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Abstract: An in-depth comprehension of the spatial–temporal characteristics of land-use carbon
emissions (LUCE), along with their potential influencing factors, is of high scientific significance for
the realization of low-carbon land use and sustainable urban development. Academic investigations
pertaining to LUCE predominantly encompass three key dimensions: assessment, optimization, and
characterization research. This study aimed to investigate the spatial and temporal variations in
LUCE within Zhejiang Province by analyzing data from 11 cities and identifying the key factors
influencing these emissions. This research work employed the geographically and temporally
weighted regression (GTWR) model to explore the patterns of variation in these factors across each
city. The results reveal that (1) the temporal changes in LUCE display two predominant trends, while
the spatial distribution exhibits a distinct “high in the northeast and low in the southwest” divergence;
(2) the average intensity of each factor follows the order of economic level > government intervention
> urban compactness > public facilities level > urban greening level > industrial structure > population
density; (3) and the influencing factors exhibit significant spatial and temporal heterogeneity, with
varying direction and intensity of effects for different cities at different stages of development. This
study integrated the dimensions of time and space, systematically examining the evolutionary trends
of influencing factors on LUCE within each region. Consequently, it contributes to the comprehension
of the spatiotemporal effects associated with the driving mechanisms of LUCE. Moreover, it offers a
foundation for formulating customized patterns and strategies to mitigate such emissions, taking
into account specific local contexts.

Keywords: land-use carbon emissions; spatial–temporal characteristics; influencing factors;
geographically and temporally weighted regression; Zhejiang Province

1. Introduction

China’s land financial model has yielded expeditious economic growth; however, it
has concurrently fostered incautious land utilization and extensive urban sprawl, culmi-
nating in a discernible upsurge in carbon emissions. This, in turn, has instigated grave
climate issues and the occurrence of extreme weather events, which substantively en-
croach upon the productivity and well-being of the population [1,2]. Global climate change
poses new requirements and challenges for energy efficiency and low-carbon sustainable
development in cities. Land-use changes and their associated land cover modifications
represent the second most prominent factor contributing to the escalation of environmental
issues, particularly the surge in carbon emissions, behind the combustion of fossil fuels [3].
Land-use changes exert influences not only on the urbanization process [4] and energy
consumption [5,6] but also assume a crucial role within the complex interplay between
carbon emissions and carbon sequestration. Furthermore, they directly or indirectly impact
the mechanisms of carbon emission and sequestration at the interface of the terrestrial
ecosystem and the atmosphere [7]. These influences are primarily manifested through

Land 2023, 12, 1506. https://doi.org/10.3390/land12081506 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12081506
https://doi.org/10.3390/land12081506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0009-0009-0610-6918
https://doi.org/10.3390/land12081506
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12081506?type=check_update&version=2


Land 2023, 12, 1506 2 of 23

modifications in land-use type, function, and structure [8–10]. Currently, due to inefficient
land urbanization in China, leading to urban sprawl and generating large amount of carbon
emissions [11,12], establishing how to coordinate the relationship between urban land and
carbon emissions is a major issue to be solved [13]. Studying the spatial and temporal
characteristics of land-use carbon emissions (LUCE), as well as the underlying influencing
factors, holds paramount practical significance in achieving low-carbon land utilization
and fostering a sustainable economy with a reduced carbon footprint.

The investigation of LUCE has garnered significant attention in recent academic
research endeavors. In terms of the research scope, scholars have extensively investigated
LUCE across various scales, encompassing national [10,14], regional [2,15], provincial [16],
municipal [17], and county levels [18]. Furthermore, considering diverse research objectives,
scholars commonly adopt a comprehensive approach by integrating spatial research scales
and land-use types into a research matrix. For instance, some scholars focus on examining
the spatial and temporal characteristics of carbon emissions within the same land type
but across different regions, such as analyzing carbon emissions from industrial land in
various cities [19]. Conversely, others concentrate on analyzing different land types within
a specific region [20] or conducting detailed studies on a singular land type within the same
region [21]. Additionally, comprehensive research and analysis encompassing various
land types across different regions have been conducted to align with distinct emission
reduction objectives aimed at fostering differentiation and coordination [22].

In terms of research content, the current scholarly investigations pertaining to LUCE
can be broadly categorized into three primary aspects.

Firstly, there is a focus on assessing the effectiveness, efficiency, and carbon emission
intensity of different land uses. LUCE should be considered in a comprehensive manner
for economic and social benefits as well as ecological benefits [23]. Furthermore, certain
scholars have developed an evaluation index system to assess the level of land-intensive
use [24], focusing on land-use efficiency as a key perspective. This evolution is evident in
the transition from single-index measurements to the adoption of multi-index measurement
systems [25]. The research scope encompasses individual cities and urban agglomerations,
enabling a more comprehensive analysis [26]. The evaluation methodologies employed
have advanced from descriptive models to encompass regression models, data envelopment
models, and panel data models [27].

The second aspect of current research on LUCE involves investigating the optimization
of land-use structures and patterns. Human activities can significantly influence regional
carbon emissions by altering land-use patterns [28], subsequently impacting energy con-
sumption patterns and ultimately influencing the quantity of carbon emissions. Given that
the configuration and distribution of land use profoundly shape the spatial arrangement
of the built environment and associated human activities, particular emphasis is placed
on the spatial layout of urban land use as a pivotal factor with a significant impact on
carbon emissions [29]. It is essential to explore the relationship between land-use patterns
and overall carbon emissions, analyze the carbon emission effects resulting from land-use
changes, and propose viable and effective approaches for land managers and policymakers
to consider for reducing carbon emissions [28]. Notably, optimization studies employ opti-
mization models where varying constraints represent the values associated with adopting
different optimization strategies. When optimizing the spatial distribution of land use
with the constraint of minimizing carbon emissions, scholars incorporate additional factors
such as population carrying capacity [30], economic development [31], and the ecological
environment [32] to account for various considerations.

The third aspect encompasses the examination and analysis of LUCE mechanisms from
the perspective of mixed land use and compact cities. Achieving effective mixed land use
in urban areas necessitates moving beyond the traditional approach of functional zoning
in urban planning [33]. Instead, it requires the rational integration of work, living, and
recreational spaces at the community level. Mixed land use exerts both direct and indirect
effects on carbon dioxide emissions. The direct effect involves the carbon source and
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carbon sink dynamics of the land, while the indirect effect primarily stems from enhanced
production efficiency, increased public transport utilization, and reduced traffic congestion.
Existing research indicates a positive U-shaped correlation between mixed land use and
carbon dioxide emissions [34], suggesting that a certain degree of mixed land use can
contribute to carbon dioxide reduction. The term “compact” embodies three key aspects:
functional compactness, scale compactness, and morphological compactness [35]. The
realization of spatially compact cities can substantially alleviate road traffic, particularly the
reliance on private vehicles, thereby mitigating traffic congestion, reducing oil consumption,
preserving resources, and curbing air pollution [33]. Emphasis is placed on optimizing the
internal structure of urban areas, renewing inefficient land use within built-up areas, and
fostering polycentric urban configurations within the framework of compact development.

The academic research on LUCE and their influencing factors has experienced con-
tinuous improvement and expansion and yielded fruitful outcomes. These studies have
utilized various models selected at appropriate scales to investigate significant issues. For
instance, researchers have employed the Future Land Use Simulation (FLUS) model to
predict optimal spatial land-use configurations [32,36], utilized Cellular Automaton (CA)
to simulate natural processes of land-use changes [37], and more recently, adopted machine
learning methods like the Back Propagation Neural Network (BPNN) to forecast urban
LUCE [18]. Nevertheless, these studies are not without limitations. Primarily, geographic
models predominantly focus on investigating the spatial distribution characteristics of
carbon sources and sinks, as well as the spatial correlation of LUCE from a spatial ge-
ography perspective. However, only a few studies have effectively integrated both time
series and spatial geographic dimensions to analyze LUCE comprehensively. Furthermore,
previous studies have often utilized factor decomposition methods such as the Logarithmic
Mean Divisia Index (LMDI) model to rank influencing factors and generalize the factors
contributing to LUCE [38,39], neglecting the diverse development stages of cities and
failing to provide policy recommendations tailored to specific developmental phases. The
geographically and temporally weighted regression (GTWR) model has been extensively
employed in carbon emissions research [40–42] and is applicable to the realm of LUCE.
Therefore, the primary aim of this study is to conduct a comprehensive analysis of the spa-
tial and temporal differentiation characteristics of LUCE, utilizing an extended time series
in conjunction with the GTWR model. Additionally, it seeks to investigate the patterns
and trends of crucial influencing factors associated with LUCE across various stages of
urban development.

2. Overview of the Study Area and Data Source
2.1. Study Area

Zhejiang Province is situated on the southeast coast of China and represents the
southernmost part of the Yangtze River Delta (118◦01′~123◦10′ E, 27◦02′~31◦11′ N). It is
bordered by the East China Sea to the east, Fujian Province to the south, Shanghai and
Jiangsu Province to the north, and Anhui Province and Jiangxi Province to the west. The
province spans approximately 450 km in both the north–south and east–west directions
(Figure 1). Since the implementation of China’s reform and opening-up policy, Zhejiang
Province has strategically capitalized on its coastal location, yielding notable advancements
in economic development. Concurrently, this progress has engendered substantial modifi-
cations in land-use patterns and carbon emissions [43]. Additionally, as the birthplace of the
“Two Mountains Theory”, an innovative framework for ecological civilization construction,
Zhejiang Province demonstrates commendable ingenuity in the realm of low-carbon sus-
tainable development practices. Analyzing the LUCE can provide a distinctive standpoint
for comprehensively understanding the developmental trajectory of the province from
diverse perspectives.

This study focused on the correlation between land-use change and carbon emissions
at the city scale within Zhejiang Province. The research encompassed 11 prefecture-level
cities that fall under the administrative division of the province, namely, Hangzhou, Ningbo,
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Wenzhou, Jiaxing, Huzhou, Shaoxing, Jinhua, Quzhou, Zhoushan, Taizhou, and Lishui.
The inclusion of diverse cities within the same province as the research subjects served
to mitigate the impact of macro policies on carbon emissions across different provinces.
Moreover, it facilitated a comparative analysis across cities in distinct stages of urbanization
and varying levels of development.
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2.2. Data Sources

The present study utilized a comprehensive database to conduct a case study on
preprocessing and further analysis. The database included the following components:

(1) Land-use data obtained for the interval of one year (10 years in total) from 2001 to 2019
were acquired. The relevant data were obtained from a widely utilized dataset [44]
(https://zenodo.org/record/5816591, accessed on 10 May 2023), which has been
widely used as the basic data for LUCE research [45,46]. The dataset was subjected
to preprocessing, and ArcGIS 10.8 software was employed to extract information on
construction land. Subsequently, the construction land patches within each city of
Zhejiang Province were obtained through mask extraction operations. Patches with an
area smaller than 0.01 km2 and those exhibiting scattered distribution were excluded
and manually corrected, resulting in the acquisition of construction land patches for
the 11 cities in Zhejiang Province for each year;

(2) Socioeconomic data, including population, GDP, industrial structure, government
revenue, general public budget expenditure, fixed asset investment, and livestock
population, were retrieved from the Zhejiang Statistical Yearbook. Additionally, data
on the completed area’s green-covered area were obtained from the China Urban
Statistical Yearbook. The accuracy and consistency of all of the aforementioned data
were cross-referenced and verified against the statistical yearbooks of each city;

(3) Carbon emission data for the 11 cities in Zhejiang Province from 2001 to 2019 were
obtained. These data represent estimated carbon emissions resulting from the primary
energy consumption in each city. These data serve as a partial estimation of carbon
emissions from construction land in the present article. The data were sourced from
the Carbon Emission Accounts and Datasets (https://www.ceads.net.cn/, accessed
on 10 May 2023), which comprise carbon emission inventories for 290 Chinese cities
over the years under investigation. Previous studies have confirmed the comprehen-
siveness and effectiveness of these datasets [47,48].

https://zenodo.org/record/5816591
https://www.ceads.net.cn/
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It is worth noting that this study covered a substantial time period, and as a result,
data for certain cities may have been missing for specific years. To address this issue, a
limited number of missing data were supplemented using data from adjacent years or
compensated for using the linear interpolation method. Moreover, all data were normalized
before calculation.

3. Methodology
3.1. Calculation of LUCE

The present study classified land types into seven distinct categories, namely, cropland,
forestland, shrubland, grassland, water bodies, construction land, and other lands. These
land-use categories within Zhejiang Province can be further classified into two overarching
types: “carbon sources” and “carbon sinks”. In order to estimate carbon sinks and car-
bon emissions, calculations were performed based on established research findings and
guidelines outlined by the Intergovernmental Panel on Climate Change (IPCC).

3.1.1. Accounting for Total Carbon Sinks

Carbon sinks primarily arise from the sequestration of carbon within terrestrial ecosys-
tems, including forestland, shrubland, grasslands, water bodies, and other land categories.
These specific land types can be directly quantified. Table 1 presents the carbon emission
coefficients for different land-use types, which were derived from previous research find-
ings. The total volume of carbon sinks (CS) in a natural ecosystem is calculated using the
following formula:

CS = ∑ CSi = ∑(Ai × θi) (1)

where CSi is the carbon sink amount of each land type; Ai is the area of each carbon sink
land type; and θi is the carbon sink coefficient per unit area of each carbon sink land type.

Table 1. Carbon emissions and sink coefficients.

Notation Carbon Emission Component Coefficient Units Source

θ1 Forestland −0.586 t/(hm2·yr) [15]
θ2 Shrubland −0.161 t/(hm2·yr) [49,50]
θ3 Grassland −0.021 t/(hm2·yr) [15,51]
θ4 Water bodies −0.253 t/(hm2·yr) [22,51]
θ5 Other lands −0.005 t/(hm2·yr) [15]
θc Cropland 0.497 t/(hm2·yr) [15]
δ1 Human respiration 0.079 t C/(person·yr) [50,52]
δ2 Pig respiration 0.082 t C/(head·yr) [50,53]
δ3 Cattle respiration 0.374 t C/(head·yr) [50,53]

3.1.2. Accounting for Total Carbon Emissions

Construction land and cropland function as significant sources of carbon emissions,
with construction land facilitating various economic and social activities encompassing
human habitation and production. Notably, the primary factors under consideration pertain
to energy consumption and respiratory emissions originating from both human activities
and livestock. Specifically, the main livestock species taken into account are pigs and cattle.
The following formula is utilized:

CE = Cu + Cc = Ce + Cp + Cc = Ce + ∑(pi × δi) + Ac × θc (2)

where Cu and Cc represent the emissions from construction land and cropland, respectively;
Ce represents the carbon emissions of apparent energy consumption; Cp represents the
carbon emissions of human and livestock respiration; Pi is the number of humans and
livestock in a city; δi indicates the annual carbon emissions per person (head); Ac is the
area of cropland; and θc is the carbon emission coefficient of cropland.
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3.2. Net Land-Use Carbon Emissions

Net land-use carbon emissions (NLUCE) are the sum of carbon sources and sinks in a
region and are calculated as follows:

C = CS + CE (3)

where C is the NLUCE; CS is the total volume of carbon sinks; and CE is the total carbon emissions.

3.3. Influencing Factors

Drawing on relevant studies, this study focuses on the following influencing factors
based on three aspects—socioeconomic aspects, urban form aspects, and urban environ-
ment aspects:

• Socioeconomic aspects

(1) Population density, represented by the number of people per unit area;
(2) Economic level, represented by GDP per capita to measure economic level;
(3) Industrial structure, represented by the ratio of secondary industry to GDP;
(4) Government intervention, represented by the ratio of general budget expenditure

to total financial revenue;
(5) Public facilities level, represented by the ratio of investment in fixed assets to GDP.

• Urban form aspects

(6) The compactness of the peripheral profile form in urban areas holds significant
importance as an indicator of urban spatial structure. In general, during the phase of
rapid urban expansion, the compactness tends to decrease, whereas it tends to increase
when cities transition toward internal filling and transformative development stages. The
cyclical expansion of cities is intricately linked to the cyclical nature of urban economic
development, and investigating the changes in the compactness of urban form allows for
the identification of such cyclic patterns in urban expansion.

Enhancing the urban compactness index contributes to reducing the distance between
various parts within the city, thereby improving the efficiency of urban infrastructure and
optimizing the utilization of developed land. The compactness index CI is calculated by
means of the following formula [54]:

CI =
2
√

πA
P

(4)

where A is the area of the built-up area, and P is the perimeter of the built-up area of the
city. A higher value of the compactness index indicates a more compact shape of the city;

• Urban environment aspects

(7) Urban greening level, represented by the proportion of green covered area to the
built-up area.

3.4. GTWR Models

Compared with previous research models, this study incorporates the GTWR model
into the investigation of LUCE. It focuses on comprehensively examining the dynamic
evolution of influential factors contributing to LUCE during various stages of develop-
ment within each city. Consequently, this approach enhances the ability to elucidate the
spatiotemporal effects of the driving mechanisms behind LUCE in a scientifically robust
manner. The conventional geographically weighted regression (GWR) model is subject to
certain limitations when applied in specific contexts, primarily due to the restricted sample
size of cross-sectional data. One prominent drawback is that the explanatory stability is
constrained by the sample size, thereby impeding the accurate estimation of model param-
eters. In an effort to address this issue, researchers [55] introduced the temporal dimension
to the GWR model, thereby incorporating the combined influence of spatiotemporal factors.
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This advancement has led to the proposal of the geographically and temporally weighted
regression model, known as GTWR. The GTWR model effectively extends the GWR frame-
work by integrating temporal and spatial information, thus enhancing the weighting matrix
and resolving the challenge of spatial and temporal nonsmoothness. Consequently, the
estimation process is significantly improved. The specific equation for the GTWR model
can be represented as follows:

Yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)Xik + εi (5)

where Y and X represent the dependent and explanatory variables, respectively. The vari-
able i represents the sample region, while u and v represent the geographical coordinates
of the sample region. Additionally, the variable t represents time. The term β0(ui, vi, ti)
corresponds to the intercept term, and βk(ui, vi, ti) signifies the estimated coefficient for
the explanatory variables. A positive value of β indicates a positive correlation between
the explanatory and dependent variables, while a negative value indicates a negative
correlation. The term εi represents the random disturbance term.

4. Results and Discussion
4.1. Land-Use Changes

As urbanization progresses, cities in Zhejiang Province require the ongoing expansion
of construction land to facilitate their developmental needs. Consequently, urban construc-
tion land areas have expanded outward, resulting in substantial alterations to land-use
patterns. The observed increase in construction land area across each city between 2001 and
2019 was approximately twice the original area. Notably, Hangzhou and Ningbo exhibited
the most significant increments in construction land expansion, measuring 831.92 km2

and 879.01 km2, respectively. Furthermore, Jiaxing experienced substantial growth in con-
struction land from 248.03 km2 to 778.33 km2, exceeding three times its initial size. Table 2
reveals that the augmentation of construction land predominantly occurred through the
conversion of three land-use types: cropland, forestland, and water bodies. Five distinct
land-use transformation patterns can be identified: first, the primary conversion involved
cropland transforming into construction land, exemplified by Jiaxing. Second, there were
instances of forestland being converted into both construction land and cropland, as ob-
served in Wenzhou, Quzhou, and Lishui. Third, the most prevalent land-use change pattern
entailed the conversion of cropland and forestland into urban construction land, evident in
Hangzhou, Huzhou, Shaoxing, Jinhua, and Taizhou. Fourth, the conversion of cropland
and water bodies into construction land was evident in the island city of Zhoushan. Finally,
the city of Ningbo demonstrated the conversion of cropland, forestland, and water bodies
into construction land. Irrespective of the specific conversion mode, whether involving a
single land type such as cropland or forestland, or the combined conversion of cropland,
forestland, and water bodies to facilitate construction, all these processes result in dimin-
ished carbon sinks and increased carbon sources. Therefore, it is imperative to conduct
further investigations to explore the spatial and temporal differentiation of LUCE and their
underlying influencing factors.



Land 2023, 12, 1506 8 of 23

Table 2. Major land-use changes in Zhejiang’s cities from 2001 to 2019.

Cities Land-Use Types 2001 (km2) 2011 (km2) 2019 (km2) 2001–2019 (km2)

Hangzhou

Cropland 3205.45 2553.36 2686.83 −518.63
Construction land 636.69 1167.11 1468.61 831.92

Forestland 12,201.59 12,280.22 11,930.67 −270.92
Water bodies 836.67 879.03 794.27 −42.40

Ningbo

Cropland 3253.42 2901.97 2850.59 −402.84
Construction land 698.29 1303.45 1577.30 879.01

Forestland 4521.21 4348.68 4266.27 −254.94
Water bodies 755.51 674.04 534.61 −221.10

Wenzhou

Cropland 2047.19 1801.55 2109.13 61.94
Construction land 441.43 680.23 814.82 373.39

Forestland 8698.51 8716.95 8313.80 −384.70
Water bodies 242.19 232.49 194.81 −47.38

Jiaxing

Cropland 3591.53 3321.43 3117.16 −474.38
Construction land 248.03 550.66 778.33 530.30

Forestland 25.39 22.80 23.68 −1.71
Water bodies 1049.84 1019.25 995.61 −54.23

Huzhou

Cropland 2849.06 2646.92 2589.38 −259.68
Construction land 210.68 424.66 603.73 393.05

Forestland 2523.62 2389.94 2284.23 −239.39
Water bodies 240.64 361.76 346.64 106.00

Shaoxing

Cropland 2557.55 2265.12 2363.91 −193.64
Construction land 423.85 710.55 867.12 443.27

Forestland 4925.04 4911.33 4715.85 −209.19
Water bodies 372.05 391.05 331.94 −40.11

Jinhua

Cropland 3118.94 2651.72 2817.73 −301.21
Construction land 426.40 790.21 983.04 556.65

Forestland 7276.66 7326.01 6993.81 −282.84
Water bodies 138.41 191.90 166.06 27.65

Quzhou

Cropland 2046.61 1944.41 2079.32 32.72
Construction land 218.11 322.73 409.76 191.64

Forestland 6519.36 6479.76 6262.37 −256.99
Water bodies 90.66 127.88 123.64 32.97

Zhoushan

Cropland 420.34 403.46 360.30 −60.04
Construction land 95.48 168.92 214.31 118.83

Forestland 568.12 531.55 559.48 −8.64
Water bodies 95.01 74.96 44.89 −50.12

Taizhou

Cropland 2508.14 2280.38 2300.04 −208.10
Construction land 416.91 714.22 860.08 443.18

Forestland 6258.94 6182.98 6050.61 −208.33
Water bodies 257.26 263.93 231.44 −25.82

Lishui

Cropland 870.00 731.62 1075.23 205.23
Construction land 123.89 188.09 257.07 133.18

Forestland 16,234.14 16,278.26 15,866.92 −367.82
Water bodies 75.97 107.25 107.05 31.08
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4.2. Spatial and Temporal Variation Characteristics of LUCE
4.2.1. Temporal Evolution Characteristics

Between 2001 and 2019, the total LUCE in Zhejiang Province exhibited a pattern of
rapid growth followed by a period of stability. The emissions increased from
153.90 million tons in 2001 to 446.56 million tons in 2011, representing a substantial increase
of 292.66 million tons. By 2019, LUCE reached 453.43 million tons, signifying an additional
increase of 6.87 million tons compared to 2011. These data indicate a significant slowdown
in the growth rate of carbon emissions, suggesting that Zhejiang Province is gradually
exploring a sustainable development path characterized by a green economy, resulting in
more effective carbon reduction outcomes.

Specifically, when examining LUCE at the city level, two distinct trends emerge
(Figure 2). The first trend is exemplified by Ningbo, Wenzhou, Jiaxing, Quzhou, Zhoushan,
and Lishui, where carbon emissions have consistently risen over the past two decades.
Among these cities, Ningbo exhibits the highest annual average LUCE of 90.21 million tons,
making it the city with the greatest annual emissions in Zhejiang Province. The second
trend entails a phased rise and subsequent stabilization of LUCE. Hangzhou, Huzhou,
Shaoxing, Jinhua, and Taizhou exemplify this pattern. Notably, Taizhou achieved the largest
reduction in carbon emissions between 2011 and 2019, with a decrease of 17.92 million tons
in LUCE compared to 2011. Overall, the cities in Zhejiang Province possess significant
potential for carbon emission reduction. Whether following a trend of continuous growth
or a phased rise followed by stabilization, the carbon emission increment index displays a
general slowdown, indicating a shift away from the initial stage of crude carbon emission
control and management. Instead, cities in Zhejiang Province are gradually embracing
strategies and initiatives for green and low-carbon urban development.
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4.2.2. Spatial Distribution Characteristics

The spatial distribution of carbon emissions resulting from land-use activities in Zhe-
jiang Province exhibits a distinct “high in the northeast and low in the southwest” pattern
(Figure 3). Examining regional agglomeration, in 2001, the areas with elevated LUCE were
primarily concentrated in the northern part of Zhejiang Province, with Hangzhou and
Ningbo, the two central cities of the metropolitan area, accounting for the highest emis-
sions. Huzhou, Jiaxing, and Shaoxing followed closely in the second gradient. Between
2001 and 2007, the northern region of Zhejiang Province maintained consistently high
carbon emissions, while Hangzhou and Huzhou gradually decelerated their emission rates.
From 2007 to 2017, there was a shift in the spatial distribution of the dual-center cities,
with Ningbo emerging as the sole city with the highest carbon emissions. This shift in
spatial dynamics indicated a transition in the center of carbon emission aggregation from
the northern part of Zhejiang Province to the eastern coastal region. Moreover, a trend
of carbon emission concentration and a circular spatial distribution pattern emerged. In
2019, Ningbo remained the largest urban area in terms of carbon emissions, with most
cities experiencing a reduction in emissions compared to the previous period. The center
of carbon emissions shifted from the east to the northeast, and the spatial distribution
transformed from a scattered pattern to a more concentrated circular configuration. At the
city level, Ningbo in the northeast consistently ranked highest regarding carbon emissions,
exerting significant influence on the overall spatial distribution of carbon emissions in
Zhejiang Province. Conversely, Lishui and Wenzhou in the southern part of the province
maintained a relatively steady state in terms of total carbon emissions.
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4.3. Spatial and Temporal Variation Characteristics of LUCE Influencing Factors
4.3.1. GTWR Empirical Results

Moran’s I was employed to examine the global autocorrelation of the seven influencing
factors, and the corresponding results are presented in Table 3. It was observed that
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each influencing factor demonstrated a positive Moran’s index, with all global spatial
autocorrelation coefficients being significantly greater than 0 at the 1% significance level.
These findings indicate the presence of positive spatial correlation among the factors,
implying a spatial clustering characteristic.

To investigate the localized correlation between different factors and LUCE, the GTWR
model was used to analyze the spatial heterogeneity considering the influence of the “First
Law of Geography”. The obtained results are presented in Table 4, where both the R2 and
the adjusted R2 surpass the threshold of 0.95. This indicates a high level of model fit and
suggests that the regression model possesses substantial explanatory power. Consequently,
the model outcomes can effectively illuminate the spatial heterogeneity of the influence.

Table 3. Statistical tests of spatial autocorrelation using Moran’s I.

Influencing Factors Moran’s Index Z-Score p-Value Confidence Interval

Population density (PD) 0.3238 17.1222 <0.01 99%
Economic level (EL) 0.0863 4.8947 <0.01 99%

Industrial structure (IS) 0.2749 14.5810 <0.01 99%
Government intervention (GI) 0.3584 18.9851 <0.01 99%

Public facilities level (PF) 0.1717 9.4052 <0.01 99%
Urban compactness (UC) 0.6188 32.3278 <0.01 99%

Urban greening level (UG) 0.0732 4.2427 <0.01 99%

Note: The contents in parentheses represent the respective abbreviations of the influencing factors.

Table 4. Index of model evaluation.

Bandwidth Sigma Residual Squares AICc R2 Adjusted R2

0.1575 0.0342 0.1288 −208.1290 0.9697 0.9677

4.3.2. Spatial and Temporal Heterogeneity of LUCE Influencing Factors

Through statistical analysis of the regression coefficients (Table 5), it was determined
that the average intensity ranking order of each influencing factor is as follows: economic
level > government intervention > urban compactness > public facilities level > urban
greening level > industrial structure > population density. Among the top three factors,
the median regression coefficient of economic level is 0.3417, and the mean value is 0.4171;
the median regression coefficient of government intervention is −0.3115, and the mean
value is −0.3962; and the median regression coefficient of urban compactness is −0.2977,
and the mean value is −0.2850. Their median and mean values exhibit consistent changes
in the same direction and are relatively close to each other. Moreover, by examining the
range between the minimum and maximum values, it becomes apparent that both positive
and negative correlations exist between all seven factors and LUCE. For instance, when
considering urban compactness, the minimum compactness value is −0.7052, while the
maximum value is 0.4190. The positive and negative effects of urban compactness exhibit
variations across different cities, indicating that the general understanding, which posits
that higher compactness results in lower carbon emissions from land use and advocates
for continuous improvement in compactness in urban development, fails to account for
the divergent developmental stages among cities. Therefore, when pursuing low-carbon
development, cities need to adopt an adaptive and stratified approach that takes into
consideration the specific characteristics of each locality.

Figures 4–10 depict the spatial distribution of the regression coefficients for the seven
influencing factors derived from the GTWR model. The figures visually demonstrate the
spatial heterogeneity in the impact of various factors on carbon emissions across different
time periods.
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Table 5. Descriptive statistics of regression coefficients of influencing factors.

Influencing Factors Mean S.D. Min. Median Max.

Population density (PD) −0.0248 0.2895 −1.2100 0.0260 0.4001
Economic level (EL) 0.4171 0.3597 −1.0195 0.3417 1.1011

Industrial structure (IS) −0.0733 0.2862 −0.7208 −0.0080 0.4078
Government intervention (GI) −0.3962 0.4375 −1.7426 −0.3115 0.6037

Public facilities level (PF) −0.1018 0.2595 −1.0618 −0.0122 0.3481
Urban compactness (UC) −0.2850 0.2438 −0.7052 −0.2977 0.4190

Urban greening level (UG) −0.0967 0.2556 −1.2192 −0.0201 0.1961

Note: The contents in parentheses represent the respective abbreviations of the influencing factors.

• Socioeconomic Aspects

(1) Spatial and temporal heterogeneity of the influence of the population density factor
on LUCE (Figure 4).

In terms of the temporal evolution of influence, population density has the greatest
influence on LUCE in Quzhou and Shaoxing. In Quzhou, population density exhibits
a negative correlation with LUCE, with the strength of this influence diminishing over
time. Conversely, population density in Shaoxing shows a positive correlation with LUCE,
and its impact remains relatively stable. In a broader context, the effect of population
density on LUCE in each city undergoes a transition from initially negative to ultimately
positive. The clustering of the population facilitates the spatial concentration of economic
activities and production factors, as well as the sharing of social infrastructure [6,56]. This
can result in reduced fixed investment costs, management costs, and improved energy
and resource utilization efficiency, thereby lowering carbon emissions. However, excessive
population density can lead to heightened energy consumption, hence displaying a positive
correlation. The impact of population density on LUCE, while generally modest, should
not be disregarded. It is imperative to judiciously manage the influx of migrants, endeavor
to enhance demographic conditions, and encourage reasonable growth of the resident
population [38].

Concerning the spatial distribution of influence, the impact of population density on
LUCE is more significant in inland cities located in western Zhejiang Province compared to
their counterparts in the eastern coastal areas.
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(2) Spatial and temporal heterogeneity of the influence of the economic level factor on
LUCE (Figure 5).

In terms of the temporal evolution of the degree of influence, a positive correlation
is observed between the economic level and LUCE in the cities of Zhejiang. Moreover,
this influence maintains a consistent stability. These findings align with prior research
outcomes [2,39], underscoring the imperative of exploring strategies that foster an optimal
equilibrium between economic advancement and LUCE. The economic level exhibits the
strongest degree of influence on LUCE in two cities, namely, Ningbo and Taizhou, con-
sistently maintaining a high level of influence. Notably, a negative correlation emerges
between the economic level and LUCE in Wenzhou and Lishui after 2015, with the de-
gree of influence steadily increasing. The negative effect of economic development on
LUCE is similarly verified within the examination of the Chang–Zhu–Tan urban agglomer-
ation [57]. This trend aligns with the advancement of economic development, optimization
of the economic development model, and the implementation of low-carbon economic
strategies, including the establishment of carbon emission reduction targets. These mea-
sures effectively regulate LUCE resulting from economic development, thereby fostering
the emergence of a low-carbon economic development model as a potential catalyst for
coordinated economic, social, and environmental development [58].

Regarding the spatial distribution of the degree of influence, the impact of the eco-
nomic level on LUCE is more pronounced in the eastern coastal cities of Zhejiang Province
compared to the western cities. This spatial pattern exhibits a trend characterized by higher
influence in the eastern cities and lower influence in the western cities, commonly referred
to as a “high in the east and low in the west” distribution. Specifically, Ningbo, Taizhou,
Zhoushan, and Jiaxing, situated in the eastern region of Zhejiang Province, consistently
experience the significant influence of a high economic level on LUCE. Conversely, Quzhou
and Jinhua, located in the western region, demonstrate a lower level of economic influence
on their LUCE.
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(3) Spatial and temporal heterogeneity of the influence of the industrial structure factor
on LUCE (Figure 6).

From a temporal perspective, the relationship between industrial structure and LUCE
in Hangzhou and Quzhou consistently exhibits a positive association, with a stable degree
of influence. This implies that higher proportions of secondary industry in these cities
lead to elevated levels of LUCE. To effectively mitigate total LUCE, cities can appropriately
reduce the proportion of secondary industry and prioritize the development of tertiary in-
dustry by modifying their industrial structure [2,17]. The impact of the industrial structure
on LUCE in most cities shifted from a negative to a positive effect after 2009. A possi-
ble explanation is the inadequate transformation and upgrading of industrial structures
during the initial stages of urban development. The mismatch between the industrial
pattern and the high demand for industries like steel and cement in urban construction
results in reduced carbon emissions from the reduced share of secondary industry, which is
outweighed by the increased energy consumption associated with urbanization, thereby
establishing a negative correlation between the two variables.

The influence of industrial structure on LUCE exhibits significant spatial heterogeneity
in Zhejiang Province. Analyzing the dynamic evolution of the influence degree reveals a
decreasing influence on cities in northeastern Zhejiang, represented by Ningbo, while cities
in southwestern Zhejiang, such as Quzhou and Lishui, experience an increasing influence
from the industrial structure.
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(4) Spatial and temporal heterogeneity of the influence of the government intervention
factor on LUCE (Figure 7).

From a temporal perspective, the relationship between government intervention and
LUCE in Zhejiang’s cities exhibits a predominantly negative association. Notably, the city
of Ningbo experiences the greatest influence; however, the strength of this influence has
been gradually diminishing over time. Conversely, the impact of government intervention
on LUCE in Jiaxing displays a consistent year-on-year increase. Furthermore, in Shaoxing,
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there exists a positive correlation between government intervention and LUCE, with the
degree of influence showing a progressive rise after 2011. Among the extant studies, the
identification of a robust positive relationship between the government intervention factor
and LUCE represents an innovative contribution.

In terms of spatial distribution, the influence of government intervention on LUCE
in Zhejiang Province shows a spatial heterogeneity of “high in the northeast and low in
the southwest”. The northeastern region, encompassing cities like Ningbo and Taizhou,
experiences the most profound impact of government intervention on LUCE. In particular,
the relationship between government intervention and LUCE in Shaoxing shifts from
negative to positive, with the degree of influence continuing to grow. Conversely, in the
southwestern region of Zhejiang Province, represented by cities such as Quzhou, Jinhua,
and Lishui, the influence of government intervention on LUCE is comparatively weaker.
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(5) Spatial and temporal heterogeneity of the influence of the public facilities level
factor on LUCE (Figure 8).

In terms of the temporal evolution of the influence degree, a positive correlation is
observed between the level of public facilities and LUCE in Quzhou and Lishui, with a
consistently stable degree of influence. Conversely, a negative relationship persists, albeit
with a diminishing degree of influence, on LUCE in Zhoushan. Furthermore, the impact
of the public facilities level on LUCE in Ningbo and Shaoxing has transitioned from a
negative effect in the initial stages to a positive effect, and the magnitude of this influence
has been progressively increasing over the years. Shaoxing, in particular, has consistently
exhibited the highest influence degree since 2009. Local governments ought to enhance
the criteria for approving high-emission and high-consumption projects, while expediting
the implementation of a “carbon assessment” and regulatory framework for fixed-asset
investments [56].

Regarding the spatial distribution of the influence degree, the relationship between
the public facilities level and carbon emissions in cities across Zhejiang Province displays a
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three-tiered pattern. The northeast region exhibits the highest level of influence, followed
by the southwest region, while the middle belt demonstrates the lowest level. Specifically,
the cities in the northeast, such as Ningbo and Shaoxing, experience a significant influence
from the public facilities level indicator, which has undergone a dynamic evolution of
continuous enhancement. On the other hand, the cities in the southwest, represented by
Quzhou and Lishui, as well as the cities in the middle belt, including Huzhou, Hangzhou,
and Wenzhou, exhibit a weaker influence degree from the public facilities level indicator.
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• Urban Form Aspects

(6) Spatial and temporal heterogeneity of the influence of the urban compactness factor
on LUCE (Figure 9).

There exists a predominantly negative correlation between urban compactness and
LUCE in cities across Zhejiang Province. This implies that compact urban construction
land contributes to the reduction in urban carbon emissions, underscoring the importance
for these cities, at their stage of development, to continually optimize and enhance their
land-use layout. They should pursue a path of compact and intelligent development while
continuously harnessing the effectiveness of urban land use. The impact of urban com-
pactness on LUCE in Quzhou is substantial; however, its influence has been diminishing
since 2013. Conversely, in Hangzhou and Huzhou cities, the impact has been deepening
over time. Taizhou, on the other hand, consistently maintains a low level of influence.
The relationship between urban compactness and LUCE in Jiaxing is particularly unique.
Prior to 2013, a negative correlation was observed, with the degree of influence decreasing.
Subsequently, a positive correlation emerged, and the degree of influence increased. This
suggests that landscape pattern characteristics such as connectivity, complexity, and ag-
glomeration of urban patches need to be taken into account in compact and low-carbon
urban development [59]. To achieve this, urban management should exercise control over
the peripheral areas of urban growth and redirect development efforts toward optimiz-
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ing the internal structure of the city and revitalizing underutilized land within built-up
areas [60].

Regarding the spatial distribution of the influence degree, the impact of urban com-
pactness on LUCE in cities across Zhejiang Province exhibits a distinct pattern characterized
by divergence, with higher levels of influence observed at both ends and lower levels in
the middle. The cities that experience a high degree of influence are primarily concentrated
in the northern and southern regions of Zhejiang Province, exemplified by Hangzhou,
Huzhou, and Wenzhou. Conversely, the cities located in the middle belt, namely, Jinhua
and Taizhou, demonstrate a relatively weaker driving force of urban compactness on
their LUCE;
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• Urban Environment Aspects

(7) Spatial and temporal heterogeneity of the influence of the urban greening level
factor on LUCE (Figure 10).

From a temporal perspective, the degree of influence of the urban greening level on
LUCE in Zhejiang’s cities can be classified into three distinct types. Firstly, a consistent
positive correlation is observed between urban greening level and the cities of Wenzhou
and Lishui. Wenzhou experiences an increasing degree of influence over time, while Lishui
demonstrates a fluctuating pattern with an initial decrease followed by an increase in its
degree of influence. Secondly, there is a persistent negative correlation between urban
greening level and Zhoushan, with the degree of influence continuously increasing. Thirdly,
starting in 2007, a notable trend emerged whereby the influence of the urban greening level
on LUCE in most cities undergoes a transition from a weakening positive effect in the early
stages to a growing negative effect. This effect is most pronounced in Ningbo and Shaoxing,
with Ningbo witnessing an increasing degree of influence, while Shaoxing tends to stabilize.
This evolutionary trend indicates that promoting the enhancement of green cover facilitates
carbon storage and contributes to the reduction in carbon emissions in urban land uses.
Furthermore, the implementation of green space construction in built-up areas, coupled
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with dedicated endeavors to establish robust green infrastructure systems [61], can offer
individuals a range of ecological service functions, thereby contributing to the enhancement
of the residential living environment [62].

In terms of the spatial distribution of the influence degree, the impact of urban greening
level on LUCE in each city of Zhejiang Province exhibits a spatial divergence characteristic,
with higher levels of influence observed in the northern regions and lower levels in the
southern regions. The northern cities of Ningbo, Shaoxing, and Zhoushan display a
consistent increase and stability in the influence of this indicator on LUCE. Conversely,
the southern cities of Lishui and Wenzhou exhibit a relatively lower level of influence in
this regard.
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Based on the spatial and temporal distribution of regression coefficients concerning
the influencing factors on LUCE within each city in Zhejiang Province, it is possible to
delineate the principal determinants of such emissions in each city. The dominant drivers
primarily hinge on the varying degrees of impact exhibited by individual influencing
factors on LUCE across different cities (evident through the comparison of the absolute
values of regression coefficients during different developmental stages within the same
city). Certain cities are predominantly influenced by a single factor, whereas others are
subject to the combined effects of multiple factors.

In Hangzhou, LUCE are mainly influenced by both urban compactness and urban
greening level. The effect of urban compactness initially increases and then decreases, while
urban greening level has exhibited a negative effect since 2007 and continues to increase. In
Ningbo, LUCE are influenced by the economic level, government investment interventions,
and urban greening level. The influence of the economic level remains stable, that of
government investment shows an increasing and then decreasing trend, and the influence
of urban greening level continues to increase. Wenzhou is influenced by the economic
level, industrial structure, and urban greening level, with the economic level displaying a
negative effect since 2013, while the influence of the latter two factors has been increasing
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since the same year. Jiaxing is primarily influenced by the economic level and government
investment interventions, and the driving force of both factors has been increasing year
by year. In Huzhou, LUCE are influenced by government investment interventions and
urban compactness, with both drivers initially increasing and then stabilizing. In Shaoxing,
LUCE are primarily influenced by a combination of the economic level, social infrastructure
investment, and urban greening level, with all three drivers showing a continuous increase
in influence. In Jinhua, LUCE are mainly influenced by the consistently stable economic
level. In Quzhou, population density and urban greening level are the main drivers,
with the influence of population density gradually weakening and the influence of urban
greening level remaining stable. In Zhoushan, LUCE are influenced by the economic level
and government investment interventions, with the former having a consistent and steady
impact, while the influence of the latter initially increases and then gradually decreases.
Taizhou’s LUCE are mainly influenced by the economic level and government intervention,
displaying a continuous and steady effect. In Lishui, LUCE are mainly influenced by the
economic level and urban compactness, with the former transitioning to a negative effect
since 2011, accompanied by an increasing degree of influence, while the influence of urban
compactness continues to rise year by year. This analysis and trend assessment of the main
driving forces in each city, based on the regression coefficients of the influencing factors,
can provide a scientific basis for cities to explore low-carbon economic transition models
and achieve differentiated and coordinated emission reduction.

5. Conclusions

This study employed GIS and RS technologies to extract seven types of land-use
patches from 11 prefecture-level cities in Zhejiang Province. These patches were used
to quantitatively assess the LUCE of each city and examine their spatial and temporal
variations. Additionally, a GTWR model was employed to investigate the spatiotemporal
characteristics of factors influencing LUCE in each city of Zhejiang Province. The main
findings of this study are as follows:

(1) Over a period of nearly 20 years, from 2001 to 2019, the total LUCE in Zhejiang
Province exhibited a pattern of rapid growth followed by stability. The change in
LUCE in each city demonstrated two primary trends: a continuous increase over
time, as observed in Ningbo, and a pattern of stabilization, exemplified by Hangzhou,
where emissions initially increased and then decreased in phases. Furthermore, there
was a noticeable spatial variation in LUCE among Zhejiang’s cities, with higher
emissions observed in the northeast region and lower emissions in the southwest;

(2) The influence of the seven indicators on LUCE exhibited significant heterogeneity in
both the temporal and spatial dimensions. The statistical analysis of the regression co-
efficients for the influencing factors revealed that their average intensities were ranked
as follows: economic level > government intervention > urban compactness > public
facilities level > urban greening level > industrial structure > population density;

(3) The impact of population density on LUCE varied across cities, transitioning from
a negative effect in the early stages to a positive effect. Inland cities in western
Zhejiang Province exhibited a greater influence on LUCE compared to eastern coastal
cities. The relationship between economic level and LUCE in Zhejiang’s cities was
generally positive and stable, with a spatial distribution characterized by higher
levels in the east and lower levels in the west. The association between industrial
structure and LUCE remained positive and stable in Hangzhou and Quzhou, while
it decreased in northeastern Zhejiang’s cities represented by Ningbo and increased
in southwestern Zhejiang’s cities represented by Quzhou and Lishui. Government
intervention exhibited a negative correlation with LUCE in Zhejiang’s cities, with a
spatial distribution indicating higher levels in the northeast and lower levels in the
southwest. The spatial distribution of the influence of public facilities level on carbon
emissions in Zhejiang’s cities demonstrated a three-tiered hierarchical pattern, with
higher levels in the northeast, intermediate levels in the southwest, and lower levels
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in the middle. Urban compactness exhibited a negative correlation with LUCE in each
city of Zhejiang Province, and its impact displayed a spatial distribution characterized
by higher levels at both ends and lower levels in the middle. The influence of urban
greening level on LUCE varied among cities and exhibited a spatial divergence, with
higher levels in the north and lower levels in the south;

(4) The LUCE in different cities are influenced to varying degrees by cities’ respective
stages of development. For instance, cities such as Ningbo, Wenzhou, Jiaxing, Shaox-
ing, Jinhua, Zhoushan, Taizhou, and Lishui are all influenced by their economic levels,
albeit with variations in the extent and dynamic evolution of these influences. There-
fore, when formulating differentiated low-carbon economic development strategies
for different cities, careful consideration should be given to their specific developmen-
tal stages and the processes of dynamic evolution they are undergoing.

This study employs the GTWR model to examine the evolving patterns of factors in-
fluencing LUCE. This approach offers valuable insights into scientifically characterizing the
spatiotemporal effects of the mechanisms driving LUCE. Consequently, it facilitates a more
rigorous assessment of the developmental trajectories associated with LUCE. Moreover, the
findings serve as a fundamental basis for establishing differentiated models and strategies
for land-use carbon reduction, tailored to specific local contexts.

Disparities in urban development stages are not only evident within the 11 cities in
Zhejiang Province but also extend to other regions worldwide. This study demonstrates a
thorough recognition of the multifaceted nature, systematicity, dynamics, and variability
inherent in the driving mechanisms of LUCE. Accordingly, leveraging an extensive time
series, this research systematically identified seven pivotal influencing factors derived from
the socioeconomic, urban form, and urban environment aspects. These factors were then
utilized to investigate the dynamic evolution of the driving mechanism governing LUCE
during distinct stages of urban development. The research methodology employed and the
resulting findings hold significant potential for generalization and application in studies
conducted in diverse regions worldwide.

The current study has certain limitations that need to be acknowledged. Firstly, the
classification of land-use types in this study into seven categories may have overlooked
the carbon emission variations that could be observed with a more detailed classification.
Secondly, this study primarily focused on the city scale due to the availability of basic data.
However, counties, being the fundamental administrative units in China, play a crucial
role in implementing and enforcing low-carbon policies. Future studies should consider
conducting more granular investigations at the county level to analyze the spatial and
temporal characteristics of LUCE and their influencing factors.
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