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Abstract: A study was carried out in Santiago de Chile, located in a geographic basin, on the sustain-
ability and diffusion of the recent SARS-CoV-2 pandemic. Hourly measurements were used (carried
out for 3.25 years in seven communes of the city) to quantify the accumulated sick (AS) population,
urban meteorology variables (MVs) (temperature (T), relative humidity (RH), and magnitude of wind
speed (WS)), and air pollution (P) (PM10, PM2.5, 03). Time series (TS) were constructed for each com-
mune, which related AS to MVs, called AS/VM, and to P, noted AS/P. Chaos theory was applied to
each TS, requiring the following variables: the Lyapunov exponent (λ > 0), the correlation dimension
(DC < 5), Kolmogorov entropy (SK > 0), the Hurst exponent (H, such that 0 < H < 1), Lempel–Ziv
complexity (LZ > 0), and information loss (<∆I> < 0). Every TS complied with chaos theory. For each
commune, CK was calculated as a quotient between the sum of AS/T, AS/WS, and AS/RH entropies
and the sum of AS/PM10, AS/PM2.5, and AS/O3 entropies. The results show that the entropy for the
AS/P ratio is lower than that of the AS/VM ratio in three of the seven communes, since between
2020 and early 2022, the population was confined, reducing pollution. The TS of the AS/P ratio is
more persistent and complex. The predictability times of the ratios are comparable in four of the
seven communes. The TS of the AS/MV ratios shows greater information loss and chaos. According
to the calculated CK values, it is possible to relate it to anomalous diffusion (sub/super-diffusion)
and the context that favored the expansion of the pandemic: urban densification, pollution, urban
meteorology, population density, etc. Using Fréchet heavy-tailed probability, the compatibility of the
results with CK is verified.

Keywords: accumulated sick; pollutant; urban meteorology; entropy; loss of information; diffusion

1. Introduction

A geographical basin corresponds to an area surrounded by mountains that make
it difficult to ventilate and expose it, in times of climate change, to extended periods of
drought and an increase in temperature [1]. Urban densification also contributes to this,
especially with high-rise buildings [1,2]. These same conditions can contribute to the
persistence of diseases with varied characteristics that affect the population [3,4]. Santiago
de Chile is a geographical basin where the most complex period of the SARS-CoV-2
pandemic (without differentiating variants) occurred from 31 March 2020 to March 2022,
because of the number of accumulated patients and the waves of contagion [3,4]. While
time series do not validate lockdowns, they can suggest that a lockdown decision was
correct. In Santiago de Chile, the time series of accumulated sick people versus temperature
displayed a greater LZ complexity (which describes the regularity of a sequence, where
the more repeated sub-sequences that appear as you scan from left to right, the lower the
value of LZ) with respect to the other meteorological variables, which is consistent with the

Atmosphere 2024, 15, 414. https://doi.org/10.3390/atmos15040414 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos15040414
https://doi.org/10.3390/atmos15040414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-4384-0184
https://orcid.org/0000-0001-7528-7550
https://doi.org/10.3390/atmos15040414
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15040414?type=check_update&version=2


Atmosphere 2024, 15, 414 2 of 20

presence of thermal islands [4]. It also showed, in most cases, a greater persistence, wherein
the past influenced the future. The average value of the Hurst coefficient (persistence in
the future) and the Lempel–Ziv complexity for the time series of accumulated sick people
versus pollutants was larger than that of the time series of accumulated sick people versus
urban meteorology. From the perspective of square meters built, it was shown that there
was a relationship between communes with large built areas and those with the highest
number of accumulated patients. Intensive urbanization and densification were predicted
to contribute to the urban stagnation of the pandemic [4]. The current urban plan has
become critical for the quality of life of people in relation to the environment.

In [3], a study carried out for a period of 2.5 months (30 March–15 June 2022) showed
that micrometeorology (a part of meteorology that deals with observations and processes on
the smallest scales of time and space, of approximately less than 1 km and short periods) and
air pollution variables were part of the factors that allowed for the continuous accumulated
growth of infected patients, favoring the pandemic’s spread, making the curve of accumulated
sick people chaotic, and increasing its complexity. Furthermore, environmental pollution
was predicted to make diseases like the COVID-19 coronavirus worse. Expanding the data
recording period to 25 months (30 March 2020 to 18 April 2022), the investigation in [4] found
that the entropies of the time series of accumulated sick people versus pollutants were still
greater than the entropies of the series of accumulated sick people versus urban meteorology.
The commune of Puente Alto, with an intensive housing construction process, had the largest
communal population in Chile and the largest number of accumulated sick people in the
metropolitan region; it also presented the largest entropic gap in favor of pollutants. This
contributed to its atmosphere being very polluted and conditions that favored the spread of
the virus [5]. As of mid-2022, the measures implemented to control the spread of the pandemic
were relaxed, although the vaccination process was maintained, increasing the number of
doses per person. In this research, we aimed to comparatively study the pandemic timeline
by examining the results of an extended period of data collection from 31 March 2020 to
9 January 2023, which includes the confinement of the population and a decrease in activities
(transport, educational centers, only essential industries, etc.). This study investigates the
following questions: By reducing high values, does confinement moderate variations in the
time series of accumulated sick people versus pollutants and/or of accumulated sick people
versus urban meteorology? If pollution decreases, after almost 2 years of confinement, is it
still relevant in the sustainability of the time series of accumulated patients or does urban
meteorology (represented in this study by T, RH, and WS) become more important?

Science in the 21st century has been moving towards systems approaches, interdisci-
plinary perspectives, and the concepts of complexity theories. The central characteristic
of complex systems is the low predictability of their macroscopic properties and their
temporal evolution. Probability theory, statistics, and the emerging areas of data science
and deep learning are expected to play great roles in the construction of ideas. Regarding
complex systems, it has been observed on many occasions that the properties of interest
follow heavy-tailed probability distributions.

When a phenomenon follows a heavy-tailed distribution, statistics such as the mean
and sample variance are not informative since there is no characteristic scale for the
occurrence of the phenomenon. In this type of system, extreme events have a relatively high
probability of occurring. Many times, extreme events are more interesting to understand
and predict than accumulated non-extreme events since their impact is much greater,
as seen with climate change, heat waves, pollution interactions, urban meteorology, the
outbreak of pandemics, large earthquakes, etc. Within the theory of complex systems,
the classic model that is used to describe heavy-tailed phenomena is the power law, but
probability distributions such as Fréchet, Cauchy, LogNormal, Pareto, Student’s t, and Zipf
are also good descriptors.

There are theoretical mechanisms that explain the appearance of the power law, and
there is evidence that many phenomena are governed by this type of law. Validating them
using empirical data is a task that is far from simple, apart from there being theoretical



Atmosphere 2024, 15, 414 3 of 20

reasons indicating that these systems experience, in practice, effects of finite size, imposing
at least two domains of description including large scales and small scales.

To answer these questions, measurements made in seven different locations in Santiago
de Chile are used. These measurements are time series (each with 24,360 data points
(hour) = 24 h/days × (276 days + 365 days + 365 days + 9 days) of temperature, relative
humidity, wind speed magnitude, particulate matter (10 and 2.5 µm), and O3. From these
data and the accumulated sick (AS) of each commune, the ratios X = AS/T, Y = AS/WS,
Z = AS/RH, U = AS/PM2.5, W = AS/PM10, and V = AS/O3 are constructed. It is assumed
that the new time series generated represents irreversible processes, so the data are analyzed
through chaos theory. The chaotic parameters calculated for each series must satisfy
λ > 0, DC < 5, SK > 0, 0.5 < H < 1, and LZ > 0. The analysis of these values and their
relationships provide criteria that allow for determining the effect of confinement and other
measurements at the microscale where the measurements were made (2–10 m)

2. Materials and Methods
2.1. Area of Study

The city of Santiago is located between the coordinates 33◦26′16′′ S and 70◦39′01′′ W
and at an average altitude of 567 masl (meters above sea level). It has an area of 837.89 km2.
The city is located mainly on a plain known as the Santiago basin. This basin is part of the
Intermediate Depression and is bounded by the Chacabuco mountain range to the north,
the Andes Mountains to the east, the Paine Narrows to the south, and the Coastal Moun-
tain Range to the west. The basin is approximately 80 km long in a north–south direction and
35 km from east to west. The city of Santiago contains 6 provinces subdivided into
52 communes with a projected population of 8,367,790 inhabitants in 2023, equivalent to 42% of
the national population, with a density of around 400 inhab/km2, as shown in Figure 1.
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Figure 1. Representation of the studied communes and their geographical position in the Santiago de
Chile Basin (EML: La Florida, EMM: Las Condes, EMN: Santiago-Parque O’Higgins, EMO: Pudahuel,
EMS: Puente Alto, EMF: Independencia, EMQ: El Bosque).

Table 1 below presents, for each monitoring station, the geographical characteristics
of its location, the dominant climatology, the variety of atmospheric pollutants that were
measured, the most characteristic wind direction in the year, and the annual averages of
the temperature and relative humidity.
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Table 1. Information on the station name (with SINCA code in capital letters and meters above
sea level (masl)), geography, climate, pollution, dominant wind direction (W), annual average
temperature (T), and annual average relative humidity (RH%) for each locality studied (31 March
2020–9 January 2023) [4].

Station Name Geography Climate Pollution Wind T (◦C)Average Period RH (%)Average Period

1. La Florida,
EML,

masl: 784 (m)

Located in the
Andes piedmont

Cold, wet winters
with little rainfall;

hot and
dry summers

Presence in
descending order
PM10, CO, PM2.5,

NO2, O3, SO2

West–east
dayEast–west night 15.33 58.85

2. Las Condes,
EMM,

masl: 709 (m)

Located in the
Andes piedmont

Cold, dry winters;
hot, dry summers

Presence in
descending order
PM10, CO, PM2.5,

NO2, O3, SO2

West–east
dayEast–west night 13.99 59.44

3. Santiago-Parque
O’Higgins,

EMN,
masl: 570 (m)

Located in the
middle of the
basin plane

Cold, dry winters;
hot, dry summers

Presence in
descending order
PM10, PM2.5, CO,

SO2, NO2, O3

West–east
dayEast–south night 15.26 63.20

4. Pudahuel,
EMO,

masl: 469 (m)

Located at the
bottom of the basin

Cold, dry winters;
hot, dry summers

Presence in
descending order
PM10, PM2.5, CO,

SO2, NO2, O3

South–east
dayEast–south night 14.51 63.89

5. Puente Alto,
EMS,

masl: 698 (m)

Located in the
Andes piedmont

Cold, wet winters
with moderate

rainfall; hot,
dry summers

Presence in
descending order
PM10, CO, PM2.5,

NO2, O3, SO2

West–east
dayEast–west night 14.68 58.92

6. Independencia,
EMF,

masl: 554 (m)

Situated in the
intermediate zone of

the basin

Cold, dry winters;
hot, dry summers

Presence in
descending order
PM10, PM2.5, CO,

SO2, NO2, O3

North–east day
East–south night 15.17 61.18

7. El Bosque EMQ,
masl: 575 (m)

Located at the
bottom of the basin

Cold, wet winters;
hot, dry summers

Presence in
descending order
PM10, PM2.5, NO2,

CO, SO2, O3

South–east
dayEast–south night 13.61 59.09

2.2. The Data

To analyze the coronavirus pandemic [3,4] by applying chaos theory, time series were
formed using urban densification (represented by atmospheric pollution), micrometeorol-
ogy, and information on patients infected and accumulated with SARS-CoV2 (AS) in seven
communes in a period of 34.25 months [4].

2.2.1. PM2.5 and PM10 Particulate Matter

The harmful effects of pollution by particulate matter [6,7] on human health are known.
These range from respiratory tract irritation to cardiovascular diseases. Particulate matter
affects all types of surfaces (buildings, public monuments, etc.). It also affects vegetation,
decreases visibility, and induces cloud formation [8]. The World Health Organization [9]
set the following standards for coarse particles (PM10): 20 µg m−3 as an annual average
and 50 µg m−3 as a 24-hour average. For PM2.5, 10 µg m−3 is set as an annual average and
25 µg m−3 as a 24-hour average [4].

2.2.2. Tropospheric Ozone (O3)

Ozone is an oxidant that affects human health. It has been shown [10] that O3 concen-
trations damage respiratory function, especially in the summer, causing lung inflammation,
respiratory failure, asthma, and other bronchopulmonary diseases. European studies [10]
proved that daily deaths increase as exposure to ozone increases. According to [11], ex-
tended exposure to ozone has effects including the deterioration of reproductive health.
Since 2005, several cohort analyses of long-term ozone exposure and mortality in people
with pre-existing conditions have been published. Ozone also impacts vegetation and crops
and is currently considered the third most important greenhouse gas (after carbon dioxide
and methane). The WHO standard indicates a value of 100 µg m−3 for the eight-hour daily
average concentration of tropospheric ozone.
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As O3 affects people’s respiratory systems, and a pattern of pre-existing diseases was
known before the arrival of COVID-19, its choice in this study is natural. The Metropolitan
Region has a high densification rate of high-rise buildings, creating a connected urban
meteorology that favors urban heat islands and urban canyons [4,12].

2.2.3. Meteorological Variables

The meteorological variables, with which properties of the atmosphere are typically
characterized, are used in the form of the following time series in this research: temperature
(T), relative humidity (RH), and magnitude of wind speed (WS) [13]. The orography and
localized urban climate are also considered to have an impact.

2.2.4. COVID-19 in Santiago de Chile
Waves

The study period covers 34.25 months, from 31 March 2020 to 9 January 2023. This
time corresponds to a rapid accumulation of patients in the Metropolitan Region, which
overloaded health centers, including three strong waves of contagion that decreased to-
wards the end of 2022, as vaccination became more rigorous, informed, and massive, as
shown in Figure 2.
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A larger and more detailed record of data from public organizations evidenced this [14].
The data obtained from SINCA (National Air Quality Information Service) [15] were chosen
according to communes of the Metropolitan Region that have a more complete time series.
The number of communes of the Metropolitan Region for which the SINCA carries out hourly
measurements of meteorology and pollutants is 14, and 7 were eliminated. The databases with
missing data (the amount of missing data in 2 communes (Las Condes, La Florida) was less
than 2%) were completed using Nearest Neighbor filling techniques [16–20]. The pollutants
considered, which have important effects on the respiratory tract of people among many other
effects on human health, produced a picture of the existing diseases prior to the arrival of the
pandemic in the country.

The Metropolitan Region has connected urban meteorology due to thermal islands
(Figure 1) and urban canyons, apart from the basin geography that the area itself pos-
sesses. Many local climatic zones are present depending on the size and complexity of
the Metropolitan Region. Thus, sectors can be recognized according to their predominant
socio-economical features. These sectors form socially constructed climates based on the
purchasing power of their inhabitants (which affects planning, urban management, the
quality of construction, etc.) and can be highly connected to their interior, which favors the
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spread of a disease [13]. A change in roughness is generated by high-rise construction and
high urban densification, and then, together with urban micrometeorology and pollutants,
a new thermal balance (thermal island) is created that makes the pandemic spread more
effectively [4].

Cumulative Sick Data

Figure 3 presents the accumulated number of sick patients by communes in this study
according to the period from 31 Mach 2020 to 9 January 2023.
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The Metropolitan Region of Santiago de Chile currently (2023) accounts for 42% of
the country’s population. Table 2 shows the population according to the last census in
2017, patients accumulated by the pandemic, per capita income, and the multidimensional
poverty index in the seven communes studied. Chaos theory was used to calculate the
Kolmogorov entropy of the time series that relates accumulated sickness, meteorological
variables (or urban meteorology), and pollutants. This relationship can be used to analyze
the probabilities of heavy tails that influence the sustainability of the pandemic [21]. The
accumulated sick (AS) records, obtained from the Ministry of Health of Chile (MINSAL),
are summarized in Table 2 along with the communes considered in this study and their
inhabitants [4,22].

Table 2. The communes considered in this study with their inhabitants.

Commune Population Accumulated Sick People per Capita Multidimensional Poverty
(2017) (2017) (31 March 2020–9 January 2023) Income in USD Index [22]

Santiago 404,496 141,401 471 5–10%
Independencia 100,281 29,960 127 20–25%
Las Condes 294,838 85,890 1317 <5%
Puente Alto 568,106 165,038 175 20–25%
El Bosque 162,505 43,638 188 20–25%
La Florida 366,916 108,264 209 15–20%
Pudahuel 230,293 63,290 335 20–25%

Total 2,127,435 637,481 2822
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Table 3 shows, in an approximate way, the rate of growth of the square meters built
and the number of patients accumulated in some of the communes of this study, showing
that in the commune of Puente Alto (PA), there is a high level of overcrowding.

Table 3. Approximate variation in square meters built in five communes of this study [23–25] and the
accumulated sick patients (31 March 2020–9 January 2023) [4]. The sixth column shows that the three
communes with the highest density of inhabitants have the greatest number of accumulated patients.

Commune 2010 m2 2020 m2 ∆m2 AS (31 March 2020–09 January 2023) Inhabitant Density hab/km2 [22]

La Florida 44,054 118,300 74,246 108,264 5227
Las Condes 127,342 145,306 17,964 85,890 2977

Santiago 94,043 190,862 96,819 141,401 17,436
Pudahuel 18,788 63,090 44,302 63,290 1000

Puente Alto 226,665 292,000 65,335 165,038 6456

2.3. Mathematical Tools
2.3.1. Chaos Theory

The hypothesis that non-linear processes were involved in the expansion of the pan-
demic supports the application of chaos theory to the constructed time series. Therefore, it
is necessary to know some concepts of this theory.

A chaotic system is explained by a strange attractor that forms irregular orbits in
a phase space. A strange attractor manifests itself when two adjacent points diverge
exponentially. Furthermore, chaos depends on the initial conditions (butterfly effect). The
Lyapunov exponent (λ) quantitatively describes this phenomenon. If a high dependence on
initial conditions is detected in a system, it can be considered chaotic. Finding the Lyapunov
exponent (λL) with the highest value in a time series is a sign that the system is chaotic.
If λ > 0, then there is divergence between neighboring trajectories. When considering a
one-dimensional dynamic system xn+1 = f(xn), λ is defined [22–24] as follows:

λ = lim
n→∞

ln

(
n−1

∏
i=1

∣∣∣∣df(x)
dx

∣∣∣∣
x=xi

)
= λ = lim

n→∞
ln

(
n−1

∏
i=0

ln
∣∣∣∣df(x)

dx

∣∣∣∣
x=xi

)
(1)

The determination of λ can be carried out according to two procedures. The first
procedure [26] is used for time series with time dependence and noise-free and small
vectors in a neighboring space with highly non-linear evolution. The second method, called
Jacobian, is applied for time series with large noise and linear evolution. This study applies
the first case, where λL was calculated considering the length n of the single-variable time
series X1, X2, . . ., Xn, given the phase points Yi = (xi, xi−1, . . ., x i+ (m−1)) (where m is the
embedding dimension). To examine the divergence in the exponential function, for the
close orbits of chaotic motion [26], all phase points N = n − (m − 1) τ (with τ delay time)
were selected as the reference point, where the reference phase point Yi and the nearest
phase space neighbor reference phase point Yir are the starting point of the nearby orbits.
For time i, the orbital distance is the initial distance (Euclidean distance):

δi
0 = ∥Yi − Yir∥ =

1
m

√
m

∑
k=1

(
xi−(k−1)τ − xir−(k−1)τ

)2
(2)

The exponential divergence between nearby trajectories of the chaotic system is:

δt = δ0eλt (3)

where δ0 is the starting point and δt is the point at time t.
The largest Lyapunov exponent λL is:

λL =
ln δt

δ0

t
=

ln δt

t
− ln δ0

t
(4)
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For a given time series, the sum of all the positive Lyapunov exponents defines its Kol-
mogorov entropy (SK) and its reciprocal defines the average predictability time,
TP = 1/SK [26–29]. Considering that the number of phase points is equal to N and that the
neighboring points undergo evolution according to t, the average of the total distance away is:

δt =
1
N

N

∑
i=1

δi
t (5)

When graphing the curve ln δt against t, a straight line is drawn on the linear part
of the curve, which gives the slope λL. To ensure stability in the calculation of Lyapunov
exponents, it is necessary to have over 5000 data points [26,30].

The correlation dimension (DC) is a very important quantity that describes the geometric
characteristics of the strange attractor. The numerical value of DC may be a reflection of
the inherent complexity of atmospheric systems, etc. DC allows for determining m for the
reconstruction of the phase space of the time series by reporting whether the time series
is generated by a dynamic process and the number of dynamic variables that can explain
the atmospheric system. A widely used algorithm [31] is based on the determination of the
correlation integral (if the number of points N → ∞). The discrete formulation is based on a
statistical method that focuses on the number of points within all circles of radius r normalized
to 1, with an r large enough to include all points without counting any point twice. When
considering a reconstructed phase space, it is necessary to find the distance between two
phase points to quantify the maximum difference between the two vectors as follows:

∣∣Yi − Yj
∣∣ = max

1≤k≤m

∣∣∣xi−(k−1)τ − xj−(k−1)τ

∣∣∣ = ∣∣Yij
∣∣ =

√√√√m−1

∑
k=0

(
xi−(k−1)τ − xj−(k−1)τ

)2
(6)

The correlation sum considers all related phase points and the percentage of phase
points of all possible N (N − 1)/2:

C(r) = correlation sum =
2

N(N − 1)

N

∑
i=1

N

∑
j=i+1

Heav
(
r −

∣∣Yi − Yij
∣∣)→ C(m, r) (7)

where Heav(x) is the unitary Heaviside function:

Heav(x) =
{

0, x ≤ 1
1, x > 1

(8)

The definition of the Correlation Dimension [27] is:

DC = Correlation Dimension = lim
r→0

lnC(r)
ln r

(9)

If we have a lot of data and r tends to very small values, C(r) can behave according to
the power relationship:

C(r) ∼ rDC (10)

When plotting the coordinate system ln C(r) against ln r, the slope of the linear part is
DC. The correlation entropy, K2 [4,27], is defined as:

K2 = lim
m→∞

lim
r→0

lim
N→∞

log
C(m, r)

C(m + 1, r)
(11)

where r is the radius of the circle or sphere. K2 is zero, positive, or infinite for regular,
chaotic, or random data, respectively.
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Thus, it can be stated [4,27] that the correlation entropy, K2, is a lower bound of
Kolmogorov’s entropy, SK. That is,

K2 ∼ SK (12)

Chaotic analysis [4,27,32,33] includes the iterated function system (IFS) fragmentation
test. Symbolic dynamics allow for calculating the Lempel–Ziv complexity (LZ > 0) related
to white noise. The numerical calculation is performed with software [33] that is applied to
each time series (called X, Y, Z, U, W, and V) without missing data.

Information loss can be calculated according to:

< ∆I > =< INEW − IOLD ≥ −λ(i0(t))
log 2

(13)

The Lyapunov exponent, λ0 = λ(x0) = λ(i0(t))(in [bits/h]), represents the exponential
separation between two trajectories, which were initially close, after N steps or iterations
and contains a quantity of information, I, related to that separation I(x0). Two types of <∆I>
were calculated as follows: one for the contribution of each P (pollutants: PM10, PM2.5, and
O3) to the accumulated sick and another for the contribution of each MV (meteorological
variables: T, WS, and RH) to the accumulated sick.

2.3.2. Anomalous Diffusion

Physical and biological systems have been discovered in which the mean square
displacement of the diffusing substance grows with time in the form of <r2 (t)> ∝ tα,
where the value of the exponent divides the process’ diffusive in two different regimes as
follows: super-diffusion, for α > 1, and sub-diffusion, for α < 1, which are particular cases
of so-called anomalous diffusion, as shown in Figure 4.
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The study and applications of anomalous diffusion, as an extended phenomenon, and
like normal diffusion, escape the physical sciences. For the description and modeling of
various complex systems, anomalous diffusion has been useful in the study of the internal
structure of living cells, the characterization of the way in which different species of animals
find food, etc.

The variance in quadratic displacement is:

< r2 > ∝ tα ∼ t
SK,AS/MV

SK,AS/P = tCK (14)

The quadratic diffusive variance associated with the displacement in the AS/urban
meteorology variables from the atmosphere to the interior of the boundary layer, close
to the ground, is dependent on the interaction between the entropies of the AS/urban
meteorology and the entropies of the AS/pollutants according to the CK quotient.
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The Fréchet distribution is a special case of an extreme value distribution or heavy-
tailed distribution. The distribution function that represents it is:

Pr(X ≤ x) = e−x−β
. si x > 0, β ∈ (0, ∞) (15)

where β > 0 is the shape parameter. The generalization includes a location parameter, n,
and a scale parameter, s > 0, resulting in:

Pr(X ≤ x) = e−( x−n
s )

−β

si x > n (16)

In heavy-tailed distributions, there is a higher probability of extreme events compared
with more commonly observed distributions such as the Gaussian or normal distributions.
One of the fundamental concepts in heavy-tailed distributions is power law behavior,
which occurs with the mean value of the squared variance in the position. Power law
distributions present a scaling relationship between the probability density function and
the variable of interest.

Table 4 shows the calculation of the maximum values, minimum values, standard
deviation, average, and median for each of the time series of 24,360 accumulated patient data
points, temperature, relative humidity, magnitude of wind speed, PM10, PM2.5, and O3.

Table 4. Statistics of the time series of accumulated patients, meteorological variables, and pollutants
of each commune (31 March 2020–9 January 2023).

Pudahuel Independencia Santiago Las Condes La Florida Pte. Alto El Bosque

Accum. sick
Deviation 19,575.06 8798.44 45,046.67 27,671.65 33,137.88 50,748.94 13,660.27
Average 30,047.79 15,354.37 57,472.85 30,443.55 47,098.76 76,376.38 21,138.38
Median 28,463.00 14,611.00 43,992.00 19,391.00 42,991.00 73,636.00 21,357.00

Temp (◦C)
Deviation 7.11 6.83 6.93 6.92 7.28 6.72 7.33
Average 14.51 15.17 15.26 13.99 15.33 14.68 13.61
Median 13.55 14.29 14.33 12.95 14.55 13.90 12.76

RH (%)
Deviation 22.45 21.48 21.91 21.10 21.27 20.83 21.55
Average 63.89 61.18 63.20 59.44 58.85 58.92 59.09
Median 66.08 62.00 65.00 61.09 59.42 59.50 60.58

WS (m/s)
Deviation 0.98 0.77 0.83 0.55 0.58 1.03 0.87
Average 1.13 0.94 0.91 0.82 0.78 1.27 0.98
Median 0.83 0.68 0.64 0.76 0.62 0.93 0.67

PM10 (µg/m3)
Deviation 46.53 39.86 38.15 29.50 40.52 36.30 48.00
Average 64.10 64.55 65.96 52.54 61.64 66.98 72.99
Median 51 55 57 47 53 61 61

PM2.5 (µg/m3)
Deviation 26.81 21.83 18.63 13.13 18.85 15.97 25.44
Average 26.00 24.39 22.97 17.44 23.68 22.22 28.93
Median 17 16 17 14 18 18 21

O3 (ppb)
Deviation 15.12 16.60 17.24 19.27 18.34 16.75 14.86
Average 14.80 15.56 16.02 19.03 16.81 17.16 13.72
Median 10 9 10 12 10 12 8

Applying chaos theory [27,33] to the time series, the calculation of parameters λ > 0,
DC < 5, SK > 0, 0.5 < H < 1, LZ > 0 results in values that are in the required ranges. Therefore,
the process is chaotic, and the results are summarized in Table 5.
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Table 5. The results of the calculation of parameters including the Lyapunov coefficient (λ), correla-
tion dimension (DC), Kolmogorov entropy (SK), Hurst exponent (H), Lempel–Ziv complexity (LZ),
maximum time of predictability (T), and loss of information (<∆I>) (31 March 2020, to 9 January 2023,
1,023,120 data points).

Commune λ (bits/h) Dc Sk (bits/h) H LZ T = 1/SK (h) <∆I>

Las Condes (LC)
X 0.238 ± 0.015 2.099 ± 0.135 0.611 0.902570 0.10850 1.636 −0.791
Y 0.325 ± 0.026 3.098 ± 0.899 0.296 0.754360 0.09634 3.378 −1.079
Z 0.168 ± 0.013 3.852 ± 0.200 0.437 0.876525 0.47844 2.288 −0.558

SK, MV = 1.344 0.844485 0.22776 ^= 2.434 −2.428
W 0.179 ± 0.015 3.916 ± 0.238 0.477 0.871804 0.60284 2.096 −0.595
U 0.327 ± 0.021 4.369 ± 0.152 0.368 0.851004 0.61219 2.717 −1.086
V 0.499 ± 0.024 4.314 ± 0.133 0.398 0.871258 0.65148 2.513 −1.657

SK, P = 1.243 0.864688 0.62217 ^= 2.442 −3.338
Santiago (SANT)

X 0.170 ± 0.013 4.024 ± 0.339 0.385 0.904362 0.36666 2.597 −0.565
Y 0.231 ± 0.020 1.575 ± 0.465 0.266 0.755542 0.08091 3.759 −0.767
Z 0.177 ± 0.013 4.078 ± 0.327 0.403 0.878623 0.51258 2.481 −0.588

SK, MV = 1.054 0.846175 0.32005 ^= 2.946 −1.920
W 0.248 ± 0.016 4.001 ± 0.277 0.447 0.876730 0.55280 2.096 −0.824
U 0.375 ± 0.022 3.672 ± 0.345 0.278 0.844136 0.48218 3.597 −1.246
V 0.336 ± 0.024 3.278 ± 0.156 0.106 0.936006 0.52988 9.434 −1.116

SK, P = 0.831 0.885624 0.52162 ^= 5.042 −3.186
Independencia (IND)
X 0.222 ± 0.015 2.093 ± 0.148 0.543 0.902606 0.10710 1.842 −0.737
Y 0.353 ± 0.022 2.581 ± 0.881 0.308 0.812761 0.07249 3.246 −1.173
Z 0.133 ± 0.012 3.927 ± 0.235 0.436 0.891302 0.49808 2.294 −0.442

SK, MV = 1.287 0.868889 0.22589 ^= 2.461 −2.352
W 0.209 ± 0.014 3.755 ± 0.236 0.498 0.886482 0.60237 2.008 −0.694
U 0.307 ± 0.018 4.252 ± 0.154 0.506 0.884166 0.58367 1.976 −1.019
V 0.585 ± 0.025 3.824 ± 0.211 0.365 0.898487 0.60845 2.739 −1.943

SK, P = 1.369 0.889712 0.59816 ^= 2.241 −3.656
La Florida (LF)

X 0.166 ± 0.012 4.116 ± 0.286 0.364 0.910665 0.35123 2.747 −0.551
Y 0.214 ± 0.020 1.374 ± 0.789 0.293 0.771460 0.08278 3.413 −0.711
Z 0.208 ± 0.014 4.449 ± 0.344 0.473 0.883141 0.50182 2.114 −0.691

SK, MV = 1.130 0.855088 0.31194 ^= 2.758 −1.953
W 0.295 ± 0.016 4.055 ± 0.300 0.448 0.873495 0.56215 2.232 −0.980
U 0.375 ± 0.022 4.073 ± 0.275 0.341 0.850949 0.50510 2.933 −1.246
V 0.792 ± 0.029 3.694 ± 0.405 0.357 0.916451 0.57852 2.655 −2.631

SK, P = 1.146 0.880298 0.54859 ^= 2.760 −4.857
Puente Alto (PA)

X 0.130 ± 0.012 3.120 ± 0.234 0.419 0.905320 0.38537 2.386 −0.432
Y 0.607 ± 0.025 1.403 ± 0.572 0.293 0.793516 0.08605 3.413 −2.016
Z 0.181 ± 0.013 3.852 ± 0.228 0.374 0.891406 0.43354 2.674 −0.601

SK, MV = 1.086 0.863414 0.30165 ^= 2.824 −3.049
W 0.276 ± 0.016 4.406 ± 0.320 0.501 0.878464 0.50977 1.996 −0.917
U 0.415 ± 0.024 2.446 ± 0.650 0.072 0.868495 0.37882 13.888 −1.378
V 0.327 ± 0.024 2.403 ± 0.347 0.306 0.852885 0.54906 3.268 −1.086

SK, P = 0.879 0.866615 0.47922 ^= 6.384 −3.359
El Bosque (EB)

X 0.231 ± 0.015 2.713 ± 0.111 0.608 0.908657 0.10616 1.645 −0.767
Y 0.424 ± 0.024 2.764 ± 0.906 0.355 0.820853 0.07717 2.817 −1.408
Z 0.192 ± 0.014 3.941 ± 0.249 0.437 0.887640 0.48171 2.288 −0.638

SK, MV = 1.400 0.872383 0.22168 ^= 2.250 −2.813
W 0.251 ± 0.016 3.601 ± 0.128 0.520 0.883469 0.61687 1.923 −0.833
U 0.319 ± 0.018 4.338 ± 0.178 0.537 0.872094 0.59068 1.862 −1.060
V 0.722 ± 0.028 4.360 ± 0.166 0.432 0.921180 0.60050 2.315 −2.398

SK, P = 1.489 0.892248 0.60268 ^= 2.033 −4.291
Pudahuel (P)

X 0.242 ± 0.015 3.021 ± 0.181 0.242 0.908026 0.38256 4.132 −0.804
Y 0.143 ± 0.017 1.876 ± 0.571 0.230 0.737256 0.08325 4.347 −0.475
Z 0.174 ± 0.013 4.204 ± 0.372 0.398 0.891302 0.49808 2.513 −0.578

SK, MV = 0.870 0.845528 0.32130 ^= 3.664 −1.857
W 0.280 ± 0.016 3.967 ± 0.271 0.459 0.885674 0.56262 2.179 −0.930
U 0.386 ± 0.021 3.746 ± 0.189 0.346 0.860764 0.55841 2.890 −1.282
V 0.731 ± 0.028 3.795 ± 0.138 0.367 0.912855 0.58086 2.725 −2.428

SK, P = 1.172 0.886431 0.56730 ^= 2.598 −4.640
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3. Results

The previous tables were summarized by extracting data that allowed for the con-
struction of the figures. Thus, Table 6 shows the accumulated sick in each commune and
the entropies of the ratios between (accumulated sick)/(pollutants) (or SKAS/,P) and (accu-
mulated sick)/(meteorological variables) (or SK,AS/MV). It also shows the calculated ratio
between columns three and four, which was used to obtain CK, whose formal definition is
given below.

Table 6. The ratio between the entropies of (accumulated sick)/(meteorological variables) and the
entropies of (accumulated sick)/(pollutants) and the accumulated sick (31 March 2020 to 9 January 2023).

Commune AS SK, AS/MV SKAS/,P CK = SK, AS/MV/SK, AS/P

La Florida (EML) 108,264 1.130 1.146 0.986
Las Condes (EMM) 85,890 1.344 1.243 1.081

Santiago (EMN) 141,401 1.054 0.831 1.268
Pudahuel (EMO) 63,290 0.870 1.172 0.742

Puente Alto (EMS) 165,038 1.086 0.879 1.235
El Bosque (EMQ) 43,638 1.400 1.489 0.940

Independencia (EMF) 29,960 1.287 1.369 0.940

From Table 6, it can be deduced that in four of the seven communes, the entropy of the
ratio of (accumulated sick)/(pollutants) predominates, and in three of the seven communes,
the entropy associated with the series of (accumulated sick)/(meteorological variables)
dominates. From the perspective of the data and the entropic analysis, in the order of
20%, the ratio of (accumulated sick)/(pollutants) is higher than the ratio of (accumulated
sick)/(meteorological variables), but both give sustainability to the pandemic. One of the
communes triggered by the effect of urban weather is Puente Alto (EMS), which has a very
high population density [4].

Figure 4 below shows, for the study period including confinement, the entropies of
the ratio between (accumulated sick)/(meteorological variables) (temperature, relative
humidity, magnitude of wind speed) and the entropies of the ratio between (accumulated
sick)/(pollutants) (PM10, PM2.5, O3) by commune together with the CK ratio, which is
defined as

CK, communes =
∑ Entropy (Accumulated Sick)/(Meteorological Variables)communes

∑ Entropy (Accumulated Sick)/(Pollutants)communes

(17)

When Figure 5 is analyzed for the entropy associated with the time series that relates
accumulated patients and urban meteorology, it is found that the entropy of the meteoro-
logical variables is lower, with a more uniform behavior that is predictable and stable. The
effect of pollutants on accumulated patients is reduced because there are fewer pollutants
because of the lockdown. The pollutants are more chaotic and have greater entropy (this is
concluded from the measurements), which affects the relationship with the accumulated
patients. This is directly indicated in Figure 5, which shows that practically four of the
seven communes are in the condition described.

Even so, the fastest loss of information, characteristic of a chaotic system, corresponds
to the ratio of (accumulated sick)/(meteorological variables). As shown in Figure 6, which
was obtained from the data in Table 5, the information losses per commune (eighth column)
are added into the following two groups: (1) AS/T, AS/WS, AS/RH and (2) AS/PM10,
AS/PM2.5, AS/O3, and are graphed with the accumulated sick for each commune.
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It can be seen from Table 6 that the diffusive effect of CK is quite heterogeneous in
the basin morphology, manifesting a super-diffusive effect with α > 1, for the increase in
accumulated sick patients. This is observed in at least three of the communes that have a
large population, high urban densification, and high-rise buildings, another commune that
almost falls at the limit between sub-diffusive and super-diffusive processes (La Florida)
with α ~ 1, and three communes with sub-diffusive regimes (α < 1). The case of Pudahuel
is quite exceptional because it is a commune that is subject to a mountain passageway effect
that transports coastal influence. According to the second and fifth columns of Table 6,
Figure 7 is obtained.

Table 7 specifies, according to locality, the probability by applying Fréchet distribution.
The Fréchet distribution tends to evolve in a similar way to the evolution towards

super-diffusive regimes of the CK parameter, that is, high urban and population densifica-
tion and high-rise buildings that favor the spread of the virus, as shown in Figure 8.

Figure 5 shows that despite the reduction in human activity, air pollution is more
persistent and more predictable than urban meteorology in most communes. From the
perspective of urban meteorology, according to the values of the Hurst coefficients, which
indicate the ability to influence the future, temperature, in particular, gives the greatest
persistence to the ratio of (accumulated sick)/(temperature) compared with all the other
meteorological variables and practically in all communes. Even so, the pollutant system is
the most persistent compared with the urban micrometeorology system. The same is true
for Lempel–Ziv complexity. The confinement favored an environmental improvement in
the city of Santiago de Chile, according to Table 8.
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The Fréchet distribution tends to evolve in a similar way to the evolution towards 
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Figure 7. The evolution of CK towards high population and urban and high-rise construction density.

Table 7. Location, number of accumulated sick patients in the study period, CK, Fréchet probability
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Localization AS (31 March 2020–9 January 2023) CK (2020–2023) Pr Diffusion Type

EMO 63,290 0.74 0.28 sub diffusion
EMQ 43,638 0.94 0.35 sub diffusion
EMF 29,960 0.94 0.35 sub diffusion
EML 108,264 0.99 0.37 diffusion
EMM 85,890 1.08 0.39 super-diffusion
EMS 165,038 1.24 0.43 super-diffusion
EMN 141,401 1.27 0.44 super-diffusion
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Table 8. The average values of temperature and relative humidity according to three different periods.

EML EMM EMV EMN EMS EMO Average by Commune

2010–2013
T (◦C) 15.4 15.86 15.80 15.34 14.70 16.80 15.65

RH (%) 58.20 58.13 57.34 60.22 60.07 57.52 58.58
2017–2020

T (◦C) 16.12 15.57 16.85 16.17 15.53 16.78 16.17
RH (%) 55.31 55.00 58.95 57.31 56.07 59.22 56.98

2019–2022
T (◦C) 16.10 14.70 15.50 16.05 15.42 15.31 15.51

RH (%) 56.20 57.83 61.20 60.84 56.96 61.32 59.10

Table 8 indicates that in the period 2019–2022, the average temperature experienced
a decrease and the average relative humidity increased when compared with the periods
2010–2013 and 2017–2020. This strengthening of urban meteorology makes it emerge as
an element that favors, according to 42.86%, the growth in the entropy of (accumulated
sick)/(meteorological variables). This marks a great difference compared with the studies of
shorter periods [3 (2.5 months (30 March–15 June 2022)), 4 (25 months (30 March 2020–18 April
2022))], where the polluting system, exclusively, increased the entropy of the ratio of (accumu-
lated sick)/(pollutants) compared with that of the ratio of (accumulated sick)/(meteorological
variables). Here, in the study of the extended period, from 31 March 2020 to 9 January 2023,
in three of the seven communes, urban meteorology increased the entropy of the ratio of
(accumulated sick)/(meteorological variables). This is also a demonstration of the versatility
and adaptability of the pandemic, which can use all means, such as urban weather, which is
very difficult to control, as an element that cooperates in maintaining or increasing the sustain-
ability of the virus. This is combined in a good way with the times of maximum predictability
of the ratio of (accumulated sick)/(meteorological variables) and of the ratio of (accumulated
sick)/(pollutants) where, in four (EMM, EMF, EML, EMQ) of the seven communes, the value
is very similar. This shows the greater influence that urban meteorology acquires, in periods
of decreased human activity, on the ratio of (accumulated sick)/(pollutants) and marks a
difference compared with the studies [3,4]. The period of confinement covered practically
2 years (2020–2021).

Table 9 provides a summary of the perspective of the actions undertaken by the
political and health authorities.

Table 9. The actors in the city’s work that are oriented actions that affect various human activities.
This can be verified according to various instances and the effects it had on the life of the city (hard
confinement: period March 2020–March 2022).

Actors Human Activities Check Effects

population

mandatory use of a mask, confinement of the
population to their homes, vaccination process of the

population (two and three doses), increase in
hospital beds and equipment, orders for essential
goods delivered to homes, attention in commerce

(supermarkets, etc.) by small groups of people, street
signs to maintain distances among people

Ministry of Health,
police from Chilean

Companies

deserted streets,
irruption of wildlife in the

city,
crime reduction

culture and information

improvement in personal hygiene, development of a
culture of hygiene in public and private facilities,

permanent information on the pandemic through the
media, companies, educational establishments, etc.

Ministry of Health,
Ministry of Education,

Media
learning

travels

mobility passes for people with full doses of vaccines,
reduced travel by air, land, and sea except for very
justified cases, police and military control of routes,

mobility passes requested at police stations

SINCA,
measurements,

police from Chile

entropy calculation, control
of the population
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Table 9. Cont.

Actors Human Activities Check Effects

teaching and work
teaching via the internet, work via the internet,

financial aid vouchers for workers, pension fund
withdrawals, boxes with food and toiletries

educational centers closed,
companies with no or very

little activity,
Congress,

SINCA

low quality of
learning,
disorders

psychological,
overweight

wildlife lockdown of the population in their homes Media, population, wildlife
organizations

irruption of wild fauna in
cities

4. Discussion

This study complements [3,4] by considering data extended to almost a year after the
end of the confinement. The results demonstrate, based on Table 6, Figure 5, and Table 9, the
effect of the pandemic on human activity. As an important sidenote, wild animals enjoyed
the freedom of a calmer world when the global coronavirus lockdown gave parts of the
natural world a rare opportunity to experience life with hardly any humans around [34,35].

Based on the analysis of the data from a geographic basin, it can be deduced that
temperature makes the ratio between (accumulated sick)/(temperature) more persistent, and
relative humidity makes it more complex, considering the effect of the meteorological variables
measured in the extended period (31 March 2020 to January 9, 2023; 1,023,120 data points)
of the coronavirus 2 (SARS-CoV-2) pandemic, and that can cause severe acute respiratory
syndrome [36,37]. Although Baker [37] used a climate-dependent epidemic model to simulate
the SARS-CoV-2 pandemic, testing different climate-dependence scenarios based on known
coronavirus biology, susceptibility levels among the population remain the determining factor
that drives the pandemic. Without the application of effective controls, the pandemic will
persist in the coming months, causing severe outbreaks even in humid climates (Santiago de
Chile is dry, aggravated by a drought of nearly 30 years). The summer will not substantially
limit the growth of the pandemic, which is something that this investigation confirms. The
most significant difference compared to [37] is that this study is based on measurements
recorded at ground level (a height between 2 and 10 m), which is where ordinary citizens live
and is very complex to incorporate into a simulation.

Until now, the most notable result has been that for confinement, according to the data
record of the extended period, the effect of urban meteorology and that of pollution reduced
by confinement on the accumulated patients are distributed with very similar probabilities.
This goes back to the argument of achieving immunity for the entire population. This does
not mean that the climate is not important in the long term.

The analysis procedure does not identify the details of the effect of each season of
the year, so it can only be added that it is probable that the endemic cycles of the disease
are linked to climatic factors. The technique is very specific in determining which urban
meteorology variable helps to make the curve of accumulated sick patients more sustainable
and, in turn, makes it possible to compare the effect of the urban meteorological system
and the polluting system on the accumulated sick. Urban meteorology begins to show the
effect of stopping pollution due to confinement.

Thus, this research provides a qualitative description based on quantitative variables—
such as temperature, relative humidity, and the magnitude of the wind speed—which are
basic descriptions of climatic factors, the effect of the confinement regime on them, and
their incidence in the sustainability of a pandemic. This allows for understanding the
implications of control measures on the duration of immunity. It also shows that it is not
enough to consider urban meteorology in the study of the pandemic and that air pollution
plays a role. Both participate in its sustainability [4] (see Table 6 and Figure 5 above), which
is the connected way in which all entropic processes in nature work [36,38].

In [39], it was concluded that the lockdown in England was the only measure that
consistently reduced R, the average number of people a person with COVID-19 will infect,
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to below 1. And the sooner the measures were applied, the better. Another study [40]
reached similar conclusions.

Wu [41] and colleagues examined three different response strategies for SARS-CoV-19
in eight countries and argued that aggressive containment is the optimal approach to
limit the loss of life and livelihoods, which can be achieved in the absence of effective
vaccines and therapies as follows: aggressive containment (in 28 days); suppression by
implementing public health interventions (protecting vulnerable (lockdowns, masks, etc.)
and high-risk groups while allowing transmission among low-risk groups); and mitigation
trying to avoid overloading health systems by flattening the epidemic curve or achieving
herd immunity in the population.

Non-pharmaceutical interventions [42], such as social distancing and lockdowns, have
been essential to control the coronavirus disease 2019 (COVID-19) pandemic. Localized
lockdowns in small geographic areas have become an important policy intervention to
prevent viral spread in cases of resurgence. These localized lockdowns can have lower social
and economic costs relative to larger-scale suppression strategies. Using an integrated data
set from Chile (3 March to 15 June 2020, an exceptionally short study period) and an original
synthetic control treatment, the effect of localized blockages was estimated, clarifying their
direct and indirect causal effects on coronavirus 2 (SARS-CoV-2) transmission. Although the
results indicated that the effects of localized lockdowns were strongly modulated by their
duration and influenced by the indirect effects of neighboring geographical areas, leaving
out urban densification, micrometeorology, and air pollution, which is the environment of
people’s lives, conditioned the results.

In [43], daily data of confirmed cases of COVID-19 (172,746) from the Casablanca
region together with meteorological parameters (average temperature, wind, relative
humidity, precipitation, duration of sunshine) and air quality (CO, NO2, O3, SO2, PM10)
for the period from 2 March 2020 to 31 December 2020 were analyzed with the General
Additive Model (GAM). Positive associations were determined between COVID-19 and
wind (>20 m/s) and relative humidity (>80%). For temperatures >25 ◦C, there was a
negative association with daily cases of COVID-19. PM10 and O3 had a positive effect on
increasing the number of daily confirmed cases of COVID-19, while precipitation had a
limiting effect below 25 mm and a negative effect above this value.

Ref. [44] also linked exposure to PM2.5 and coarse PM10 with adverse outcomes of
COVID-19, including increased incidence and mortality. Applying a less biased method
such as Mendelian randomization (MR), which uses genetic variants as instrumental
variables to infer causal relationships in observational data, it was possible to establish a
causal relationship between pollution by smaller particles, specifically PM2.5, and a greater
risk of severity and hospitalization due to COVID-19.

In this study, an approach based on measurements of accumulated patients, urban
meteorology, and pollutants, the pandemic phenomenon that affected different communes
of Santiago de Chile is described. The initial conditions of the places studied consider the
unexpected appearance of a highly contagious virus, urban densification, urban meteorology,
atmospheric pollution, high-rise buildings, overcrowding, accumulated sick patients, etc. This
interdisciplinary topic is addressed with procedures that include chaos theory, anomalous
diffusion, and Fréchet heavy-tailed probability [45]. The difference compared with other more
theoretical investigations [46–48] is in the robustness of the measured data (amount of data
over a million) and the good agreement presented by the three methods used.

5. Conclusions

A total of 1,023,120 data points were processed with measurements deep inside the
boundary layer at the ground level, which were distributed in 42 time series, showing that
all were chaotic with characteristic parameters including the Lyapunov exponent (λ), the
correlation dimension (DC), Kolmogorov entropy (SK), the Hurst exponent (H), Lempel–Ziv
complexity (LZ), and loss of information (<∆I>) in the appropriate ranges. The analysis
of these parameters made it possible to demonstrate that the confinement reduced air



Atmosphere 2024, 15, 414 18 of 20

pollution, improving, in part, urban meteorology. Unlike shorter measurement periods
(2.5 and 25 months), where confinement did not show its effect on pollution, this study, con-
ducted over an extended period (34.25 months), shows that its influence becomes effective
on urban meteorology. Healthy urban weather does not guarantee a stop in the spread of
the pandemic. What it indicates is that rather both systems, polluting + urban meteorology,
jointly contribute to the sustainability of the accumulated sick patients due to the pandemic.
The percentages show that in four of the seven communes, the entropy of the ratio between
the accumulated sick and pollutant is dominant, even with confinement. However, in three
of the seven communes, the time series of the ratio between the accumulated sick and
urban meteorology prevails. This indicates that confinement plus vaccination of the entire
population give more guarantees of immunity and that they are important factors to apply
to the dynamics of pandemic invasion, which can use the conditions of urban densification,
the urban climate, and the pollution that is generated for its expansion. The scenarios
posed by the pandemic are very complex and connected, covering, among many other
aspects, urban micrometeorology, air pollution, urban densification, the geographical distri-
bution of confinements, the vulnerable population, etc. Chaos theory, anomalous diffusion,
and Fréchet’s heavy-tailed probability distribution achieve similar and consistent results
for the topic.t
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