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Abstract: Is digitalization conducive to promoting carbon reduction in cultivated land use while
empowering high-quality socio-economic development and intelligent territorial spatial planning?
Derived from China’s provincial panel data from the period 2011 to 2019, in this paper, we employ a
fixed-effect model to study the impact of the digital economy on carbon emissions from cultivated
land use and apply an intermediary-effect model to estimate the impact that the structure of the
digital economy has on carbon emissions from cultivated land use. The results indicate the following:
(1) The expansion of the digital economy can significantly decrease the carbon emissions caused by
cultivated land use. This conclusion is still valid after considering endogenous issues and conducting
a series of robustness tests. (2) Green technical renovation has played a significant intermediary
role in the effect the digital economy has on the amount of carbon emissions from cultivated land
use. (3) Digital economy development has significantly promoted innovation in green technology by
increasing the size of green invention patent applications and authorizations, thus effectively curbing
carbon emissions from cultivated land use and achieving the carbon emission reduction effect of
the digital economy. However, some suggestions are put forward, including speeding up the deep
integration of digital technology and cultivated land use planning, strengthening the application of
green technical renovation achievements in the agricultural field, and enhancing the government’s
function in the institutional guarantee of the growth of the digital economy.

Keywords: digital economy; carbon emissions; green technology innovation; cultivated land utilization;
low-carbon transformation

1. Introduction

Climate change has become a global problem. The extreme weather brought about
by global warming has brought huge losses to agricultural production, food security, and
sustainable human development, which have faced unprecedented challenges. In response
to global warming, in September 2020, China made a solemn commitment during the
United Nations General Assembly to strive to achieve a carbon peak by 2030 and carbon
neutrality by 2060. Although industrial production and energy activities are the main
sources of carbon emissions, agricultural carbon emissions cannot be ignored. According
to a pioneering study published in the journal Nature Food, the greenhouse gas emissions
of the food system account for more than one third of the total global greenhouse gas
emissions, and about two thirds of global food system emissions come from the land
sector. [1]. According to the data of the Third National Communication on Climate Change
of the People’s Republic of China (2018), the total greenhouse gas (GHG) emissions in China
(including land use, land use change and forestry, LULUCF) in 2010 were equivalent to
about 9551 million tons of carbon dioxide. The GHG emissions from agricultural activities
in China were equivalent to about 828 million tons of carbon dioxide, accounting for about
8.67% of the total, while agricultural land emissions were equivalent to 283 million tons
of carbon dioxide, accounting for 34.1% of the GHG from agrarian activities [2]. China’s
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all-round promotion of high-quality development, adherence to a sustainable development
strategy, and promotion of the low-carbon transformation of cultivated land use are effective
methods to cope with global warming and develop excellent farming practices [3]. Under
the guidance of China’s low-carbon agriculture policy, total agricultural carbon emissions
and carbon emission intensity in China have shown a decline in recent years [4]. However,
China’s 13 major grain production provinces are dominated by high-emission traditional
production methods and they are still the main areas of agricultural carbon emissions [5].
Consequently, it is of great importance to study the influencing factors of carbon emissions
arising out of cultivated land utilization.

In the meantime, the digital economy has gradually become a new engine that pro-
motes high-quality economic well-being. According to the Statistical Classification of the
Digital Economy and its Core Industries (2021) released by the National Bureau of Statistics
of China, the digital economy is defined as a series of economic activities that use digital
resources as key production factors and modern information networks as important carriers
to achieve efficiency and the optimization of economic structures through the effective use
of information and communication technologies. As per the public data collected from
the China Digital Economy Development Report (2021) issued by China’s Cyberspace
Administration, China’s digital economy grew from 27.2 to 45.5 trillion yuan from 2017
to 2021, and the proportion of GDP grew from 32.9% to 39.8%. Thus, can the digital
economy restrain carbon emissions from cultivated land use while enabling high-quality
socio-economic development? What is its mechanism? The exploration of the above issues
is of great importance to the practice of carbon footprint mitigation through cultivated land
in China.

At present, the research of many scholars can be divided into two groups: (1) carbon
emissions from cultivated land utilization and (2) the digital economy and carbon emissions.
First, we will discuss the research on carbon emissions from cultivated land utilization.
Some scholars’ studies mostly focus on carbon emissions from cultivated land use measure-
ments, spatiotemporal differences, and the analysis of influencing factors [6–9]. Their views
in their research are that China’s carbon emissions from cultivated land have revealed an
overall development trend in recent decades, and the differences between provincial and
regional carbon emissions have tended to narrow. Agricultural production efficiency and
economic size are the main influencing elements on carbon emissions from cultivated land.
In the past few years., with the promotion of ecological civilization construction, some
scholars have focused their attention on the measurement of carbon emissions and the
eco-efficiency of cultivated land use and the analysis of its influencing factors [10–13]. Their
investigation findings indicate that China’s overall ecological effectiveness from cultivated
land displays a downward trend, showing great differences between regions, mainly af-
fected by economic growth, natural circumstances, and production situations. In addition,
some scholars also conducted in-depth discussions on issues such as carbon emissions, the
carbon sequestration of farmland [14], the impact of carbon emissions from ploughed land
on specific growth factors [15], carbon footprints from cultivated land and the decoupling
effect [16], the relationship between the appropriate scale operation of cultivated land
and carbon emissions [17], and agricultural carbon emissions and the cultivated land use
transformation relationship [18]. Secondly, we will discuss the research on the digital
economy and carbon emissions. At present, scholars have mainly studied the relationship
between the digital economy and carbon emissions from food production [19]; carbon
emissions from consumption [20]; carbon emissions from cities [21], carbon emissions from
trade [22], carbon emissions from economic development [23]; and regional carbon emis-
sions [24–26], etc. They mainly used the panel regression model [27,28], RVAR model [29],
difference-in-differences model [30], machine learning model [31], and intermediary effect
model [32] to assess the digital economy and carbon emissions procedure via the in-depth
analysis of spatial effects and influencing factors. The mainstream view is that the digital
economy has significantly reduced carbon emission intensity through industrial structure
upgrading, technological progress, and energy structure improvement [33–35].
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In conclusion, many scholars have conducted research on carbon emissions from culti-
vated land use, and the impact of the digital economy on carbon emissions, but few scholars
have discussed the digital economy’s effect on carbon emissions from cultivated land uti-
lization. Taking this into consideration, this study talks about the connection between the
digital economy and carbon emissions from cultivated land use by expanding the digital
economy development indicator process using a fixed-effect model and intermediary-effect
model and analyzes its procedure, aiming to provide a basis for decision making and a
reference for China’s smart land space governance and for the low-carbon transformation
of cultivated land use.

2. Theoretical Mechanism and Research Hypothesis
2.1. Digital Economy and Carbon Emissions from Cultivated Land Use

Existing studies have shown that the digital economy can effectively reduce carbon
emissions through the infrastructure effect, structural optimization effect, technological
innovation effect, and resource allocation effect [31,32]. In agriculture, the digital economy
relies on the ‘technology effect’ and the ‘structural effect’ of optimizing the proportion
of crops grown, which reduces “high-carbon” production factor inputs and improves
production factors [19]. Cultivated land is one of the primary sources of carbon emissions
from agriculture. Carbon emissions from cultivated land use are mainly derived from
direct and indirect carbon emissions in the agricultural cultivation process. Direct carbon
emissions include diesel consumed during the use of agricultural machinery, while indirect
ones include those caused by the use of pesticides, fertilizers, agricultural films, etc. In
addition, carbon emissions are generated by the organic carbon released into the air during
tilling, and indirectly by the use of electricity during irrigation. Combining the influence
mechanism of the digital economy on agricultural carbon emissions, this paper argues
that the digital economy affects carbon emissions from cultivated land use at three levels:
producer, government, and market. Among them, the producer level mainly affects the
behavior of cultivated land use, the government level primarily affects the efficiency of
cultivated land use decisions, and the market level principally involves the agricultural
carbon sink market transaction.

Specifically, the impact of the digital economy on carbon emissions from cultivated
land use mostly includes the following three features: First of all, from the producer’s per-
spective, the digital economy has promoted a digital transformation in cultivated land use
as well as improved cultivated land use efficiency and green transformation development,
which will be good for reducing the carbon emissions from cultivated land use. On the
one hand, the digital economy development will speed up the construction of soil digital
application scenarios, guide farmers to apply fertilizer scientifically, enable the rational use
of drugs, and allow for accurate irrigation by mastering high-precision soil scientific data
such as soil quality, properties, and utilization status, which will help to reduce pollution
and carbon while increasing production and efficiency. On the other hand, digital econ-
omy development has greatly broadened information channel dissemination and reduced
the cost of information acquisition. Producers can obtain new farming and management
technologies in time, implement green farming practices, and reduce carbon emissions
from the source of cultivated land use. Secondly, from the government’s perspective,
digital economy development will accelerate digital government construction, improve
administrative decision-making efficiency relating to the land and cultivated land use, and
thus reduce carbon emissions from cultivated land use. Digital economy expansion will
be advantageous for promoting the construction of a digital government, encouraging
the construction and implementation of a digital territorial spatial planning information
system. This type of system uses cloud computing, big data, artificial intelligence, and
other digital technologies to digitize cultivated land use, enabling government to accurately
grasp the information on the use of cultivated land, greatly improving the efficiency and
level of cultivated land use decision-making, improve the utilization efficiency of cultivated
land resources, and reducing energy consumption from the use of cultivated land. For
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example, Hangzhou has built a “cloud of cultivated land” digital platform to collect and
sort out data related to the city’s cultivated land utilization, providing data assistance
for the planning and utilization of cultivated land. Third, from the market’s perspective,
digital economy growth will facilitate the establishment of an agricultural carbon sink
trading market, thereby reducing carbon emissions. In recent years, China has successively
established seven pilot carbon markets. As reported in the relevant China’s Carbon Market
Review and Outlook (2022) data, by the end of 2021, the cumulative turnover quotas of
carbon emissions in the seven pilot carbon markets in China have reached 483 million tons,
estimated at 8.622 billion yuan, with remarkable results. However, it is difficult to include
agricultural carbon sinks in the carbon sink trading market system due to technical reasons,
namely emissions monitoring, reporting, and verification. Digital economy progress shall
lead to a breakthrough in the above-mentioned areas. With the help of online technol-
ogy, we will establish a monitoring system for agricultural carbon emissions, improve the
accounting and evaluation methods of agricultural carbon sinks to improve the carbon
trading market, promote the establishment of agricultural carbon sink markets, realize the
ecological development of the agricultural economy, and reduce carbon emissions.

Hypothesis 1 (H1). The development of the digital economy helps reduce carbon emissions from
cultivated land use.

2.2. Green Technology Innovation and Carbon Emissions from Cultivated Land Use

Green innovation of cultivated land mainly embodies two aspects of agricultural tech-
nology and agricultural factor input. (1) Green innovation in agricultural technology mainly
includes the research, development, promotion, and application of new agricultural green
technologies and innovation in modern agricultural production and management methods;
(2) Innovation in factor input mainly refers to the reasonable allocation of agricultural pro-
duction input factors to achieve the best efficiency through the innovation of information
access channels and production factor circulation channels. The digital economy can reduce
carbon emissions through green technical renovation [36]. The effect of green technical
renovation on carbon emissions from cultivated land use mainly includes the following
three aspects: First of all, the impact of green technology innovation on carbon emissions is
first reflected in resource utilization efficiency, specifically in the precise control of chemical
fertilizers, pesticides, and other resources, improving resource utilization efficiency, and
indirectly reducing the level of carbon emissions from cultivated land use. For example,
agricultural drip irrigation technology has greatly improved resource utilization efficiency
by using digital technology to accurately determine the time and amount of utilization,
using sensing technology to record and build crop growth models, implementing precise
planting and breeding, and achieving high-quality and high-yield agricultural production.
Secondly, the achievements of green technology innovation are provided to agricultural pro-
ducers through digital platforms, which improves the utilization rate of green innovation
technologies and brings about significant effects in terms of innovation. Simultaneously, the
widespread application of green innovation technologies further reduces carbon emission
levels from cultivated land use. For example, pheromones, biopesticides, and biostimulants
are publicized through digital platforms such as big data and mobile Internet to replace
traditional pesticides and fertilizers, reducing carbon emissions and providing high-quality
green food. Third, the digital economy accurately spreads and shares knowledge about
sustainable innovation through the Internet, improving agricultural enterprises’ green
innovation through talent gathering, as well as scientific and technological financing, im-
proving the innovation environment of agricultural enterprises. This promotes agricultural
enterprises that conduct green technical renovations, catalyzing innovation and carbon
emission reduction.

Hypothesis 2 (H2). The digital economy reduces carbon emissions from cultivated land use by
promoting green technical renovations.
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3. Methodology
3.1. Variable Selection

The core variables included explained and explanatory variables. Among them, the
explained variable was carbon emissions from cultivated land use (ce), and the explanatory
variables consisted of the development of the digital economy (dig) and green technology
innovation (gretech).

3.1.1. Core Interpreted Variable

The core explained variables in this research mainly referred to Kuang B et al. [37] and
the measurement of carbon emissions associated with data availability. Six agricultural
carbon emission sources were selected, namely farming, chemical fertilizer, pesticide, agri-
cultural diesel, agricultural film, and agricultural irrigation, to calculate carbon emissions
from cultivated land in all provinces of the country. The following equation was applied to
estimate the cultivated land carbon emissions:

E = ∑ Ei = ∑ Ti × δi

E stands for the overall carbon emissions from cultivated land use; Ei is the emissions
of carbon from carbon-based sources utilized by class i of cultivated land; Ti represents
agricultural carbon emission consumption sources of category i; δi represents a carbon
source’s emission coefficient of category i. The calculation system is displayed in Table 1.

Table 1. Carbon emission measurement system for agricultural cultivated land use.

Carbon Source of Cultivated
Land Utilization Expressions Explanations

Cultivation (C1) T1 × δ1 T1 Sown area of grain crops; the coefficient δ1 is 312.6 kg CE/hm2 [38]

Chemical fertilizer (C2) T2 × δ2
T2 The amount converted from fertilizer application; the coefficient δ2 is

0.8956 kg CE/kg2 [39]
Pesticides (C3) T3 × δ3 T3 Pesticide usage; the coefficient δ3 is 4.9341 kg CE/kg [40]

Agricultural diesel (C4) T4 × δ4 T4 Agricultural diesel consumption; the coefficient δ4 is 0.5927 kg CE/kg [41]
Agricultural film (C5) T5 × δ5 T5 Amount of agricultural film used; the coefficient δ5 is 5.18 kg CE/kg [42]

Agricultural irrigation (C6) T6 × δ6 T6 Agricultural irrigation amount; the coefficient δ6 is 20.476 kg CE/hm2 [43]

3.1.2. Core Explanatory Variables

Utilizing the previous approaches developed by academics such as Zhao Tao [44],
Li Xue, and others [45], in this paper, we evaluated the growth of the digital economy mainly
in two dimensions: the internet development level and digital financial inclusion. Among
them, the dimensions of the degree of internet advancement include: (1) internet penetra-
tion, as measured by the proportion of Internet subscribers with high-speed access per 100
individuals; (2) the number of Internet-related industries, expressed as the percentage of
city dwellers who work in computer services and software businesses; (3) Internet-related
output, characterized by the total telecom services per person; and (4) the number of mobile
Internet subscribers, measured by the quantity of cell phone subscribers per 100 people. In
order to calculate the three digital financial inclusion dimensions—digital financial cov-
erage breadth, digital financial use depth, and digitalization level—the provincial digital
financial inclusion index in China, created by Guo Feng et al. [46], was used as a proxy.
In this research, we computed a total of 5 indicators for the 2 aspects mentioned above to
determine how the digital economy is evolving, by using the entropy approach to construct
China’s interprovincial digital economy growth index.

Intermediary Variables

This paper considers green technical renovation (gretech) as an intermediary variable,
including patent applications for green inventions (gretech1) and patent authorizations for
green inventions (gretech2).
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Control Variables

Given that the carbon emissions from the development of the digital economy on
cultivated land use are influenced by several factors, these were the control variables
that were considered for this study: opening level, planting structure, human capital,
rural electricity consumption, waste disposal, environmental regulation, and infrastructure
construction. Among them, the opening level (openlevel) was calculated from the percentage
of the whole foreign trade in the regional GDP; the planting structure was represented as a
percentage of food crop area sown in relation to the total crop area sown; human capital
(hucap) was defined as the portion of the province’s population with higher education as a
percentage of the total population; rural energy consumption (encon) was described as the
total electricity consumption of rural residents; domestic garbage disposal (waste disposal)
was expressed by the harmless disposal rate of domestic garbage; environmental regulation
(eg) was proxied as a share of GDP by investment in pollution control; the highway mileage
of the province characterized the infrastructure construction (road). All the above control
variables were logarithmized to mitigate the heteroscedasticity interference caused by data
fluctuation.

3.2. Model Settings
3.2.1. Fixed-Effect Model

The manuscript developed the model with a fixed effect, as follows, to investigate
the effects of digital economy development on carbon emissions from cultivated land use
based on theoretical analysis and data characteristics:

cluit = λ0 + λ1digit + λ2controlsit + µi + νt + εit (1)

The subscript i stands for various provinces. The subscript t accounts for various
years, and the cluit is an explained variable, representing the amount of carbon emissions
from cultivated land usage in i the province during period t. The primary explanatory
variable digit is the growth of the digital economy of the i region in the t period. λ1 is the
parameter to be estimated. λ1 is the key concern coefficient of this paper, if λ1 is strongly
negative, which indicates that the digital economy rise can successfully cut the carbon
emissions of China’s cultivated land use. The control variable group controlsit shows a
number of control variables at the provincial level in the region. In addition, µi indicates
an individual fixed effect, while νt denotes a time fixed effect, and εit demonstrates the
random error term.

3.2.2. Mediation Effect Model

To investigate the potential mechanisms of the influence of digital economic growth
on carbon emissions, we further tested the intermediary effect to estimate how digital
economic development affects cultivated land use carbon emissions through the path of
green technology innovation. This manuscript refers to the approach of Wen Zhonglin
et al. [47], who take cultivated land use carbon emissions (clu) as a dependent variable,
digital economy growth (dig) as an independent variable, and green technology innova-
tion (gretech) as an intermediary variable. The following intermediary-effect model was
constructed:

cluit = α0 + α1digit + α2controlsit + εit (2)

gretechit = β0 + β1digit + β2controlsit + ηit (3)

cluit = γ0 + γ1digit + γ2gretechit + γ3controlsit + θit (4)

The stepwise regression method was adopted in this paper to confirm the intermediary
effect. Equations (3) and (4) represent the green technology innovation intermediary variable.
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3.3. Data Description

The research data range of this manuscript included 30 Chinese provinces, municipali-
ties, and autonomous regions, over the period from 2011 to 2019. Because of the obvious
shortage of statistics for the Tibet Autonomous Region, Hong Kong, Macao, and Taiwan
for many years, we eliminated the data and obtained 270 samples from 30 provinces and
cities. What calls for special attention is that although some regions are more economically
developed and have a high urbanization rate, they still retain a large amount of arable land
and agricultural production practices. For instance, in 2019, the arable land area in Beijing
was about 93,500 ha, and grain production reached 288,000 tons [48]. In the same year,
the cultivated land area in Shanghai was about 162,000 ha, and grain production reached
914,000 tons [49]. This study used farming, chemical fertilizer, agricultural film, pesticide,
diesel oil, and agricultural irrigation data collected from the China Rural Statistical Year-
book. The data on the intermediary variables came from the Green Patent Database (GPRD)
in the China Research Data Service Platform. Digital economy development data were from
the China Urban Statistical Yearbook, China provincial digital inclusive financial index, and
China Science and Technology Statistical Yearbook. Moreover, the rest of the data on the
majority of the control variables originated from the China Statistical Yearbook and various
provinces. There were a few missing values in individual years in some provinces. The
interpolation method was applied to this manuscript to complete the sample data. Table 2
shows descriptive statistics for the data listed above.

Table 2. Descriptive Statistics.

Variable Name Variable Symbol Sample Size Average Value Standard Deviation Minimum Maximum

Carbon emissions from
cultivated land use clu 270 29.129 19.773 1.195 87.088

Digital economy development dig 270 0.341 0.150 0.077 0.895
T inclusive financial index df 270 0.203 0.092 0.018 0.410

Opening level openlevel 270 4.842 1.121 1.869 6.987
Planting structure planting_structure 270 4.168 0.222 3.576 4.575

human capital hucap 270 −2.074 0.400 −2.925 −0.683
rural energy consumption encon 270 4.853 1.328 1.411 7.575
Domestic waste disposal waste_disposal 270 4.510 0.160 3.731 4.605
Environmental regulation eg 270 1.342 0.751 0.300 4.240

Highway mileage road 270 7.064 0.847 4.605 8.123

4. Results
4.1. Spatial and Temporal Aspects of China’s Carbon Emissions from Cultivated Land Usage
4.1.1. Time-Series Pattern of Carbon Emissions from Cultivated Land in China

This paper accounts for carbon emissions from cultivated land use across China’s
30 regions, municipal governments primarily under the central state, and independent
regions from 2011 to 2019 (except Tibet, Hong Kong, Macao, and Taiwan), and draws
trends of total carbon emissions (Figure 1). The results show that China’s carbon emissions
from cultivated land use in the period 2011–2019 show an overall decreasing trend and are
expected to continue to decrease in the future. In 2011, carbon emissions from cultivated
land use were 85.6011 million tons, while in 2019, emissions decreased to 80.9643 million
tons, with a −5.73% growth rate and a yearly growth of −0.694%. China’s total carbon
emissions from cultivated land use show a two-stage change of “slow rise—peak—slow
decline”, with the first stage (2011–2015) showing an annual upward growth rate in the
period of about 27.54%. The second phase (2015–2019), a declining period, has a yearly
growth rate of −37.25%. Among others, 2015 was the inflection point when carbon emis-
sions from cultivated land use turned from rising to falling, mainly because China adopted
the “Proposal of the 13th Five-Year Plan of the Central Committee of the Communist Party
of China on the Formulation of National Economic and Social Development” in that year.
Green development became the national development concept, the green development of
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agriculture was further emphasized, and the green utilization of cultivated land became a
new concept of cultivated land utilization.
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Figure 1. Total carbon emissions from cultivated land use and year-on-year growth rate in China.

4.1.2. Spatial Characteristics of Carbon Emissions from Cultivated Land in China

The spatial pattern of carbon emissions from cultivated land use in China in major
years is shown in Figure 2. This manuscript applies the natural breakpoint approach to
classify the inter-provincial carbon emissions from cultivated land use in 2011 and 2019
into levels I-V. It can be seen that level I is the lowest level and level V is the highest, to
compare the variability of carbon emissions between regions more intuitively. There were 6
carbon emission areas in level I, 6 in level II, 12 in level III, 4 in level IV, and 2 in level V in
China in 2011, and 6, 6, 10, 6, and 2 in 2019 in that order. The number of low-emission areas
(Class I and Class II) remained stable, the number of medium-emission areas (Class III)
decreased, and the number of high-emission areas (Class IV and Class V) increased over
the 9 years, and in general, the distribution of China’s carbon emissions from cultivated
land use displayed a rugby-ball shape.
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Specifically, the six level I provinces in terms of carbon emissions remained stable,
including Beijing, Tianjin, Shanghai, and Qinghai Province, in 2011 and 2019; the six level
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II provinces in terms of carbon emissions remained unchanged in 2011 and 2019, including
Gansu, Chongqing, and Guizhou; the 12 level III provinces in terms of carbon emissions,
including Xinjiang, Inner Mongolia, Sichuan and Yunnan, remained unchanged in 2011,
but decreased to 10 in 2019; the level IV provinces in terms of carbon emissions increased
from four in 2011 to six in 2019. In 2011, there were 12 provinces emitting carbon, including
Xinjiang, Inner Mongolia, Sichuan, and Yunnan, and the number of provinces that emitted
carbon dioxide dropped to 10 in 2019; those at level IV increased from four in 2011 to six
in 2019 (Xinjiang and Heilongjiang were added); those at level V remained unchanged,
including Henan Province and Shandong Province. On the whole, China’s overall carbon
emissions from cultivated land use revealed considerable spatial and temporal divergences.
In 2011, the characteristics of East > Central > Northeast were shown by the spatial variance
of carbon emissions from cultivated land use, while in 2019, the spatial diversity of carbon
emissions from cultivated land use indicated the characteristics of West > East > Central
> Northeast.

4.2. Benchmark Regression

The calculated outcomes of the growth of the digital economy here on carbon emissions
from cultivated land usage are shown in Table 3. For model selection, the fixed-effect model
was chosen for estimation based on the findings of the Hausman test. Models (1) to (3) are
the results of fixed effects without control variables, fixed effects with control variables,
and random effects. From the results of columns (1) to (3), we can see that dig’s regression
coefficients are −3.936, −9.362, and −10.91, respectively, which pass the 1% significance
level test. It can be seen that the digital economy growth of the empirical results can
effectively reduce the level of carbon emissions from cultivated land use in China, which
preliminarily proves Hypothesis 1 of this study. The amount of China’s digital economy
growth has improved the digital transformation of cultivated land use and the innovation
and growth of cultivated land use technology, especially green technology innovation,
which effectively promotes the efficiency of cultivated land use and the improvement
of green transformation Therefore, it will decrease the level of carbon emissions from
cultivated land use.

Table 3. The consequences of the growth of the digital economy on carbon emissions from cultivated
land usage as assessed by benchmark regression findings.

Variables
(1) (2) (3)

fe_non Control fe re

dig −3.936 *** −9.362 *** −10.91 ***
(−4.34) (−5.76) (−6.77)

openlevel 1.448 *** 1.564 ***
(2.79) (2.98)

planting_structure −15.82 *** −13.13 ***
(−5.19) (−4.34)

hucap 0.533 −0.210
(0.54) (−0.21)

encon 1.871 *** 2.338 ***
(2.69) (3.46)

waste_disposal 2.838 ** 2.710 **
(2.34) (2.17)

eg 0.234 0.199
(0.92) (0.76)

road 3.496 8.441 ***
(1.59) (4.73)

_cons 30.47 *** 45.45 ** −3.903
(91.46) (2.20) (−0.21)

N 270 270 270
R2 0.073 0.267

Note: **, *** denote the significance level of 5%, and 1%, respectively, and the brackets are T values.
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Moreover, when it comes to the control variables, the coefficient values of regression
for the degree of openness to the external world, rural electricity use, domestic waste
treatment, and infrastructure construction are significantly positive, which shows that for
this sample, with the growth of the above control variables, the carbon emissions from
cultivated land use also increase, proving the “pollution refuge” hypothesis, which is
similar to previous research findings [50]. As the amount of openness to the external world,
rural electricity consumption, domestic waste disposal, and infrastructure construction
increase, it will directly or indirectly promote the consumption of cultivated land resources
and the consumption of energy, thus expanding the emissions of carbon. The regression
coefficient of the planting structure is −13.13, which is significantly negative, indicating that
the enhancement of planting structure can help to enhance the efficiency of cultivated land
usage and industrial optimization, thus effectively reducing the level of carbon emissions
from cultivated land usage.

4.3. Robustness Test
4.3.1. Replacing Explanatory Variables and Remove Some Samples

In the above benchmark regression, the index of digital economic growth is chosen
as the explained variable to conduct the benchmark regression. To test the robustness of
the estimated results and investigate further the implications of digital economic growth
on carbon emissions from cultivated land use, the first step is to replace the explanatory
variable to minimize the potential effect of a single variable on the outcomes of the esti-
mation. Gauging the digital economic growth level, this study examines the possibility
of substituting the digital economic growth index with the digital open financial index.
For regression, the fixed-effect model must be utilized. Column (2) of Table 4 presents the
findings. Column (1) is the result obtained before replacing the index of digital economic
growth. The comparison findings show that after substituting the explained variables, the
digital economy growth regression coefficient is −6.664, which is still dramatically negative
at the 5% level, in line with the estimated outcomes of the benchmark model. Therefore,
after replacing the explanatory variables, the digital economic growth level improvement
can significantly reduce carbon emissions from cultivated land use.

Because there are large differences between municipalities directly under the Central
Government and ordinary provinces in terms of the level of digital economy development,
economic development, technological innovation, and green technological innovation, the
samples from municipalities directly under the Central Government are not included in
this article. It only retains the benchmark model for the re-estimation of ordinary province
samples. The regression findings for Table 4’s column (3) remove four municipalities
(Beijing, Tianjin, Shanghai, and Chongqing). As can be seen, dig’s regression coefficient
value is still notably negative at 1%, and its absolute value is higher than the regression
coefficient before excluding municipalities that fall under the direct authority of the Central
Government, which indicates that the improvement of digital economic development in
provinces not directly under the Central Government has a stronger inhibition effect on
carbon emissions from cultivated land use, thus further strengthening the core conclusions
of this paper.

4.3.2. Random Sampling and Adjust Sample Period

Based on benchmark analysis, this paper conducts a random sampling of samples to
further strengthen the regression findings’ robustness, and the estimation of the sampling
is shown in Table 4’s column (4). The significance levels of each control variable and the
regression coefficients of the dig are similar to the regression outcome, indicating that the
selected sample data are representative, the outcomes of benchmark regression are more
reliable, and the amount the digital economic growth can decrease the carbon emissions
from cultivated land use.
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Table 4. Robustness Test I.

Variables
(1) (2) (3) (4) (5)

fe thfe xtfe bsfe tzfe

dig −9.362 *** −10.43 *** −9.362 *** −13.74 ***
(−5.76) (−5.43) (−5.30) (−8.78)

openlevel 1.448 *** 1.714 *** 1.765 *** 1.448 ** 0.742
(2.79) (3.13) (3.17) (2.25) (1.48)

planting_structure −15.82 *** −13.17 *** −18.63 *** −15.82 *** −17.26 ***
(−5.19) (−4.15) (−4.86) (−3.62) (−3.89)

hucap 0.533 −0.447 0.778 0.533 −0.413
(0.54) (−0.42) (0.77) (0.60) (−0.33)

encon 1.871 *** 1.601 ** 5.889 *** 1.871 * 0.783
(2.69) (2.13) (4.83) (1.93) (0.96)

waste_disposal 2.838 ** 1.992 4.094 *** 2.838 ** −5.410 **
(2.34) (1.53) (3.17) (2.19) (−2.37)

eg 0.234 0.502 * 0.399 0.234 −0.125
(0.92) (1.90) (1.43) (0.69) (−0.52)

road 3.496 0.472 −2.776 3.496 0.781
(1.59) (0.20) (−0.94) (1.59) (0.34)

df −6.664 **
(−2.35)

_cons 45.45 ** 55.39 ** 79.95 *** 45.45 ** 117.8 ***
(2.20) (2.46) (2.90) (2.24) (4.47)

N 270 270 234 270 150
R2 0.267 0.182 0.364 0.267 0.588

Note: *, **, *** denote the significance level of 10%, 5%, and 1%, respectively, and the brackets are T values.

Taking into account the fact that digital economic growth was relatively slow before
2015, this essay employs the methodology of shortening the sample period to lead the
robustness test and strengthen the persuasiveness of the regression evaluation. Since
2015, the digital economy in China has grown rapidly. Using the research methods of
Dang Lin et al. [51] for reference, the sample period was shortened. Taking 2015 as the
starting year for research on the digital economy, the time series sample in this study was
changed to include 2015–2019 and the regression estimation was carried out again. The
consequences of the estimation are given in Table 4’s column (5). The findings demonstrate
that dig’s regression coefficient is still strongly negative, and the absolute value exceeds
the benchmark regression results by a substantial margin, which is in keeping with the
aforementioned premises, further proving the consistency of the primary findings presented
in this research paper.

4.3.3. Quantile Regression

As the above regression model focuses on mean regression, which cannot give an
accurate picture of the distribution of the reaction conditions, to enhance the reliability of
the regression outcomes, this study considers using quantile regression for analysis. Using
the quantile regression technique [52] developed by Roger Koenker and Gilbert Bassett as a
guide, we can eliminate the extreme values that affect the regression findings by observing
the head and tail of the explained variables to reflect the data more comprehensively. By set-
ting three quantiles (0.30, 0.60, and 0.90), the 30 provinces, municipalities, and autonomous
areas of China are categorized into regions with low, medium, and high carbon emissions
for cultivated land use. The outcomes of regression are in Table 5‘s columns (2)–(4). To
compare the errors and differences between the original benchmark regression and quan-
tile regression, column (1) of Table 5 also shows the benchmark regression findings. The
regression coefficients of dig at the three quantiles can be seen to be significantly negative,
and the absolute values are broadly from the findings of the benchmark regression. The
findings remain robust and support the universal applicability of the core conclusions in
this paper.
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Table 5. Robustness Test II.

Variables
(1) (2) (3) (4)

fe fe30 fe60 fe90

dig −9.362 *** −9.456 *** −9.275 *** −9.156 ***
(−5.76) (−3.39) (−5.54) (−3.89)

openlevel 1.448 *** 1.663 * 1.249 ** 0.978
(2.79) (1.91) (2.39) (1.33)

planting_structure −15.82 *** −16.09 ** −15.57 *** −15.22 **
(−5.19) (−2.22) (−3.58) (−2.49)

hucap 0.533 0.292 0.756 1.061
(0.54) (0.18) (0.76) (0.76)

encon 1.871 *** 2.500 * 1.289 0.493
(2.69) (1.76) (1.51) (0.41)

waste_disposal 2.838 ** 2.999 2.691 ** 2.488
(2.34) (1.41) (2.11) (1.39)

eg 0.234 0.362 0.116 −0.0466
(0.92) (0.58) (0.31) (−0.09)

road 3.496 3.540 3.456 * 3.400
(1.59) (1.17) (1.90) (1.33)

_cons 45.45 **
(2.20)

N 270 270 270 270
R2 0.267

Note: *, **, *** denote the significance level of 10%, 5%, and 1%, respectively, and the brackets are T values.

4.4. Endogeneity Test

In this research, we adopted the instrumental variable method to demonstrate the
robustness of benchmark regression analysis while limiting endogenous problems due to
missing variables, reverse causality, and unobservable factors. Referring to the practice
of Li Xue et al. [45], we selected the one-period lag of the index of the digital economic
development index as a tool variable of the current digital economy. We used the fixed-effect
2SLS model for regression. Since the digital economic index lagging behind one period is
highly related to the current sample and is unlikely to have an influence on the current level
of carbon emissions from cultivated land use, the digital economic index lagging behind one
period was selected as a tool variable to meet the relevance and exogeneity requirements.

Table 6 displays the instrumental variable regression estimates. Among them, column
(1) is the first stage of the estimation. The findings represent that the lagged first-order
digital economic index as a tool variable has good explanatory power for endogenous
variables, and at the 1% level of statistical significance, the regression coefficient is positive.
The second stage estimate is listed in column (2). It can be seen that after considering the
endogenous problem, the level of digital economy development level still has a negative
effect on the carbon emissions of cultivated land use and has passed the significance test.
The benchmark regression’s main finding is once more supported by the absolute value,
which is much higher than the 9.362 of the benchmark regression coefficients.

Table 6. Regression of instrumental variables.

Variables
(1) (2)

Phase I Phase II

IV 1.044 ***
(32.02)

dig −11.03 ***
(−6.55)

control variables yes yes
_cons 0.885 **

(2.37)
N 240 240
R2 0.951 0.390

Note: **, *** denote the significance level of 5%, and 1%, respectively, and the brackets are T values.
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4.5. Mechanism Analysis

It can be seen from the previous analysis that digital economic growth dramatically
reduces carbon emissions from the usage of cultivated land. We further analyze this trans-
mission mechanism and whether digital economic growth can reduce the carbon emissions
from cultivated land use by influencing green technology innovation, and because the
technological progress closely related to the carbon emissions from cultivated land use is
bound to be related to the degree of innovation in green technologies, in order to prevent a
single indicator from measuring the results from bias. As a result, we use the two indicators
of patent applications for green inventions (gretech1) and green invention patent authoriza-
tions (grdtech2) as proxy variables of the creation of green technology to investigate the
mechanism of innovation in green technology.

The intermediary mechanism analysis findings are presented in Table 7, which highlights
the innovation in green technology and the influence of digital economic growth on carbon
emissions from cultivated land use. Among them, the regression findings are represented
in column (1) for the two indicators in the first stage, and columns (2)–(3) and (4)–(5) are
the second- and third-step tests of the number of green invention patent applications and
authorizations, respectively. The regression results show that in terms of the number of
filings for patents for environmentally friendly innovations, the estimated coefficients of dig
and gretech1 are significant at 1%, demonstrating that the rise of the digital economic system
can substantially boost the number of patent applications for environmental inventions, thus
effectively curbing the carbon emissions from the use of cultivated land; as far as the number
of green invention patents granted is concerned, the regression coefficients of dig and grdtech2
are still significant. It is evident that digital economic growth also significantly facilitated
the advancement of environmental technological innovation based on the number of green
invention patents awarded. This confirms the idea that the growth of the digital economy
will indirectly restrain the carbon emissions of cultivated land use through environmental
technological innovation, and it plays an essential role in this transmission mechanism. This
result effectively validates Hypothesis 2. By improving the growth of innovation in green
technology, the digital economy provides new impetus for cultivated land use and emission
reduction and reduces the carbon emission level of cultivated land use.

Table 7. Regression results of intermediary mechanism.

Variables
(1) (2) (3) (4) (5)

fir sec1 thir1 sec2 thir2

dig −9.362 *** 3.034 *** −11.51 *** 2.377 *** −10.43 ***
(−4.66) (11.69) (−5.54) (11.48) (−4.87)

openlevel 1.448 −0.0973 1.571 −0.0313 1.500
(1.44) (−1.34) (1.60) (−0.54) (1.50)

planting_structure −15.82 ** 1.326 ** −16.23 ** 0.891 * −15.60 **
(−2.44) (2.29) (−2.53) (1.97) (−2.33)

hucap 0.533 0.190 0.795 0.125 0.903
(0.54) (1.13) (0.82) (0.75) (0.93)

encon 1.871 0.349 1.772 0.179 1.986 *
(1.61) (1.68) (1.61) (1.47) (1.77)

waste_disposal 2.838 * 0.0409 −0.106
(1.76) (0.26) (−0.66)

eg 0.234 0.0206 0.226 0.0831 *** 0.175
(1.02) (0.61) (1.01) (2.80) (0.76)

road 3.496 1.683 *** 1.539 1.740 *** 1.730
(1.21) (3.51) (0.53) (5.61) (0.60)

gretech1 1.030 ***
(2.90)

gretech2 0.880 *
(1.85)

_cons 45.45 * −12.11 ** 67.36 ** −10.88 *** 64.91 **
(1.80) (−2.52) (2.68) (−3.20) (2.50)

N 270 270 270 270 270
R2 0.267 0.824 0.269 0.813 0.259

Note: *, **, *** denote the significance level of 10%, 5%, and 1%, respectively, and the brackets are T values.
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5. Discussion

Because of increasing global warming, it is vital to enhance the carbon emission
reduction effect of the digital economy to promote high-quality economic development.
Therefore, this manuscript systematically discusses the intrinsic link between the digital
economy and carbon emissions from cultivated land use and empirically investigates
the mechanism of the effect between the two by using data from 30 provincial panels
from 2011 to 2019. This paper’s main contributions are as follows: (1) It analyzes, in
detail, the mechanism through which the digital economy influences carbon emissions
from cultivated land use, highlighting that green technology innovation can effectively
suppress greenhouse gases from cultivated land utilization. We also corroborate the
reduction effect that greenhouse gases have of green technology applications. Additionally,
it provides a theoretical basis for green technology innovation to encourage the low-carbon
transformation of cultivated land use in China. (2) This paper further enriches the research
results in the digital economy field and the field of carbon emission reduction. Furthermore,
it provides a feasible theory for the expansion function of the digital economy in reducing
carbon emissions from cultivated land use and simultaneously provides China with a new
path to achieve carbon neutrality.

This paper has some similarities with existing studies, but also some novel ideas. First,
existing studies point out that the digital economy greatly promotes green technology
innovation [53–56] and that green technology innovation can effectively curb regional
carbon emissions [57–60]. The above studies provide theoretical support for the selection
of mediating variables in this paper, but the above studies do not explore the relationship
between the digital economy and carbon emissions, nor do they answer whether green
technology innovation can similarly curb carbon emissions from cultivated land use. There-
fore, this paper connects the digital economy and carbon emissions from cultivated land
use, expanding the scope of research on the digital economy and the application scenarios
of green technology innovation. Second, existing studies show that the digital economy
effectively reduces regional carbon emissions through green technology innovation [61], the
upgrading of industrial structures [62,63], and regional economic growth [64]. This paper
not only corroborates the carbon reduction effect of the digital economy, which is consistent
with the results of existing studies [23,65,66], but also extends the carbon reduction effect of
the digital economy even further to the field of carbon emissions from cultivated land use,
and confirms that green technology innovation can effectively reduce carbon emissions
from cultivated land use.

The digital economy gives a brand-new vision for the reduction of carbon emissions
from cultivated land use, and this investigation can, to a certain extent, fill the theoretical
deficiencies and give a reference foundation for the energy-efficient alteration of cultivated
land application in China.

Of course, there are certain shortcomings in this paper’s research, which can be
further improved in following studies. Specifically, (1) established studies show that
technological advancement has a dual effect on energy consumption and carbon emissions.
Technological progress can promote energy saving and emissions reduction, but it may
lead to a higher energy demand and weaken the effect of energy saving and emission
reduction as well, i.e., the “rebound effect” [67,68]. Given this, will the digital economy
induce an energy “rebound effect” while decreasing carbon emissions from cultivated land
application through technical renovation, thus leading to a rise in carbon emissions from
cultivated land use? This needs to be further studied. (2) Studies have shown that there are
many mechanisms through which the digital economy can lessen carbon emissions; for
example, the digital economy decreases carbon emissions via a sharing economy [69], the
optimization of energy consumption structures [70,71], resource allocation efficiency [72,73]
and the optimization of industrial structures [74], but in the case of carbon emission
reduction from cultivated land, this paper has not been able to fully address them due to
the lack of relevant theoretical and empirical studies. Therefore, further research is needed.
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In conclusion, as the worldwide digital economy is still in the early development
phase, it faces many risks and challenges in the development process, and we should
urgently conduct extensive research on theories, policies, laws, and other aspects of the
digital economy to enable green and energy-saving expansion.

6. Conclusions and Suggestions

In this research, considering China’s inter-province panel data from 2011 to 2019, we
analyze the process underlying the effect of the digital economy on carbon emissions from
cultivated land usage, as well as the influencing factors. The results are as follows:

(1) The development of the digital economy significantly reduces carbon emissions
from cultivated land use, and even after considering endogeneity and conducting
robustness tests, this conclusion is still valid.

(2) Green technology evolution plays a significant mediating role in the effect of digital
economic growth on carbon emissions from cultivated land use. The growth of
the digital economy considerably enhances green technical renovation, which can
effectively reduce carbon emissions from cultivated land use by promoting increasing
green invention patent applications and licenses, thus bringing into play the carbon
emissions effect of the digital economy.

Based on the findings of this study, we have made advanced policy recommendations.
First and foremost, we suggest actively promoting the construction of digital economy
infrastructure, promoting smart planning construction and the intelligent governance of
land space, and accelerating the deep integration of digital technology and cultivated
land use. Second, the government should strengthen policy support for the expansion
of the digital economy and provide institutional guarantees for the role of the digital
economy in encouraging green technology innovation. Finally, we suggest applying green
technology innovations in agriculture and the improvement of low-carbon technology
for use on cultivated land. Additionally, green technical renovations should be applied
in agriculture, and the utilization of low-carbon technologies for use on cultivated land
should be increased.
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22. Ma, Q.; Khan, Z.; Tariq, M.; IŞik, H.; Rjoub, H. Sustainable digital economy and trade adjusted carbon emissions: Evidence from
China’s provincial data. Ekon. Istraž./Econ. Res. 2022, 35, 1–17. [CrossRef]

23. Li, X.; Liu, J.; Ni, P. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis. Sustainability
2021, 13, 7267. [CrossRef]

24. Liu, J.; Chen, Y. Digital technology development, spatio-temporal dynamic effects and regional carbon emissions. Sci. Sci. Res.
2022, 1–17. [CrossRef]

25. Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The nexus between digital economy and carbon dioxide emissions in China: The
moderating role of investments in research and development. Technol. Soc. 2022, 68, 101910. [CrossRef]

26. Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-level Empirical Data in
China. J. Clean. Prod. 2022, 351, 131570. [CrossRef]

27. Guo, F.; Yang, S.; Ren, Y. Digital Economy, Green Technology Innovation and Carbon Emission—Empirical Evidence from the
Urban Level of China. J. Shaanxi Norm. Univ. 2022, 51, 45–60.

28. Han, D.; Ding, Y.; Shi, Z.; He, Y. The impact of digital economy on total factor carbon productivity: The threshold effect of
technology accumulation. Environ. Sci. Pollut. Res. 2022, 29, 55691–55706. [CrossRef]

29. Yi, Z.; Wei, L.; Wang, L. Research on the Effect of Digital Industry Technology Development on Carbon Emission Intensity. Int.
Econ. Trade Explor. 2022, 38, 22–37.

30. Bao, Z.; Zhou, X. Digital empowerment and urban carbon emissions—A quasi-natural experiment based on the next generation
Internet demonstration cities. Prog. Clim. Chang. Res. 2022, 18, 503–508.

31. Xu, W.; Zhou, J.; Liu, C. The impact of digital economy on urban carbon emissions:Based on the analysis of spatial effects. Geogr.
Res. 2022, 41, 111–129.

http://doi.org/10.3390/su10061932
http://doi.org/10.3390/land11020257
http://doi.org/10.1007/s11442-020-1741-8
http://doi.org/10.1046/j.1365-2486.2002.00485.x
http://doi.org/10.3390/ijerph19159326
http://www.ncbi.nlm.nih.gov/pubmed/35954683
http://doi.org/10.1007/s11356-022-18908-6
http://doi.org/10.3390/ijerph191912786
http://kns.cnki.net/kcms/detail/11.3513.S.20220818.1050.012.html
http://kns.cnki.net/kcms/detail/11.3513.S.20220818.1050.012.html
http://doi.org/10.1016/j.enpol.2022.112927
http://doi.org/10.1080/1331677X.2022.2028179
http://doi.org/10.3390/su13137267
http://doi.org/10.16192/j.cnki.1003-2053.20220325.002
http://doi.org/10.1016/j.techsoc.2022.101910
http://doi.org/10.1016/j.jclepro.2022.131570
http://doi.org/10.1007/s11356-022-19721-x


Land 2023, 12, 665 17 of 18

32. Miao, L.; Chen, J.; Fan, T.; Lv, Y. The impact of digital economy development on carbon emissions—Panel data analysis based on
278 prefecture level cities. China South. Financ. 2022, 546, 45–57.

33. Ge, L.; Mo, L.; Huang, N. Digital economy development, industrial structure upgrading, and urban carbon emissions. Mod.
Financ. Econ. 2022, 42, 20–37.

34. Li, Z.; Wang, J. How does the development of digital economy affect space carbon emissions in the context of economic
agglomeration? J. Xi’an Jiaotong Univ. 2022, 42, 87–97.

35. Xie, Y. Effect and mechanism of digital economy on regional carbon emission intensity. Contemp. Econ. Manag. 2022, 44, 68–78.
36. Yu, S.; Fan, X.; Jiang, H. Research on the Impact of Digital Economy Development on the Improvement of Carbon Productivity.

Stat. Inf. Forum 2022, 37, 26–35.
37. Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA

model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [CrossRef]
38. Wu, F.; Li, L.; Zhang, H.; Chen, F. Effects of conservation tillage on net carbon release from farmland ecosystem. Chin. J. Ecol.

2007, 26, 2035–2039.
39. Zhou, Y.; Yang, Y.; Yuan, W.; Gao, J. GIS based ecological sensitivity analysis and evaluation of Xiaoqing River basin in Jinan.

J. Northwest For. Univ. 2016, 31, 50–56.
40. Zhi, J.; Gao, J. Comparative analysis of carbon emissions from food consumption in urban and rural China. Prog. Geogr. 2009, 28,

429–434.
41. Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Institute for

Global Environmental Strategies; IPCC: Hayama, Japan, 2006.
42. Wang, B.; Zhang, W. Study on measurement and temporal and spatial difference of agricultural ecological efficiency in China.

China Popul. Resour. Environ. 2016, 26, 11–19. [CrossRef]
43. Bo, L.; Junbiao, Z.; Haipeng, L. Temporal and spatial characteristics of agricultural carbon emissions in China and decomposition

of influencing factors. China Popul. Resour. Environ. 2011, 21, 80–86.
44. Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship Activity and High Quality Development—Empirical Evidence

from Chinese Cities. Manag. World 2020, 36, 65–76.
45. Li, X.; Wu, F.; Zhu, L. Digital Economy and Regional Innovation Performance. J. Shanxi Univ. Financ. Econ. 2021, 43, 17–30.
46. Guo, F.; Wang, J.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z. Measuring China’s digital inclusive financial development: Index

compilation and spatial characteristics. Economics (Quarterly) 2020, 19, 1401–1418.
47. Wen, Z.; Zhang, L.; Hou, J.; Liu, H. Mediation effect test procedure and its application. J. Psychol. 2004, 36, 614–620.
48. Beijing Municipal Bureau of Statistics, Survey Office of the National Bureau of Statistics in Beijing. Beijing Statistical Yearbook

(2020); China Statistics Press: Beijing, China, 2020.
49. Shanghai Municipal Bureau of Statistics, Survey Office of the National Bureau of Statistics in Shanghai. Shanghai Statistical

Yearbook (2020); China Statistics Press: Beijing, China, 2020.
50. Dang, Y.; Sheng, D. “Pollution Shelter” Hypothesis Test—An empirical Study on the Connotative Pollution of China’s Bilateral

Trade with the United States, Japan and Germany. Mod. Econ. Discuss. 2018, 435, 54–66.
51. Dang, L.; Li, X.; Shen, S. Digital Economy, Innovation Environment and Cooperative Innovation Performance. J. Shanxi Univ.

Financ. Econ. 2021, 43, 1–15.
52. Koenker, R.; Bassett, G.W. Regression quantiles. Econometrica 1978, 46, 211–244. [CrossRef]
53. Zhang, Z.; Fu, W.K.; Ma, L. The impact of digital economy on green development in China. Front. Environ. Sci. 2022, 10, 1464.

[CrossRef]
54. Huang, X.; Zhou, J.; Zhou, Y. Digital Economy’s Spatial Implications on Urban Innovation and Its Threshold: Evidence from

China. Complexity 2022, 2022, 3436741. [CrossRef]
55. Liu, L.; Ding, T.; Wang, H. Digital Economy, Technological Innovation and Green High-Quality Development of Industry: A

Study Case of China. Sustainability 2022, 14, 11078. [CrossRef]
56. Dai, D.; Fan, Y.; Wang, G.; Xie, J. Digital Economy, R&D Investment, and Regional Green Innovation—Analysis Based on

Provincial Panel Data in China. Sustainability 2022, 14, 6508.
57. You, X.; Chen, Z. Interaction and mediation effects of economic growth and innovation performance on carbon emissions: Insights

from 282 Chinese cities. Sci. Total Environ. 2022, 831, 154910. [CrossRef] [PubMed]
58. Dong, F.; Zhu, J.; Li, Y.; Chen, Y.; Gao, Y.; Hu, M.; Qin, C.; Sun, J. How green technology innovation affects carbon emission

efficiency: Evidence from developed countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. 2022, 29, 35780–35799.
[CrossRef]

59. Liu, J.; Duan, Y.; Zhong, S. Does green innovation suppress carbon emission intensity? New evidence from China. Environ. Sci.
Pollut. Res. 2022, 29, 1–22. [CrossRef]

60. Gao, P.; Wang, Y.; Zou, Y.; Su, X.; Che, X.; Yang, X. Green technology innovation and carbon emissions nexus in China: Does
industrial structure upgrading matter? Front. Psychol. 2022, 13, 951172. [CrossRef] [PubMed]

61. Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development.
J. Bus. Res. 2022, 145, 801–813. [CrossRef]

62. Zhang, J.; Lyu, Y.; Li, Y.; Geng, Y. Digital economy: An innovation driving factor for low-carbon development. Environ. Impact
Assess. Rev. 2022, 96, 106821. [CrossRef]

http://doi.org/10.1016/j.techfore.2019.119874
http://doi.org/10.1016/j.envpol.2015.10.043
http://doi.org/10.2307/1913643
http://doi.org/10.3389/fenvs.2022.991278
http://doi.org/10.1155/2022/3436741
http://doi.org/10.3390/su141711078
http://doi.org/10.1016/j.scitotenv.2022.154910
http://www.ncbi.nlm.nih.gov/pubmed/35364175
http://doi.org/10.1007/s11356-022-18581-9
http://doi.org/10.1007/s11356-022-21621-z
http://doi.org/10.3389/fpsyg.2022.951172
http://www.ncbi.nlm.nih.gov/pubmed/35959076
http://doi.org/10.1016/j.jbusres.2022.03.041
http://doi.org/10.1016/j.eiar.2022.106821


Land 2023, 12, 665 18 of 18

63. Bai, F.; Huang, Y.; Shang, M.; Ahmad, M. Modeling the impact of digital economy on urban environmental pollution: Empirical
evidence from 277 prefecture-level cities in China. Front. Environ. Sci. 2022, 10, 1489. [CrossRef]

64. Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60
countries. Sci. Total Environ. 2022, 852, 158401. [CrossRef]

65. Yu, Z.; Liu, S.; Zhu, Z. Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China.
Int. J. Environ. Res. Public Health 2022, 19, 11814. [CrossRef]

66. Lee, C.C.; Yuanm, Y.; Wen, H. Can Digital Economy Alleviate CO2 Emissions in the Transport Sector? Evidence from Provincial Panel
Data in China; Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2022; Volume 46, pp. 289–310.

67. Berkhout, P.H.G.; Muskens, J.C.; Velthuijsen, J.W. Defining the rebound effect. Energy Policy 2000, 28, 425–432. [CrossRef]
68. Shao, S.; Yang, L.; Huang, T. Theoretical model of energy rebound effect and China’s experience. Econ. Res. J. 2013, 48, 96–109.
69. Gu, J. Sharing economy, technological innovation and carbon emissions: Evidence from Chinese cities. J. Innov. Knowl. 2022,

7, 100228. [CrossRef]
70. Hao, X.; Wen, S.; Li, Y.; Xu, Y.; Xue, Y. Can the digital economy development curb carbon emissions? Evidence from China.

Front. Psychol. 2022, 13, 938918. [CrossRef] [PubMed]
71. Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from

China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [CrossRef]
72. Chen, P. Relationship between the digital economy, resource allocation, and corporate carbon emission intensity: New evidence

from listed Chinese companies. Environ. Res. Commun. 2022, 4, 075005. [CrossRef]
73. Xiang, X.; Yang, G.; Sun, H. The impact of the digital economy on low-carbon, inclusive growth: Promoting or restraining.

Sustainability 2022, 14, 7187. [CrossRef]
74. Zhong, K.; Fu, H.; Li, T. Can the Digital Economy Facilitate Carbon Emissions Decoupling? An Empirical Study Based on

Provincial Data in China. Int. J. Environ. Res. Public Health 2022, 19, 6800. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fenvs.2022.991022
http://doi.org/10.1016/j.scitotenv.2022.158401
http://doi.org/10.3390/ijerph191811814
http://doi.org/10.1016/S0301-4215(00)00022-7
http://doi.org/10.1016/j.jik.2022.100228
http://doi.org/10.3389/fpsyg.2022.938918
http://www.ncbi.nlm.nih.gov/pubmed/36118501
http://doi.org/10.1007/s11356-021-15304-4
http://doi.org/10.1088/2515-7620/ac7ea3
http://doi.org/10.3390/su14127187
http://doi.org/10.3390/ijerph19116800

	Introduction 
	Theoretical Mechanism and Research Hypothesis 
	Digital Economy and Carbon Emissions from Cultivated Land Use 
	Green Technology Innovation and Carbon Emissions from Cultivated Land Use 

	Methodology 
	Variable Selection 
	Core Interpreted Variable 
	Core Explanatory Variables 

	Model Settings 
	Fixed-Effect Model 
	Mediation Effect Model 

	Data Description 

	Results 
	Spatial and Temporal Aspects of China’s Carbon Emissions from Cultivated Land Usage 
	Time-Series Pattern of Carbon Emissions from Cultivated Land in China 
	Spatial Characteristics of Carbon Emissions from Cultivated Land in China 

	Benchmark Regression 
	Robustness Test 
	Replacing Explanatory Variables and Remove Some Samples 
	Random Sampling and Adjust Sample Period 
	Quantile Regression 

	Endogeneity Test 
	Mechanism Analysis 

	Discussion 
	Conclusions and Suggestions 
	References

