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Abstract: It has been demonstrated that benzene, toluene, and xylene are carcinogens. Its combined
effects with other contaminants have the potential to harm several ecosystem components. Since
most human benzene exposure takes place inside, it is important to understand how outdoor benzene
emissions from traffic and industry affect interior concentrations. However, this area of study has
not received enough attention to date. Herein, we examine the outdoor concentrations of benzene,
toluene, and xylene (BTX) in a Steelpoort mining area. BTX pollutants were passively sampled on the
first seven days of the month, from January to December 2021 using Radiello samplers. The effects of
meteorological parameters such as temperature, relative humidity, wind speed, and solar radiation
on BTX concentrations were also statistically tested. For all seasons, BTX concentrations were greater
in the winter than in the summer with concentrations of 0.69 µg/m3, 2.97 µg/m3 and 0.80 µg/m3 for
benzene, toluene and xylene, respectively. In addition, toluene was the most common BTX compound
with the highest concentrations when compared to benzene and xylene. Benzene, toluene and xylene,
had yearly average concentrations of 0.61 µg/m3, 1.48 µg/m3 and 0.64 µg/m3, respectively. The
benzene and xylene concentrations were below international exposure limits (annual, 5 µg/m3 for
benzene; weekly, 260 µg/m3 for toluene), as in comparison to the World Health Organization, as
well as within South African exceedance limits. Both positive and negative correlations between BTX
and meteorological parameters were demonstrated by statistical models. Temperature, wind speed,
and relative humidity depicted a weak negative correlation with benzene of 0.003, 0.019 and 0.006,
respectively. Toluene showed a positive correlation with wind speed (1.90) and relative humidity
(0.041). Overall, the concentration of benzene is of major concern since it is an agent of cancer and it
is there in the atmosphere.

Keywords: BTX; interspecies ratio; meteorological parameters; emission sources

1. Introduction

Mono-aromatic volatile organic compounds (VOCs), such as benzene, toluene, and
xylene (BTX), are among the most widely produced chemicals in the world [1–4]. These
compounds are classified as hazardous air pollutants due to their potential to damage
human health [5,6]. According to the International Agency for Research on Cancer, benzene,
toluene and xylene are categorized as human carcinogen, probable human carcinogen and
non-carcinogen for humans [7–9]. It has been reported that human beings are exposed to
these volatile organic compounds through inhalation, which places their health at risk [10].
The effects of BTX exposure on human health have been extensively studied and are mostly
influenced by exposure duration and concentration [11,12]. BTX, which can pollute air
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through a variety of sources, such as cigarette smoke, motor vehicle fuel combustion,
petrochemical industries and gasoline and diesel combustion have both short-term and
long-term effects on human health [13]. Eye irritation, headache, vertigo, visual impair-
ments, and memory disorders have been linked to short-term exposure to BTX [14–16],
while long-term exposure was linked with leukaemia and biliary tract cancer; birth defects;
damage to body organs such as the liver, kidney, and central nervous system; allergies;
and asthmatic intensification. Toluene and xylenes are neurotoxic and cause peripheral
neuropathies, while benzene is hematotoxic and considered to be the most toxic chemical
among BTX [12,17]. Although children and the elderly groups are the most vulnerable
groups due to their weaker immune system [18], studies show that children are at greater
risk. This is due to their high metabolic and resting rate as compared to adults. Again, it
was further found that children spend most of their time indoor next to their mothers, and
they are thus exposed to elevated concentrations of combustion pollutants during cooking
and heating conditions [19].

Studies on the fluctuations of BTX in metropolitan regions’ atmosphere across time
and space, in both established and developing nations, have demonstrated that BTX are
linked to certain activities such as oil refineries, petrochemical industries and vehicle
emissions [20,21]. Of all of the sources reported, gasoline is the one that has received much
attention in the past decades [22–24]. The major component of gasoline is benzene, which
is released from gasoline engines. The benzene-to-toluene (B/T) ratio is often applied as an
index for determining the emission sources of BTX compounds [6,25,26]. A ratio exceeding
0.5 suggests that the source of benzene is not only related to traffic but also other sources.
Moreover, B/T ratios lower than 0.5 suggest that transportation is the predominant source
of BTX [27].

In South Africa, emissions of volatile organic compounds along with their corre-
sponding concentrations are all considered to be major sources of air pollution. Pollutants
released from a variety of sources such as the burning of biomass and home fuels, etc.,
have an impact on the quality of the air in different parts of the nation. [28]. Since there
is no law in South Africa defining acceptable levels of VOCs in ambient air, it is more
difficult to implement monitoring and emission reduction programs [19,29]. The only
pollutant the South African government regularly monitors and limits in ambient air is
benzene, even though toluene and xylenes have been shown to be harmful to human health.
However, since TX is regarded as an ozone precursor substance, there has been a push in
South Africa to include limits and guideline values for it. Furthermore, the South African
government intended to further reduce benzene limits from 3 ppb to 1.5 ppb by 2016, with
no exceedances (above limits) permitted as VOC levels rise [19,23].

BTX have been monitored in South Africa in areas such as Vaal Triangle, Cape Town,
Johannesburg, Pretoria and Mpumalanga Highveld [30,31]. The passive sampling of BTX
was investigated and found to range between 8.83 to 39.62 µg/m3 in residential areas
around Roodepoort, South Africa [32]. Also, seven-day median personal BTX exposure was
collected using passive compact diffusive samplers [33]. Nonetheless, BTX levels have not
been assessed in the Steelpoort mining area. This research will contribute to assessing the
risk associated with BTX health effects for Steelpoort residents. Therefore, the aim of this
study was to assess the air quality of the mining area in Steelpoort, specifically the VOCs
such as benzene, toluene and xylene. The dataset contains concentrations of BTX from
January 2021 to December 2021. Passive sampling was used because it has proven to be a
methodology that fulfils the need for adopting inexpensive, simple and reliable methods
for air quality monitoring. Therefore, the aim of the study was to investigate the outdoor
concentrations of BTX by using Radiello® diffusive samplers. This study also uses the
interspecies ratio to get the potential emission sources and statistical tests on meteorological
factors affecting concentrations of BTX.



Atmosphere 2024, 15, 552 3 of 12

2. Materials and Methods
2.1. Study Area

Steelpoort is a mining area in Sekhukhune District Municipality in the Limpopo
province. The altitude ranges from 1500 to 2400 m above sea level. Mean annual rainfall
varies between 630 mm and 1000 mm, mainly in the form of summer thunderstorms.
The settlement has an estimated population of approximately 1105, 380 (122.09 per km2)
households and covers 3.11 km2. It is also surrounded by five villages within a radius
of ±10 km radius, namely Ga-Mahlokwane (3.8 km); Tukakgomo (3.8 km); Ga-Phasha
(3.8 km); Ga-Mampuru (8.4 km); and Stocking (9.4 km). Also, Steelpoort is surrounded
by eight mines, viz., Dwarsrivier Chrome; Tweefontein Chrome; Tubatse Ferrochrome;
Two Rivers Platinum; Modikwa Platinum; Mototolo Platinum Mine; Lion Ferrochrome
Smelter; and Marula Platinum (Pty) Ltd. as illustrated in Figure 1.
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Figure 1. Map of Limpopo showing sampling site, Steelpoort.

2.2. Sampling Method

Radiello passive sampling cartridges were deployed to collect the air samples during
a 7-day sampling session from January 2021 to December 2021. The samplers were placed
at Ga-Mapodile Library which is 10 km away and on the western side of the Steelpoort
mine. The sampling period was chosen because it represents varying seasonal climatic
conditions. BTX were sampled by Radiello® diffusive samplers (Code RAD 130). The Code
RAD130 cartridge has a very large loading capacity of about 80 mg. This corresponds to an
overall VOC concentration of 3000–3500 mg/m3 sampled for 8 h or 70,000–80,000 µg/m3

for 14 days [34]. The adsorbing cartridge consists of a stainless steel net cylinder with a
100 mesh grid opening and 5.8 mm diameter containing 530 ± 30 mg of activated charcoal,
which is enclosed in a white diffusive body. A mountable polypropylene shelter protected
the sampler from bad weather and direct sunlight. The samplers were placed 1.5 m above
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ground level at the sampling site. The samples were coded and transferred to the laboratory
in a cold box at 4 ◦C for further analysis.

2.3. Analyses of BTX by Gas Chromatography

The cartridges used during sampling were transferred into vials and first fortified with
100 µL of 1-chlorooctane solution (internal standard with concentration of 10 µg/mL), then
2 mL carbon disulphide was added and the vials were immediately sealed with a septum
cap. The samples were shaken for 30 min at room temperature, then 5 µL of the extract were
analysed by GC-FID as outlined below. All samples were analysed on 7890A/5975C Triple-
Axis Detector diffusion pump-based (Agilent, Santa Clara, CA, USA) GC-MS equipped
with a split/splitless inlet. A 60 m × 0.25 mm HP-INNOWax (Agilent, USA) column with a
film thickness of 0.25 µm was used for the separation of BTX. The constant flow of helium
in the column was 1 mL/min. Temperatures of ion source, quadrupole and MS interface
were 230, 150 and 250 ◦C, respectively. The thermal desorption of analytes from SPME
fibre in GC injector was done in spitless mode at 250 ◦C using a 0.75 mm in diameter liner
(Supelco, Bellefonte, PA, USA). Oven temperature was programmed from an initial 40 ◦C
(held for 3 min) to 150 ◦C (held for 1.5 min) at the heating rate of 20 ◦C/min. As shown
in Figure 2, the GC column separated BTX in different retention times, such as 11.49 min
for benzene, 16,614 min for toluene and 22.7 to 24.02 min for xylene. It can be seen that
xylene split into three distinct peaks at 22.7, 23.41 and 24.02 min (retention time), which are
attributed to m-xylene, p-xylene and o-xylene, respectively. The peak around 28.416 min
can be attributed to ethylbenzene. Detection was carried out in selected ion monitoring
mode t m/z 78, 91 and 106 for the selective detection and quantification of the four BTX
constituents, respectively. The total run time of the analysis was 10 min. The identification
of compounds was carried out by comparing the characteristics peaks of the eluted sample
with those of authentic analyte standards and GC retention times. The sample and the
blanks were injected twice and the mean values were reported.
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The mean concentration C (µg/m3) of a specific BTX during the exposure time t is
calculated using the following Equation (1)

C = m/Q·t × 106 (1)

where m (µg) is the amount of analytes adsorbed on the cartridge, Q (mL/min) is the
uptake rate at 298 K and t (min) is the sampling period. The Q values are given by the
Radiello manual; at the normal conditions as defined by EC directives at T = 293 and
P = 101.3 kPa, the Q values are 80 mL/min for benzene, 74 mL/min for toluene, 68 mL/min
for ethylbenzene, 70 mL/min for (m + p)-xylenes and 68 mL/min for o-xylene.
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Since the temperature and pressure were different from the normal conditions, the Q
values were corrected using Equation (2):

QT = Q298(T/298)1.5 (2)

where QT is the sampling rate at the temperature T, and Q298 is the Q value at the normal
condition. The relative humidity between 15% and 90%, as well as wind speeds between
0.1 and 10 m/s, have no influence on sampling rates.

2.4. Quality Assurance and Quality Control

All of the chemicals used during the preparation, extraction and analysis of the samples
were analytical and chromatographic grade. The 1-chlorooctane solution used as the internal
standard and carbon disulphide (Reagent Plus, redistilled, ≥99.9%, low benzene) used for
the extraction of samples were purchased from Sigma-Aldrich (Sigma-Aldrich, Steinheim,
Germany). Radiello® diffusive samplers (Code RAD 130) were purchased from Merck.
Laboratory and field blanks were analysed to check for any contamination during sample
handling and analysis. BTX concentrations detected in the laboratory blanks were found
to be below the detection limit of the instrument. On the other hand, trace levels of BTX
were measured in the field blanks and they were subtracted from the sample concentrations.
Recoveries of the BTX the diffusive samplers were determined according to the instructions
from the Radiello manual. To determine the method’s detection limit, blank samples were also
transferred to the field together with other samplers and were kept close during the sampling
period. After that, they were brought to the laboratory and analysed the same way as the
other samples. Method detection limits were calculated by using analyte amounts in the field
blanks corresponding to a signal-to-noise ratio. Calibration curves were developed using six
points based on standard solutions ranging from 1 to 60 ppm. The results showed that the
coefficients of determination (R2) for BTEX contaminants were as follows using the calibration
curves: 0.998 for benzene, 0.997 for toluene and 0.998 for xylenes.

2.5. Statistical Analyses of Data

The statistical test of meteorological factors on BTX concentrations included temper-
ature (T, ◦C), relative humidity (RH, %), wind speed (WS, m/s) and solar radiation (SR).
The effect of these factors on BTX concentrations were analysed statistically with the SPSS
program (Version 29.00) on a personal computer. The relationships between the BTX concen-
trations and the meteorological factors were tested with a multiple linear regression (MLR)
model and were fitted simultaneously to Equation (3). Regression coefficients deduced
from MLR analysis were statistically significant if p ≤ 0.05.

A = C + β1x1 + β2x2 + β3x3+ β4x4 (3)

where A is the dependent variable (BTX), C is the constant of regression, β is a regression
coefficient and x1 through x4 are the independent variables x1 (temperature, T, ◦C), x2
(wind speed, WS, m/s), x3 (relative humidity, RH, %) and x4 (solar radiation, SR). Also,
Pearson correlation analysis was applied to all data collected to assess the relationship
between BTX and meteorological factors.

3. Results and Discussion
3.1. Benzene, Toluene and Xylene Concentrations

The concentrations for BTX compounds are shown in Figure 3. The results indicated
that the predominant BTX compound was toluene, which had the highest concentrations
throughout the year compared to other VOCs, with an annual average of 1.48 µg/m3. This
finding is in agreement with the results of other studies where toluene was the dominant
VOC among BTX compounds in the ambient air [18,35]. The main reason for higher toluene
concentrations is that it is usually added to gasoline to enhance octane number and improve
fuel efficiency [36]. Toluene was followed by xylene (0.64 µg/m3) and benzene (0.61 µg/m3).
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Figure 3. Concentrations of BTX in Steelpoort.

The highest concentrations of toluene and xylene were observed in winter (June–August),
whereas the benzene level was high in late winter and early spring (September). This is due
to the increased emissions from heating devices as well as emissions from vehicle traffic.
It has also been reported that a lower average ambient temperature aids the accumulation
of pollutants in the atmosphere, due to the limited movement of air masses in the vertical
plane [37]. The results are in agreement with those obtained by other studies in which toluene
was reported to have the highest concentrations of BTX [38–40]. For example, the values
of benzene, toluene and m,p-xylene reported by [40] are 598.34 µg/m3, 1054.32 µg/m3 and
1076.29 µg/m3, respectively. The concentrations of benzene and toluene were lower than the
world governing bodies’ annual exposure limits, which are 5µg/m3 (annually) and 260µg/m3

(weekly) for benzene and toluene, respectively. The Limpopo provincial government of South
Africa has monitoring programs for BTX, but the monitoring stations are poorly serviced.

Steelpoort is cold in winter and temperature inversions are more common during
this season [41]. A temperature inversion occurs when a layer of warm air traps cooler
air near the surface. This stable atmospheric condition can prevent vertical mixing of the
air and pollutants, leading to the accumulation of pollutants, including benzene, toluene
and xylene, at ground level [42,43]. With limited dispersion, pollutants are trapped near
the surface, resulting in higher concentrations. The minimal values of benzene, toluene
and xylene were observed during summertime. Benzene and toluene are known to be
sensitive to photochemical reactions, therefore an increase in temperature causes their
concentrations to be low [44]. The South African summer is usually a rainy season and rain
with other forms of precipitation can help remove these compounds from the atmosphere by
washing them out of the air [45,46]. This process, known as wet deposition, can temporarily
reduce pollutant levels. There is also a lot of traffic in the area due to the transportation of
minerals which introduces a lot of pollution from the vehicles. About 3% of the Steelpoort
population [47] depends on coal for cooking and this influences the concentrations of VOCs.
Therefore, the high concentrations of toluene were mainly attributed to the combustion of
fossil fuel (e.g., domestic coal) for heating during the winter. This observation agreed with
research reported in rural regions where BTX was mainly attributed to the combustion of
fossil fuel (e.g., domestic coal) for heating during the winter [48].
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3.2. Interspecies Ratios among BTX

Interspecies ratios were used to identify the potential emission sources of BTX [22,47].
Table 1 shows the BTX interspecies ratios under study. Since Steelpoort is a mining area and
a lot of heavy vehicles are used to transport minerals, BTX interspecies ratios were used to
identify these VOC sources. Interspecies ratios are affected by BTX source, BTX degradation
rates, distance from the source and meteorological factors such as solar radiation, temperature,
wind speed, wind direction and relative humidity. Therefore, T/B ratios between two and
three indicate mobile sources, while values between three and four indicate that the sampling
may be under the influence of mobile and evaporative sources. Values greater than four
indicate point sources of BTX or industrial regions. The T/B ratios between two and three,
indicate gasoline as a source of the VOCs. Furthermore, the ratio of 4.6 between benzene
and toluene in winter shows that they are emitted from other sources such as industrial
processes and vehicular emissions [49]. In this study, the calculated T/B ratio range from
1.3 to 4.6 for outdoor BTX concentrations confirms traffic as the emission source. This range
was comparable to those measured in southern Taiwan [3]. Also, the T/X ratios are above
a value of one, indicating that the vehicles are the source of emission. The X/B ratios range
between 0.56 and 1.96, and these low X/B ratios indicate that the air mass in the study
area is photochemically aged. For example, it could be aged via reactions with hydroxyl
radicals. Benzene has a relatively low reactivity as compared with xylenes. Hydroxyl radicals
are extremely short-lived species and play the key role as the chemical scavengers of the
atmosphere in cleansing the earth’s atmosphere of harmful organic pollutants [48]. Also, the
small X/B ratio was reported for xylenes stemming from transport [27,49].

Table 1. Interspecies ratios of toluene/benzene (T/B), toluene/xylene (T/X) and xylene/benzene
(X/B).

Month T/B T/X X/B

January 2.6 2.3 1.2

February 3.1 2.3 1.9

March 1.6 3.2 0.52

April 1.4 2.5 0.56

May 1.4 1.2 1.1

June 3.2 4.9 0.66

July 4.6 4.2 1.1

August 3.6 3.1 1.2

September 2.1 1.6 1.3

October 1.3 1.1 1.2

November 2.0 1.8 1.1

December 2.5 2.2 1.2

3.3. Multiple Linear Regression Data

To estimate how the BTX concentrations depend on meteorological factors an MLR
was performed. The dependent variables (A) were the BTX mass concentrations, whereas
the independent variables were temperature (β1), wind speed (β2), relative humidity (β3)
and solar radiation (β4). The backward elimination of MLR analysis was applied to filter
the independent variables (criterion: probability of F to remove ≥0.10, with 95% confidence
interval). The MLR coefficients of BTX concentrations with respect to meteorological pa-
rameters are illustrated in Table 1. The initial models, derived from Equation (3) for BTX
are given by Equations (4)–(6).

AB = 0.844 − 0.003 T − 0.019 WS − 0.006 RH + 0.001 SR (4)

AT = 1.543 − 0.233 T + 1.900 WS + 0.041 RH − 0.001 SR (5)
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AX = 18.606 − 1.33 T + 15.593 WS + 0.749 RH − 0.178 SR (6)

AB = 0.857 − 0.005 RH (7)

AT = 3.368 − 0.088 T (8)

AX = 38.830 − 0.0125 SR (9)

where AB, AT and AX are the dependent variables benzene, toluene and xylene, respec-
tively. Meanwhile T is temperature, WS is wind speed, RH is relative humidity and SR is
solar radiation.

The strength of the relationships of meteorological parameters with BTX was mea-
sured by the size of β-values. For example, in Equation (4), the β-values for independent
variables are 0.003, 0.019, 0.006 and 0.001 for temperature, wind speed, relative humidity
and solar radiation, respectively. Equations (4) through (6) show that there were negative
correlations between the BTX concentrations with temperature. A negative correlation
between benzene and temperature, wind speed and relative humidity, as shown by Equa-
tion (4), was observed. A weak positive correlation (0.001) with solar radiation shows that
photochemical reactions are influencing the concentrations of benzene, although they are
low. A similar study has shown negative correlations between benzene and temperature
and wind speed [6]. Equation (5) shows that there are positive correlations of toluene with
wind speed (1.900) and relative humidity (0.041). As wind speed and relative humidity
increase, toluene concentrations increase. This means that the levels of toluene depend
on these meteorological factors. Also, there was a negative weak correlation (−0.001)
of toluene with solar radiation, which indicates that the toluene concentration does not
depend much on the solar radiation. There was a strong positive correlation of xylene with
wind speed (15.593) and moderate relative humidity (0.749). Additionally, there was mod-
erate positive correlation with solar radiation (0.178) and strong negative correlation with
temperature (1.33). A strong correlation for xylene and wind speed indicates the difference
in the relationship with meteorological factors as compared to benzene and toluene. The
correlative coefficients (R) in Table 2 were between 0.519 and 0.718 for the initial and final
models of BTX, which show that the positive linear correlations were moderately significant
between the dependent variables and independent variables. Final Equations (7)–(9) show
variability related to relative humidity, temperature and solar radiation for benzene, toluene
and xylene, respectively. Figure 4 shows the scatter plots for the relationship between BTX
and meteorological parameters to support the r2 shown in Table 2. The MLR models were
significant, with r2 values of between 0.269 and 0.640. For toluene, the model explained
52% of the variability in the initial model and 64% of the variability in the final model.
For benzene, the model explained 41% of the variability in the initial model and 36% of
the variability in the final model. However, for xylene, the model explained 38% of the
variability in the initial model and 27% of the variability in the final model.

Table 2. Regression coefficients of BTX mass concentrations in Steelpoort.

Model B T X

V β p-Value β p-Value β p-Value

1 C 0.0844 0.003 1.543 0.368 18.606 0.552

Temp −0.003 0.814 −0.223 0.047 −1.331 0.465

WS −0.019 0.894 1.900 0.148 15.593 0.496

RH −0.006 0.244 0.041 0.317 0.749 0.329

SR 0.001 0.485 −0.001 0.907 −0.178 0.217

R 0.642 0.718 0.619

r2 0.413 0.516 0.383
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Table 2. Cont.

Model B T X

2 C 0.826 <0.001 1.561 0.327 32.799 0.167

Temp −0.004 0.600 −0.224 0.032 −0.419 0.720

WS (-) 1.838 0.099 (-)

RH −0.005 0.062 0.039 0.224 0.328 0.430

SR 0.001 0.445 (-) −0.137 0.266

R 0.641 0.718 0.581

r2 0.411 0.515 0.338

3 C 0.816 <0.001 3.156 0.007 31.744 0.153

Temp (-) −0.132 0.036 (-)

WS (-) 0.832 0.231 (-)

RH −0.005 0.0051 (-) 0.329 0.403

SR 0.000 0.555 (-) −0.165 0.070

R 0.624 0.640 0.572

r2 0.389 0.410 0.327

4 C 0.857 <0.001 3.368 0.004 38.830 0.061

Temp (-) −0.088 0.064 (-)

RH −0.005 0.038 (-) (-)

SR (-) (-) −0.125 0.084

R 0.603 0.549 0.519

r2 0.364 0.302 0.269

Note: V, variable; B, benzene; T, toluene; X, xylene; C, constant; Temp, temperature; WS, wind speed; RH, relative
humidity; SR, solar radiation; (-), eliminated; R, correlative coefficients.

Atmosphere 2024, 15, x FOR PEER REVIEW  10  of  13 
 

 

 
 

 

Figure 4. Scatter plots of the relationship between BTX concentrations and meteorological factors. 

3.4. Study Limitations 

This study had some  limitations, which  included surveying the ambient air pollu-

tants (BTX) in one residential area in Steelpoort. This was done because the DEFF moni-

toring station is housed in that area. Furthermore, there was a reliance on the SAAQIS for 

obtaining data on meteorological parameters. However, the benefit of obtaining data from 

SAAQIS was that the meteorological data was made available at any time. Section 4 pre-

sents the conclusions of the study. 

4. Conclusions 

The ambient concentrations and possible sources of BTX in Steelpoort are reported 

in this study. The effects of meteorological parameters on VOCs were also investigated. 

Among the BTX concentrations investigated, toluene was found to be the most dominant 

of all VOCs. The highest concentrations of benzene and toluene were observed in winter, 

whereas the xylene level was high during spring. The minimum values of BTX were ob-

served during summertime due to the South African summer, which is usually a rainy 

season. Rain with other forms of precipitation helps remove these compounds from the 

atmosphere by washing them out of the air. The T/B ratios indicated that VOCs are emit-

ted from sources such as industrial processes and vehicular emissions. Statistical models 

showed both positive and negative correlations of BTX with varying weather conditions. 

The MLR data show that benzene had a weak negative correlation with temperature, wind 

speed and relative humidity. A positive correlation of toluene with wind speed and rela-

tive humidity shows the dependence on these meteorological parameters. Xylene showed 

a strong correlation with all meteorological parameters, which indicates that it has a dif-

ferent relationship with these factors as compared to benzene and toluene. 

This study shows the need for the implementation of effective actions for controlling 

industrial and vehicular emissions  in  the Steelpoort mining area, and  for  the Limpopo 

14 16 18 20 22 24 26

0.5

1.0

1.5

2.0

2.5

3.0

 Benzene
 Xylene
 Toluene

C
on

ce
nt

ra
tio

n
 (

µ
g/

m
3
)

Temperature (°C) 1.0 1.2 1.4 1.6 1.8 2.0

0.5

1.0

1.5

2.0

2.5

3.0

 Benzene
 Xylene
 Toluene

C
o

n
ce

nt
ra

tio
n 

(µ
g/

m
3
)

Wind Speed (m/s)

45 50 55 60 65 70 75 80 85

0.5

1.0

1.5

2.0

2.5

3.0

 Benzene
 Xylene
 Toluene

C
on

ce
nt

ra
tio

n 
(µ

g/
m

3
)

Relative Humidity (%)
200 220 240 260 280 300 320 340 360

0.5

1.0

1.5

2.0

2.5

3.0

C
o

n
ce

n
tr

a
tio

n
 (

µ
g/

m
3 )

Solar Radiation (Watt/m2)

 Benzene
 Toluene
 Xylene

Figure 4. Scatter plots of the relationship between BTX concentrations and meteorological factors.
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3.4. Study Limitations

This study had some limitations, which included surveying the ambient air pollutants
(BTX) in one residential area in Steelpoort. This was done because the DEFF monitoring
station is housed in that area. Furthermore, there was a reliance on the SAAQIS for
obtaining data on meteorological parameters. However, the benefit of obtaining data
from SAAQIS was that the meteorological data was made available at any time. Section 4
presents the conclusions of the study.

4. Conclusions

The ambient concentrations and possible sources of BTX in Steelpoort are reported
in this study. The effects of meteorological parameters on VOCs were also investigated.
Among the BTX concentrations investigated, toluene was found to be the most dominant
of all VOCs. The highest concentrations of benzene and toluene were observed in winter,
whereas the xylene level was high during spring. The minimum values of BTX were
observed during summertime due to the South African summer, which is usually a rainy
season. Rain with other forms of precipitation helps remove these compounds from the
atmosphere by washing them out of the air. The T/B ratios indicated that VOCs are emitted
from sources such as industrial processes and vehicular emissions. Statistical models
showed both positive and negative correlations of BTX with varying weather conditions.
The MLR data show that benzene had a weak negative correlation with temperature, wind
speed and relative humidity. A positive correlation of toluene with wind speed and relative
humidity shows the dependence on these meteorological parameters. Xylene showed a
strong correlation with all meteorological parameters, which indicates that it has a different
relationship with these factors as compared to benzene and toluene.

This study shows the need for the implementation of effective actions for controlling
industrial and vehicular emissions in the Steelpoort mining area, and for the Limpopo
provincial government to make sure air quality standards, as stipulated in the act, are
followed, especially for benzene, which is considered carcinogenic to humans. Also, this
study is important to the assessment of the technological impacts as well as the maintenance
routines of monitoring stations to monitor the industrial and vehicular emissions.
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