought
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magnitudes and frequencies, the implication on water resources is eminent. To ensure the
sustainable management of water resources in this area to circumvent future shortages,
management strategies should be improved. These improved management strategies
should aim to minimise drought impacts with the development of adaptation plans which
consider the multidimensional and multiscale nature of drought.
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