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Abstract: The energy inside the Earth can not only be released outward through earthquakes and
volcanoes but also can be used by humans in the form of geothermal energy. Is there a correlation
between different forms of energy release? In this contribution, we perform detailed seismic and
geothermal research in the Beijing area. The results show that the geothermal resources in Beijing
belong to typical medium-low temperature geothermal resources of the sedimentary basin, and some
areas are controlled by deep fault activities (e.g., Xiji geothermal well (No. 17)). The heat sources
are upper mantle heat, radioactive heat in granite, and residual heat from magma cooling. The
high overlap of earthquakes and geothermal field locations and the positive correlation between the
injection water and earthquakes indicate that the exploitation and injection water will promote the
release of the earth’s energy. The energy releases are partitioned into multiple microearthquakes,
avoiding damaging earthquakes (ML ≥ 5) due to excessive energy accumulation. Therefore, the
exploitation of geothermal resources may be one way to reduce destructive earthquakes. Furthermore,
the use of geothermal resources can also reduce the burning of fossil energy, which is of great
significance in dealing with global warming.

Keywords: geothermal; earthquake forecasting; global warming; hot spring; Beijing; Zhangjiakou-
Bohai fault

1. Introduction

The interior of the earth is filled with energy, which originates from the magma and
the decay of radioactive materials. The energy can be released into the shallow surface
or atmosphere in various ways. They can be fierce and destructive, like earthquakes and
volcanoes, or relatively gentle, like hot springs. The difference is that earthquakes and
volcanoes represent disasters, while hot springs are clean energy that can be used by
humans. It is worth noting that they all originate from the release of energy inside the
Earth. Is there a correlation between the different forms of energy release?

Unlike earthquakes and volcanoes, geothermal resources can be used by humans in a
gentle way. Geothermal resources are considered one of the ways to combat global warm-
ing. The exploitation of geothermal resources has always been the focus of attention [1–11].
According to statistics, the geothermal energy reserves in the upper crust (3–10 km) are
1.3 × 1027 J. In the World Energy Association’s “Energy and Sustainability Challenges”
report published in 2000, geothermal energy ranked first among all renewable energy
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sources [12]. However, induced earthquakes have been observed at various production
stages of geothermal energy extraction, including initial injection of geothermal working
fluid during stimulation, withdrawal of working fluid from geothermal reservoirs, rein-
jection of working fluid after heat extraction, and post-well closure [13]. Along with the
disturbance of the crustal stress state, some exploitation projects have induced sizable
earthquakes, even causing significant disasters and social problems [14–19]. For example,
Soultz-Sous-Forêts in France [20], Basel in Switzerland [21], and Pohang in South Korea [22].
Therefore, exploring the mechanism of earthquakes induced by geothermal energy mining
has been a hot topic in the world.

Efforts have long been made to mitigate or even eliminate induced earthquakes,
whether from geothermal or oil and gas extraction. Induced seismicity is often perceived
as an unsolicited and uncontrollable side effect of geothermal development [16,23–31]. But
in fact, in most cases of induced seismicity, many events usually have magnitudes smaller
than ML = 3 and hence without economic consequences [15,32]. Seismicity triggered by
fluid injection-induced earthquakes are still natural earthquakes, and their energy still
comes from the Earth itself. Therefore, we put forward a conjecture: the total amount
of Earth’s energy is fixed, and earthquakes and geothermal are different forms of energy
release. Is it possible to reduce the energy released by earthquakes by increasing the energy
released by geothermal development?

To test the assumption, we choose the Beijing area for seismic and geothermal research.
There are abundant geothermal resources in the Beijing area. Statistically, from 1971 to 2013,
the total amount of geothermal resources exploitation quantity in Beijing is 2.87 × 108 m3,
and the injection water is 3.02 × 107 m3 (Data from Beijing Geological Archive). In addition,
there is a complete seismic network in the Beijing area, with detailed records of earthquakes
(ML ≥ 1) since 1970. Therefore, Beijing is a natural laboratory for studying the relationship
between seismic activity and geothermal energy.

2. The Study Area

The North China Craton (NCC) is one of the ancient cratons in the world [33]. It is
bounded by the Central Asian orogenic belt in the north and the Qinling—Dabbe orogenic
belt in the south. The basement rocks of the NCC consist of biotite-hornblende gneisses
and Trondhjemite, Tonalite, Granodiorite (TTG) [34]. Overlying sedimentary layers with a
thickness of several thousand meters, mainly carbonate rocks and clastic rocks. During the
Yanshan tectonic period, the NCC experienced destruction and thinning, accompanied by
a series of volcanic tectonic processes [35–39].

Beijing is located in the northern margin of NCC, high in the northwest and low in
the southeast. Tectonic movement is active in the area [40]. The main faults include the
Yanqing Fault, Dahuicang Fault, Liangxiang Fault, and Zhangjiakou-Bohai Fault (Figure 1).
It is a seismic activity zone in eastern China. In history, there has been the ML7.8 Tangshan
earthquake (28 July 1978), the ML7.4 Bohai earthquake (18 July 1969), and the ML8.0
Shanhe-Pinggu earthquake (2 September 1679) [41].

Beijing area is enriched in geothermal resources [42]. At present, there are 10 geother-
mal fields: (1) Yanqing, (2) Xiaotangshan, (3) Houshayu, (4) Northwest district, (5) Tianzhu,
(6) Lisui, (7) Southeast district, (8) Shuangqiao, (9) Liangxiang and (10) Fengheying geother-
mal field (Figure 1) [43]. The total geothermal resources are about 9.94 × 1016 KJ, equivalent
to 3.39 × 109 t of standard coal (Data from Beijing Geological Archive).

The terrestrial heat flow in Beijing ranges from 16.45 to 383.97 mW/m2, with an average
value of 65.95 mW/m2. The geothermal gradient in the central area of the geothermal field is
more than 3.0 ◦C/100 m. In some areas (Figure 1b, 5: Tianzhu and 6: Lishui), the geothermal
gradient is more than 5 ◦C/100 m. The geothermal resources in Beijing belong to the medium
and low-temperature hot water, and the temperature range is 25.0–118.5 ◦C. The geothermal
water is Na-HCO3·SO4 type water with a salinity between 500 and 700 mg/L, with a high
content of F and SiO2, containing a small amount of trace elements, which is used for medical
treatment and health care.
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Figure 1. (a) A simple map of China. (b) Schematic map showing the distribution of geothermal 
fields and location of sampling points in the Beijing area, modified after Liu et al. [43]. 1: Yanqing, 
2: Xiaotangshan, 3: Houshayu, 4: Northwest district, 5: Tianzhu, 6: Lishui, 7: Southeast district, 8: 
Shuangqiao, 9: Liangxiang and 10: Fengheying geothermal field. The size of the symbol of the earth-
quake label indicates the magnitude of the earthquake. 
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Beijing’s climate is a warm, temperate, semi-humid, semi-arid monsoon climate, with 
an average annual temperature of 9 to 19 °C and annual precipitation of 600 mm. The 
seasonal distribution of precipitation is very uneven, with 80% of the annual precipitation 
concentrated in summer. The natural rivers of Beijing run through five major river systems 
from west to east: the Juma River, the Yongding River, the Beiyun River, the Chaobai 
River, and the Jiyun River. Most of them originated from the northwest mountain, mean-
dered through the plain to the southeast, and finally merged into the Bohai Sea at the 
Haihe River. 

3. Sampling and Analytical Methods 
3.1. Geothermal Water Samples Collection and Analysis 

Twenty-six samples of water were collected in Beijing, including hot springs and ge-
othermal wells. All samples were analyzed for anions, cations, trace elements, hydrogen, 
and oxygen isotopes at the Beijing Institute of Geology of the Nuclear Industry. Detailed 
sample collection and testing methods can be found at Luo et al. [44]. In short, the waters 

Figure 1. (a) A simple map of China. (b) Schematic map showing the distribution of geothermal
fields and location of sampling points in the Beijing area, modified after Liu et al. [43]. 1: Yanqing,
2: Xiaotangshan, 3: Houshayu, 4: Northwest district, 5: Tianzhu, 6: Lishui, 7: Southeast district,
8: Shuangqiao, 9: Liangxiang and 10: Fengheying geothermal field. The size of the symbol of the
earthquake label indicates the magnitude of the earthquake.

Beijing’s climate is a warm, temperate, semi-humid, semi-arid monsoon climate, with
an average annual temperature of 9 to 19 ◦C and annual precipitation of 600 mm. The
seasonal distribution of precipitation is very uneven, with 80% of the annual precipitation
concentrated in summer. The natural rivers of Beijing run through five major river systems
from west to east: the Juma River, the Yongding River, the Beiyun River, the Chaobai River,
and the Jiyun River. Most of them originated from the northwest mountain, meandered
through the plain to the southeast, and finally merged into the Bohai Sea at the Haihe River.

3. Sampling and Analytical Methods
3.1. Geothermal Water Samples Collection and Analysis

Twenty-six samples of water were collected in Beijing, including hot springs and
geothermal wells. All samples were analyzed for anions, cations, trace elements, hydrogen,
and oxygen isotopes at the Beijing Institute of Geology of the Nuclear Industry. Detailed
sample collection and testing methods can be found at Luo et al. [44]. In short, the waters
were collected in a 50 mL clear polyethylene bottle, and the pH and temperature were
recorded. Two water samples need to be collected at each geothermal water sampling site,
one with ultrapure Nitric acid for cation analysis and the other for hydrogen and oxygen
isotopes and anion analysis. Each sample is filtered with a 0.45 µm filter membrane before
being tested. The cation and anion were analyzed by Dionex ICS-900 ion chromatograph
(Thermo Fisher Scientific Inc., Bremen, Germany), and SiO2 was analyzed by inductively
coupled plasma emission spectrometer Optima-5300 DV (PerkinElmer Inc., Waltham,
MA, USA). HCO3

− and CO3
2− was determined by acid-base titration with a ZDJ-100

potentiometric titrator. Trace elements were analyzed by Element XR ICP-MS. Multielement
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standard solutions (IV-ICPMS 71A, IV-ICP-MS 71B and IV-ICP-MS 71D, iNORGANIC
VENTURES) were used for quality control (the analytical error margin of major cations
and trace elements were less than 10%). MAT 253 was used to analyze hydrogen and
oxygen isotopes (reported as δD and δ18O relative to Vienna Standard Mean Ocean Water
(V-SMOW)).

3.2. Geothermal Gas Samples Collection and Analysis

Between April 2022 and April 2023, we collected geothermal gas samples five times at
the No. 17 geothermal well. 500 mL glass bottles were used to collect gas by drainage gas
collection method [44]. During transportation and storage, glass bottles are kept sealed to
prevent contamination by air. The chemical composition of geothermal gas samples was
measured using the Agilent Macro 490 portable gas chromatograph with a measurement
accuracy of better than 5%. He concentration in hot spring gas samples was analyzed
using the Noblesse noble gas isotope mass spectrometer by the Northwest Institute of
Eco-Environmental Resources, Chinese Academy of Sciences.

4. Results and Discussion
4.1. Hydrochemistry of Geothermal Waters

The physical properties and chemical and isotopic compositions of geothermal waters
are shown in Table S1. The temperature of water varies from 13 to 92 ◦C. In this study,
we divided the samples into three groups according to the sampling sites (Figure 2). The
first group of geothermal waters was distributed in the Beijing urban area, and the second
group of geothermal waters was collected in the Yanqing basin. In particular, we also
classified the geothermal water in group 3, which is similar to that in group 1 in terms of
collection location but obviously different from that in group 1 in terms of hydrochemical
characteristics. This will be discussed in detail below.
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Figure 2. Piper diagram of geothermal waters in Beijing. These waters are Na·Ca·Mg-HCO3, Na-SO4,

and Na-Cl types.

The δ18O and δD of waters of Beijing are −16.2‰ to −9.6‰ and −92.4‰ to −69.2‰ re-
spectively, which is close to the local meteoric water line (LMWL) of the Beijing δD = 7.0181
δ18O + 3.5231 (R2 = 0.86, n = 36) (Figure 3) [45], suggesting they originated in meteoric.
Group 2 is more enriched in light isotope composition than groups 1 and 3. The δ18O value
of a few waters went off the LMWL, indicating that the isotopic exchange of 18O occurs
during the water-rock reaction.
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From Figure 2 and Table S1, the geothermal waters are Na·Ca·Mg-HCO3 (group 1),
Na-SO4·HCO3 (groups 2) and Na-Cl·HCO3 (groups 3) types. Groups 2 have significantly
higher concentrations of Na+ (84.50–151 mg/L) but lower Ca2+ (3.16–46.90 mg/L) and Mg2+

(0.04–14.8 mg/L) than group 1(Na+ (5.41–135 mg/L), Ca2+ (19.20–57.50 mg/L) and Mg2+

(2.30–37.10 mg/L)), which may reflect the reaction between groundwater and silicate rocks
(Figure 4). It is consistent with the fact that group 2 waters are located in the granite thermal
reservoir of the Yanqing basin. Analogously, there were also differences between group 2 and
group 3. The anions of group 2 are HCO3

− (17.70–303 mg/L) and SO4
2− (29.70–177 mg/L),

while Group 3 contains more Cl− (225–325 mg/L) and HCO3
− (648–1022 mg/L). In the

Paleogene period, the gypsum salt layer was widely distributed in the North China Plain [46].
The elevated concentration of SO4

2− could be caused by the dissolution of sulfate minerals,
such as anhydrite (CaSO4) and mirabilite (Na2SO4). In addition, the high concentrations of Cl−

in geothermal water probably originated from brine or the mixing with a deep fluid [44,47,48].
However, in the Beijing area, the brine has almost no effect on Cl−. Because group 3 is well
water located near the fault zone. The depth of 3588 m has exceeded the thickness of the
sedimentary and reached the top of the magmatic batholith. Moreover, the Cl− versus Na+

also indicates that the fluid is non-brined (Figure 5). Therefore, deep Cl−-rich magmatic fluids
rise along faults and then mix with groundwater to form group 3 of geothermal waters with
high Cl− concentration.
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terized by the reaction of carbonate rock with water, while groups 2 and 3 are characterized by the
reaction of silicate rock with water.
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Figure 5. Na+ versus Cl− for Beijing area geothermal waters.

The sedimentary layer in the North China Plain is several thousand meters high,
including carbonate and clastic rocks, which well explains the high Ca2+ and Mg2+ con-
centrations in group 1 (Table S1) [42,43,46]. Relatively, the sedimentary layer in the granite
thermal reservoir of the Yanqing basin is thinner, and the Ca2+ and Mg2+ concentrations in
group 2 are lower. It can be seen from Figure 4 that the weathering characteristics of the
silicate rocks of group 2 geothermal waters are significantly greater than those of group 1.
Rubidium (Rb) occurs preferentially in K-containing minerals, while Strontium (Sr) occurs
preferentially in Ca-containing minerals, and Nickel (Ni) is an extremely compatible ele-
ment. Using Ni as the regional background value to normalize Rb and Sr, the source of ions
in geothermal water can be distinguished. As can be seen from Figure 4, groups 2 and 3 are
characterized by the reaction of silicate rocks with water, while group 1 is characterized by
the reaction of carbonate rocks with water.

Carbonate rocks, including limestone and dolomite, can be further distinguished by
the variation of Ca2+ and Mg2+ content. The Mg2+/Ca2+ molar ratio of the geothermal water
in the dolomite area is near one, while it is much lower than one in the limestone area [50].
Meanwhile, the Na+/Ca2+ molar ratio can distinguish the carbonate rock and silicate rock
area. As shown in Figure 6, the geothermal water in Beijing mainly comes from dolomite
and silicate rock, or a mixture of them, with almost no contribution from limestone.
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4.2. Characteristics of Heat Reservoir

The geothermal resources in Beijing belong to typical medium-low temperature
geothermal resources of the sedimentary basin. The temperature varied from 25.0 to
118.5 ◦C, and the heat reservoirs are carbonate rocks [42]. The good thermal conductivity
of carbonate rock results in a geothermal gradient in the study area (3–3.5 ◦C/100 m). All
geothermal waters are plotted in the immature water field or partially equilibrated or mixed
water (Figure S1). Therefore, pay attention to the applicability of the geothermometer when
selecting the temperature scale. Previous studies have shown that the accuracy of the
Na-Li geothermometer is higher than that of other thermometers in the carbonate rock
region [44,51]. Therefore, the heat storage temperature of geothermal water in the study
area was estimated by Na-Li geothermometer, and the results are shown in Table S2. Fur-
thermore, quartz thermometers are also used as a reference [52]. The reservoir temperature
and circulation depths of geothermal waters in the Beijing area calculated based on Na-Li
and SiO2 geothermometers are 65–240 ◦C and 1592–6597 m, respectively [44].

4.3. Origin of High He, H2, and CH4 Concentrations in Geothermal Gases

Yang et al. [40] observed that the No. 17 geothermal well has high concentrations of
H2 (330 ppm), He (5993 ppm), and CH4 (volume ratio = 27.6%), and indicated that it may
contain important information. Therefore, we have made a more in-depth study of No. 17
geothermal wells. Five samples were collected from the No. 17 geothermal well from April
2022 to April 2023. The chemical compositions of the geothermal gas samples are shown in
Table S3 and Figure 7. N2 and CH4 account for more than 93% of No. 17 geothermal wells.
He concentration (4243–6049 ppm) is significantly higher than other geothermal gases in
the Beijing area (150–1851 ppm). What is the genesis of these high abnormal concentrations
of these gas components? We will discuss this in detail below.
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4.3.1. He

As discussed earlier, the No. 17 geothermal water belongs to Group 3 and has a high
Cl− concentration, which probably reflects the intensity of deep fluid activity. Helium is
also a geochemical indicator of tectonic activity and earthquakes. Both tectonic activity and
earthquakes release large amounts of He [44,53]. However, He suddenly descends into No.
17 geothermal water in response to a significant earthquake, which is different from the
traditional understanding [54]. In fact, even if the He concentration was reduced from 6049
ppm to 4243 ppm, the He concentration at the No. 17 geothermal water was still much
higher than that of other geothermal water in the Beijing area. The reason for the decrease
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in He concentration before the earthquake may be that the faulting activity leads to the
mixing of more air, diluting He in the geothermal gas. Therefore, the high He concentration
of No. 17 geothermal gas should originate from deep fluid activity.

4.3.2. CH4

Most of the world’s methane is biotic CH4, which is produced either by microbial
processes or by thermogenic degradation of organic matter in sedimentary rocks [55,56].
However, there is another origin of CH4, called abiotic CH4. It can formed by chemical
reactions that do not directly include organic matter [57–64]. Abiotic CH4 is extremely
important in a wide range of scientific fields, including the origin of life, hydrocarbon
synthesis, astrobiology, and planetary exploration [56].

During the Paleogene, oil shales were widely distributed in the Beijing area [46]. Does
the high concentration of CH4 in No. 17 geothermal gas originate from the thermogenic
degradation of oil shales? Yes, but not entirely! Because well No. 17 had already cut through
the sediment (3588 m, Table S1), and both Cl− and He indicate that No. 17 geothermal
is polluted by deep fluid. In addition, deep tectono-magmatic activity, magma cooling,
and gas-water-rock reactions can produce abiotic CH4 [56]. Hence, the gas of the No. 17
geothermal well should be coming from deeper and contain abiotic CH4. Although the
δ13CH4 of No. 17 is −36.4 [40], which shows the characteristics of biotic CH4 [56], it may
be a mixed value. The mixture of abiotic CH4 from deep and biotic CH4 released by
thermogenic degradation of oil shales formed geothermal gas No. 17.

What is the genesis of abiotic CH4 in geothermal gas No. 17? We propose that there
are three ways:

(1) Carbonate reacts with water in the presence of Fe (500–1500 ◦C) [56]:

8FeO + CaCO3 + 2H2O = 4Fe2O3 + CH4 + CaO (1)

(2) CO2 evolution to CH4 during magma cooling (<500 ◦C) [56]:

CO2 + 2H2O = CH4 + O2 (2)

(3) The Sabatier reaction (25–500 ◦C) [56]:

CO2 + 4H2 = CH4 + 2H2O (3)

The sedimentary layer in the NCC is several thousand meters high, including carbon-
ate and clastic rocks, which can provide sufficient CaCO3 for (1). The (2) benefits from
magmatic rocks produced by extensive Yanshanian magmatic activity [35,36,39]. The high
concentration of H2 and CO2 in the geothermal gas of No. 17 provided the conditions
for (3).

4.3.3. H2

A large number of experiments and natural observations have shown that hydrogen
can be produced by faulting movements [54,65–69]. The origin of H2 is usually attributed
to a chemical reaction between crushed silicate minerals and water (e.g., serpentinization
produces molecular hydrogen (4)) [67,70], which enables H2 to reflect the activity of the
fault to a certain extent [40,54,71].

(Mg, Fe)2SiO2 + H2O → Mg2Si2O5(OH)4 + Fe3O4 + H2 (4)

Olivine + fluid→serpentine + magnetite + hydrogen

Hydrogen content varies greatly in No. 17 geothermal gas. In particular, in the 3
February 2023 sample, a concentration of 17,426 ppm of H2 was recorded, which probably
reflects a precursory pulse of seismic activity (Figure 7). Sure enough, on 12 February 2023,
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the ninth day after the signal was detected, 11 earthquakes were detected in the same place;
the maximum magnitude was ML3.4, at a maximum depth of 14 km (Table S4).

Beijing area is located on the northern margin of NCC. During the Yanshan tectonic
period, the NCC experienced destruction and thinning under the influence of Pacific
subduction [33,35,36,39]. The resulting magmatic rocks and fault zones provide the material
sources and ascending channels for hydrogen generation. The hydrogen production is
controlled by the activity of the fault zone. Therefore, the H2 concentration in No. 17
geothermal gas can be used for monitoring fault activity and earthquake warnings.

4.4. Geothermal Water Cycle Model and Genesis of Geothermal Field

As discussed above, the geothermal water in the Beijing area can be divided into three
groups. Group 1 is located in the sedimentary area, dominated by Na·Ca·Mg-HCO3, and
group 2 is located in the silicate rock area, dominated by Na-SO4·HCO3. In particular,
although group 3 is located in the sedimentary area, the depth of 3588 m has exceeded the
thickness of the sedimentary and reached the top of the magmatic rock batholith, so that
group 3 has the characteristics of deep fluid with high Cl−, He, H2 and CH4. Combined
with geochemical and isotopic composition, we propose that the geothermal water in the
Beijing area originated from atmospheric precipitation. The precipitation flows into the
ground along the fault and reacts with the surrounding rock while being heated. Eventually,
they go up well along the fault to form hot springs (Figure 8). The geothermal resources in
Beijing belong to typical medium-low temperature geothermal resources of the sedimentary
basin, and some areas are controlled by deep fault activity (e.g., Xiji geothermal well (No.
17)). The heat sources are upper mantle heat, radioactive heat in granite and magmatic
cooling residual heat. The heat reservoir is carbonate rock.
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Figure 8. The water cycle model of the geothermal waters and gases in the Beijing area. The
geothermal water in the Beijing area originated from atmospheric precipitation. The precipitation
flows into the ground along the fault and reacts with the surrounding rock while being heated.
Eventually, upwell along the fault to form hot springs.

4.5. The Promotion of Geothermal Resources to Promote the Earth’s Energy Release

The way the earth releases energy can be geothermal energy or earthquakes. A
large number of studies on oil and gas extraction, wastewater treatment, and geothermal
exploitation have shown that fluids can promote seismic activity [14,15,17,23–32]. The
geothermal development in the Beijing area includes the extraction and injection of water.
So, what is the relationship between geothermal fluid activity and earthquakes?
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We have been collecting earthquake records in the Beijing area since 1970. Considering
that earthquakes with smaller magnitudes may not have been recorded due to insufficient
coverage area of the seismic network in the early stage, we only conducted statistics on
earthquakes with magnitudes above ML 2, and the results are shown in Figure 9. The
earthquakes are distributed near the Zhangjiakou-Bohai fault zone, which is similar to
the geothermal field (Figure 1). The magnitude is mainly 2–4, while earthquakes above
4 are rare (Figure 9). Since 1970, the number of earthquakes in Beijing has shown a slow
upward tendency, but the total amount of energy released by earthquakes has not in-
creased significantly (Figure 10). This reflects the fact that in the absence of a significant
change in fault activity, the rise in the number of earthquakes results in less energy be-
ing released each time, i.e., a smaller magnitude. In fact, since 2013, the fault activity
in the Beijing area has been weakening [41]. Exploitation of geothermal resources, on
the other hand, has steadily increased. Statistically, from 1971 to 2013, the total amount
of geothermal resources developed in Beijing was 2.87 × 108 m3, and the injection wa-
ter was 3.02 × 107 m3. Subsequently, the annual production has been maintained at
600–800 × 104 m3/y (Figure 10).
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Figure 9. Earthquake records from 1970 in the Beijing area. The triangle shows the distribution of
seismic stations, and their locations are from the China Earthquake Administration.

Significantly, the high overlap of the earthquake and geothermal field location and
the positive correlation between injection water and earthquakes indicates that geothermal
resource development will promote the occurrence of earthquakes (Figures 9, 10 and S2).
The extraction and injection of water change the fluid pressure of the geothermal water,
which leads to a change in rock stress, releasing its elastic potential energy and triggering
earthquakes [24,26]. Due to the continuous exploitation of geothermal water, the elastic
potential energy of the rock cannot be accumulated excessively, which effectively reduces
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the occurrence of destructive earthquakes. Therefore, we can reduce the occurrence of
destructive earthquakes by rational use of geothermal resources.
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5. Conclusions and Outlook

In this contribution, we perform a detailed elemental and isotopic analysis of geother-
mal waters and gases collected from the Beijing area. By integrating geochemical results of
geothermal waters and gases, we propose that the geothermal resources in Beijing belong
to typical medium-low temperature geothermal resources of the sedimentary basin, and
some areas are controlled by deep fault activity (e.g., Xiji geothermal well (No. 17)).

The H2 and CH4 in the geothermal water/gas of the No. 17 geothermal well are sensi-
tive to deep structural activities. By monitoring the elements and isotopes of geothermal
well No. 17, the deep fluid activities can be reflected and thus forewarn earthquakes.

The extraction and injection of water will promote the release of Earth’s energy. The
energy is differentiated into multiple releases and avoids the excess accumulation of one-
time energy, resulting in damaging earthquakes (ML ≥ 5). On the one hand, the exploitation
of geothermal resources may be one way to reduce destructive earthquakes; on the other
hand, the utilization of geothermal resources can reduce the consumption of fossil energy,
which is of great significance for tackling global warming.

We propose that the exploitation of geothermal resources may be one of the means
to reduce destructive earthquakes. However, given the complex thermal structure of the
Earth’s crust, the conversion mechanism between geothermal and seismic energy release is
not known. Geothermal water links to earthquakes and to earthquake stress release are not
established (no physical robust, statistical, or quantitative analyses). In addition, the study
area is limited. Therefore, the contribution of this paper is that we provide a new research
idea for earthquake and geothermal research, and more in-depth and systematic research is
needed in the future.
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