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Abstract: Cropland is a vital resource intricately connected to food security. Currently, the issue of
cropland abandonment poses a serious threat to food production and supply, presenting a significant
challenge to rural economies and the stability of the food supply chain. The hilly and cloudy
regions of southwest China are particularly affected by cropland abandonment, presenting significant
challenges in accurately mapping the distribution of abandoned cropland due to fragmentation and
heavy cloud pollution. Therefore, this study focuses on Mingshan County, located in Ya’an City,
Sichuan Province, China, as the study area. Utilizing Google Earth Engine (GEE) and a random
forest algorithm, a method integrating multi-source data from Landsat 8, Sentinel-2, and Sentinel-1 is
proposed to extract abandoned cropland spanning from 2018 to 2022. This study analyzes spatial
and temporal characteristics, employing the Geodetector with optimal parameters to explore the
underlying mechanisms. The findings reveal the following: (1) The method achieves an overall
accuracy of land use classification surpassing 88.67%, with a Kappa coefficient exceeding 0.87.
Specifically, the accuracy for identifying abandoned cropland reaches 87.00%. (2) From 2018 to 2022,
the abandonment rate in Mingshan County fluctuated between 4.58% and 5.77%, averaging 5.03%.
The lowest abandonment rate occurred in 2019–2020, while the highest was observed in 2020–2021.
(3) Cropland abandonment is influenced by both natural and social factors. Elevation and slope are
the main driving factors, alongside factors such as distance to road, town, and residential settlement
that all significantly contribute to abandonment trends. These five factors exhibit positive correlation
with the abandonment rate, with distance to the river showing relatively weaker explanatory power.

Keywords: abandoned cropland; hilly; Google Earth Engine; Mingshan County; China

1. Introduction

Cropland abandonment is a widespread global phenomenon, posing a serious chal-
lenge to rural economies and the stability of the food supply chain [1–4]. Historically, dating
back to the 19th century, this trend has primarily been observed in European and developed
industrialized countries, notably in Europe [5], the United States of America [6], and East
Asia [7]. However, in recent decades, numerous developing countries such as China [8]
and Nepal [9] have experienced substantial rates of cropland abandonment. The factors
influencing cropland abandonment are diverse, encompassing natural conditions, labor
dynamics, levels of agricultural development, geographical factors, economic development
levels, and agricultural policies [10,11]. In China, cropland abandonment is prevalent due
to factors like complex topography and extensive mountainous regions [12,13], leading
to adverse effects on agricultural productivity. Sichuan Province is the only major grain-
producing province in western China and one of the 13 major grain-producing provinces
in China. At the same time, it is also a populous province and a major province for the
transformation of grain consumption, playing an important role in ensuring national food
security. However, the majority of cropland is distributed in hilly areas, accounting for
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57.6% of the total cropland area in the province. With the development of rural economy
and the strengthening of farmers’ market awareness, the phenomenon of abandoned farm-
land is becoming increasingly prominent. In-depth analysis of the current situation of
farmland abandonment is not only helpful for the government to further improve relevant
policies but also necessary to promote the sustainable and healthy development of agricul-
ture in Sichuan and ensure national food security. Therefore, it is imperative to conduct
research on abandoned lands to ensure food security, implement rational land planning,
and improve people’s livelihoods [14,15].

The spatiotemporal characteristics of abandoned cropland are vital for understanding
its causes and ecological impacts, serving as essential information for policy formulation.
Hilly terrain, acting as a transitional zone between mountains and plains, is inherently
susceptible to cropland abandonment [16–19]. Its rugged topography hinders the use of
machinery, complicating the adoption of modern, market-oriented agricultural practices
and resulting in small-scale, low-intensity agricultural systems [20]. Simultaneously, the
rapid pace of urbanization and population outmigration from rural areas have triggered
widespread cropland abandonment in China’s hilly and mountainous regions [21]. Pre-
vious studies have delved into the spatiotemporal distribution and determining factors
of cropland abandonment, revealing that the impact of environmental or socio-economic
factors may manifest distinct characteristics depending on the scale [1,12,16]. However, due
to the lack of long-term observation data on cropland abandonment, there has been limited
research on the extent of abandonment, particularly its spatial distribution, in rural hilly
regions of China [16]. Additionally, constrained by terrain conditions, most studies have
relied primarily on farmer interviews and field survey data [12,22]. While field surveys
offer high precision, they still fall short in reflecting the spatiotemporal patterns of aban-
donment [23]. To explore the underlying driving factors behind abandonment, researchers
have employed various methods, including statistical modeling [24,25], machine learning,
and data mining techniques [26]. These methods often treat cropland abandonment ob-
servations as independent, but the multi-level structure of abandonment phenomena may
lead to potential correlations among observations, exaggerating the significance of certain
variables and compromising the accuracy of analysis. Therefore, there is an urgent need to
comprehend the spatiotemporal patterns and driving factors of cropland abandonment in
China’s hilly regions, especially in the hilly areas of the Sichuan Basin where the situation
remains unclear.

While monitoring farmland is crucial, mapping the abandonment of agricultural fields
is challenging and often lacks regular surveillance [4]. Remote sensing emerges as a highly
efficient method for obtaining spatiotemporal information on large-scale abandoned crop-
lands, offering improved accuracy in depicting their distribution compared to traditional
farmer surveys [27,28]. The assessment of large-scale abandoned lands primarily relies
on low-resolution satellite imagery, such as that provided by MODIS, due to its high
temporal resolution and global coverage [29]. Conversely, small-scale abandoned lands
are typically mapped using moderate-resolution satellite imagery [30–32]. Nevertheless,
the fragmentation of abandoned lands in hilly areas poses a significant challenge, as the
resolutions of Landsat and MODIS are inadequate to capture this complexity, leading to
errors in delineating fragmented abandoned areas [17]. In addition, atmospheric conditions
impact data collection for all-optical remote sensing sensors, leading to significant cloud
contamination and diminished image availability [33]. In addressing such hilly terrains, it is
imperative to improve the spatiotemporal resolution of remote sensing images to improve
their availability and accuracy in identifying abandoned land [17]. The utilization of big
data cloud computing platforms like Google Earth Engine (GEE) [13,34] has proved effec-
tive in managing satellite data ranging from medium to high resolution, thereby enhancing
the efficiency of acquiring extensive timeseries datasets. Sentinel-2 images, renowned
for their high spatial and temporal resolution, have been widely used for land use and
cover change analysis. Similarly, Sentinel-1 images, providing high-resolution imagery
unaffected by weather conditions, are extensively utilized for land cover classification
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and crop mapping [35,36]. However, research focusing on extracting abandoned land
based on Sentinel-1 and Sentinel-2 images remains limited. Therefore, integrating Landsat
8, Sentinel-2, and Sentinel-1 data presents a viable and logical approach to obtaining a
more accurate spatiotemporal distribution of abandoned land, particularly in hilly areas
characterized by fragmented land and significant cloud interference.

In this study, abandoned cropland is defined as “cropland that has been left fallow
or uncultivated for a duration of one year or longer, considering the specific conditions
of the study area and available data sources”. The primary objectives of this research are
twofold. Firstly, the aim is to develop a cropland abandonment map in the hilly regions
surrounding the southwestern basin using multi-source satellite imagery. Secondly, the
goal is to determine the abandonment rate of cropland in Mingshan County, China, along
with its driving factors, taking into consideration natural and social factors. Three specific
research questions have been formulated:

1. How can we accurately create a cropland abandonment map in the hilly regions
surrounding the southwestern basin using a time series of optical satellite images?

2. Can Landsat 8, Sentinel-2, and Sentinel-1 imagery contribute to identifying cropland
abandonment in areas prone to cloud cover and fragmented land parcels?

3. What spatiotemporal pattern characterizes cropland abandonment in the study area,
and what are the influencing factors?

2. Materials and Methods
2.1. Study Area

Mingshan County is located within Ya’an City, Sichuan Province, situated on the
southwestern periphery of the Sichuan Basin and Chengdu Plain. Geographically, its
coordinates range from 103◦02′ to 103◦23′ east longitude and 29◦58′ to 30◦16′ north latitude,
encompassing a total area of 614 square kilometers (Figure 1). This area lies within the
mid-latitude inland region, characterized by distinct seasons. The terrain varies, with
higher elevations in the northwest and lower elevations in the southeast, predominantly
featuring terraced hills and shallow hillsides.
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The region holds significant agricultural importance due to its abundant resources,
with a cultivated area of 162,700 hectares dedicated to cereal crops. Its total output amounts
to 67,900 tons, including major crops such as rice, wheat, corn, rapeseed, and tea. Recog-
nized as the “granary” of Ya’an, it serves as a primary production area for grains and oils,
establishing itself as one of the key commodity grain bases in the province. This region
epitomizes the characteristics of a hilly agricultural county situated on the edge of a basin.

2.2. Data Source

The remote sensing data utilized in this study included Sentinel-2 MSI and Sentinel-
1 SAR with a spatial resolution of 10 m, obtained from the Google Earth Engine (GEE)
platform for the period of 2018–2022, as well as Landsat 8 Tier 1 with a spatial resolution
of 30 m (Table 1). Elevation data with a spatial resolution of 30 m were retrieved from the
Shuttle Radar Topography Mission (SRTM) via the GEE platform. Auxiliary data sources
encompassed Google Earth images, the European Space Agency (ESA) World Cover 2020
land cover dataset [37], and the global ESRI 2020 land cover dataset [38], which are all
accessible through the GEE platform. Additionally, this study employed the Global Land
Cover Fine Classification System (GLC_FCS30) [39] and the China Annual Land Cover
Dataset (CLCD) [40]. Training and validation samples for pre-classification were selected
using auxiliary data and compared with the classification results obtained through the
proposed method.

Table 1. Satellite imagery used in this study.

Product Satellites Temporal
Resolution

Spatial
Resolution Selected Bands Level of

Correction

Sentinel-1 SAR, IW Sentinel-1A and -1B 6 days 10 m VV and VH GRD
Sentinel-2 MSI, L1A Sentinel-2A and -2B 5 days 10–20 m VNIR and SWIR TOA

Landsat 8 Tier 1 Landsat 8 16 days 30 m VNIR and SWIR TOA

The administrative boundaries of Mingshan County and its township-level divisions
were derived from the 2021 national 1:1,000,000-scale vector boundary dataset. Data regard-
ing towns, roads, and rivers were obtained from the 2021 National Geographic Information
Resource Catalog Service System, specifically from the 1:1,000,000 public version of basic
geographic information data. Resident point data were determined by collecting latitude
and longitude coordinates for each administrative village and subsequently mapping their
spatial distribution using ArcGIS.

2.3. Mapping the Multi-Year Trajectory of Cropland Abandonment

For the first research question (“How can we accurately create a cropland abandon-
ment map in the hilly regions surrounding the southwestern basin using a long time series
of optical satellite images?”), a framework was developed for constructing such a map.
This framework comprises five primary components (Figure 2): data collection and prepro-
cessing, generation of training data, annual land cover classification, multi-year cropland
abandonment mapping, and accuracy validation.
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Figure 2. Flow chart of this study.

2.3.1. Data Preprocessing

To address the second research question (“Can Landsat 8, Sentinel-2, and Sentinel-1
imagery contribute to identifying cropland abandonment in areas prone to cloud cover and
fragmented land parcels?”), land use classification maps were generated spanning from
2018 to 2022 using data from Landsat 8, Sentinel-2, and Sentinel-1. This initiative aimed to
facilitate the identification of various patterns of cropland abandonment in cloud-prone
hilly areas. The preprocessing of the land cover classification data primarily consisted of
two main parts.

The first part involved preprocessing the Sentinel-2 and Landsat 8 time series, which
encompasses several steps. Firstly, cloud and shadow cover in Sentinel-2 MSI and Landsat
8 OLI images were masked using QA (data product quality assessment) bands. Subse-
quently, additional cloud masking in the Sentinel-2 MSI images was performed by applying
thresholds on the visible, near-infrared, and shortwave infrared bands. Following the cloud
masking process, the time series for Sentinel-2 MSI and Landsat 8 OLI were independently
synthesized. The Landsat 8 time series was then calibrated to align the reflectance values
with those of Sentinel-2 and merged with the Sentinel-2 data. Furthermore, to match
the resolution of Sentinel-2, the Landsat images were resampled to 10 m using the GEE
nearest neighbor resampled method. When the various optical sensors provided cloud-free
pixels at a specific location and time, priority was given to pixels with the highest val-
ues [41]. Landsat data were only used to fill gaps in the cloud cover between the Sentinel-2
time series [42,43]. The Sentinel-2 images used for each optical image synthesis cover
85–95% of the study area, ensuring high accuracy in the subsequent classification processes.
Monthly summary metrics were gathered, including values for the blue, red, NIR, SWIR
bands, NDVI, and BSI (Table 2). Additionally, annual spectral–temporal indicators for the
NDVI time series, including minimum, maximum, amplitude, and standard deviation,
were computed.

The second part involved preprocessing the Sentinel-1 time series. Firstly, the VV
and VH annual time series of Sentinel-1 were merged and synthesized into 12-month
composite sequences of VV and VH [42]. Subsequently, the time series was condensed
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to monthly intervals using average reflectance values to reduce speckle and noise [44,45].
The resulting 12-month SAR time series serves as the basis for calculating radar seasonal
indices. Various radar vegetation indices, including the modified Dual Polarization SAR
Vegetation Index (DPSVIm), the Scattering Ratio (CR), the Normalized Index (Pol), and the
modified Radar Vegetation Index (RVIm), were computed (Table 2). Haralick techniques
were then employed to calculate entropy and inertia (from the “Gray-Level Co-occurrence
Matrix”) texture metrics for each 5 × 5 pixel in the VV and VH monthly composite material
within the GEE platform [44].

Table 2. Optical and SAR indices and their expressions used in this study.

Indices Expressions Citations

The modified Dual Polarization SAR Vegetation Index (DPSVIm) DPSVIm = VV+VV·VH√
2

[46]

The Scattering Ratio (CR) CR = VV
VH

[47]

The Normalized Index (Pol) Pol = VH−VV
VH+VV

[48]

The modified Radar Vegetation Index (RVIm) RVIm = 4VH
VH+VV

[49]

Normalized Difference Vegetation Index (NDVI) NDVI = NIR−Red
NIR+Red

[50]

Ratio Vegetation Index (RVI) RVI = NIR
Red

[51]

Bare Soil Index (BSI) BSI = (SWIR+Red)−(NIR−Blue)
(SWIR+Red)+(NIR−Blue)

[52]

2.3.2. Generate Training Samples

To generate training samples, a decision tree-based method was employed to create a
consistent set of land use types, which was subsequently used for land use classification.

The first step involved labeling stable and changing samples of land use types. Initially,
numerous random sample points were generated within the study area. Subsequently,
the NDVI, RVI, and BSI (Table 2) were computed for each random sample point, and the
HANTS harmonic analysis method was applied to smooth their time series. Finally, through
time series analysis, whether the temporal curves of random sample points underwent
significant changes was observed. This process was used to categorize stable samples
(unchanged pixels) (Figure 3b–d) and unstable samples (varying pixels) (Figure 3e–g).

The second step involved identifying stable land use regions. Utilizing labeled sample
data representing stable and changing areas and considering variance and the coefficients
of variation in the features of NDVI, RVI, and BSI, a decision tree classifier was employed to
categorize remote sensing images. This process resulted in the identification of stable land
use type regions and changing regions between 2018 and 2022. In the identified stable land
use type regions, pixel values consistently fluctuated over time, while changing regions
exhibited abrupt variations in pixel.

The third step involved creating a stable land use sample set. This process includes
randomly generating a specific number of sample points for different land use categories
within stable regions each year in conjunction with existing land use data. Subsequently,
the sample point data underwent verification and screening, resulting in the final validated
dataset. In this study, the constructed sample set comprises 613 samples of cropland, 400
samples of garden land, 418 samples of shrubland, 500 samples of forest, 214 samples of
water bodies, and 419 samples of impervious surfaces, totaling 2564 samples (Figure 3a)
(Table 3).
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Table 3. Training samples distributed across land cover classes and years.

Class 2018 2019 2020 2021 2022 Combined

Cropland 122 126 121 121 123 613
Garden land 80 80 80 80 80 400
Shrubland 83 85 83 83 84 418

Forest 100 100 100 100 100 500
Water 42 45 42 43 42 214

Built-up 83 86 83 83 84 419

Total 510 522 509 510 513 2564

2.3.3. Annual Land Cover Classification

To produce land use classification maps spanning from 2018 to 2022, the non-parametric
machine learning random forest classifier available in Google Earth Engine (GEE) was
employed. After multiple fitting experiments, the number of trees in the random forest
was set to 220 to achieve better accuracy. The imagery was categorized into six land cover
classes, namely cropland, garden land, shrubland, forest, water bodies, and impervious
surfaces. Spectral features, phenological characteristics, polarization features, and texture
features were chosen for classification. Google Earth Engine (GEE) provides an “inter-
pretability” feature for the random forest classification algorithm, enabling the evaluation
of importance scores for the feature variables involved in classification [53]. In this study,
feature selection was conducted to utilize only the 30 top-performing features each year for
classification (Figure 4a–e). The trained random forest classifier was utilized to perform
annual land use classification for the study area, resulting in land use maps for each year.

2.3.4. Multi-Year Cropland Abandonment Mapping

Cropland abandonment is characterized by the transition of cultivated land from one
year to the next, exhibiting no signs of agricultural management in the fallow fields. From
a land cover perspective, abandoned cropland may represent the later stages of succession,
transitioning from cultivated land to shrubland or forested areas. Therefore, two distinct
multi-year cropland abandonment trajectories are depicted: ‘Abandonment to Shrubland’
(transitioning from cropland to shrubland) and ‘Abandonment to Forestland’ (transitioning
from cropland to shrubland, ultimately evolving into forests) [27,54,55]. These trajectories
are based on the annual land cover maps.
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2.3.5. Accuracy Validation

The accuracy of the annual land cover maps and cropland abandonment maps was
quantified. To assess the accuracy of the annual land cover maps from 2018 to 2022,
evaluations were conducted by visually interpreting sentinel multi-seasonal images, other
land use products, and high-resolution images available on Google Earth. Each sample
was recorded with its corresponding land cover category. Furthermore, 50 sample points
were randomly selected from each of the six categories including cropland, garden land,
shrubland, forest, water bodies, and impervious surfaces annually, resulting in a total of 300
samples per year. After five years of continuous sampling, we accumulated a total of 1500
sample points. Using these assessment samples, various accuracy evaluation factors were
calculated, including overall accuracy (OA), producer’s accuracy (PA), User’s Accuracy
(UA), and the Kappa coefficient (KC), using the confusion matrix. The formulas used are
as follows:

∂ =
∑k

i=1 Nii

N
(1)

UAi =
Nii
Ni+

(2)
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PAj =
Njj

N+j
(3)

Kappa =
N ∑k

i=1 Nii − ∑k
i=1 (Ni+N+i)

N2 − ∑k
i=1 (Ni+N+i)

(4)

where N signifies the total sample count; k denotes the total number of columns in the
confusion matrix (i.e., the number of categories); Nii represents the number of samples
correctly classified in the i-th row and i-th column of the confusion matrix, and the same
applies to Njj; Ni+, and N+j, respectively, which represent the total number of samples in
the i-th row and the j-th column.

To evaluate the accuracy of the cropland abandonment map, and considering the
challenges associated with obtaining real-time statistics on abandoned land and acquiring
true distribution data for historical years in a long-term time series identification of aban-
doned land, the results of cropland abandonment extraction for 2021–2022 were verified
by using abandoned land samples from on-site investigations conducted in 2022. Accu-
racy, precision, recall, and F1 were calculated based on the confusion matrix by using the
following formulas:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

1
F1

=
1
2
·
(

1
P
+

1
R

)
(8)

where TP (True Positive), FP (False Positive), TN (True Negative), and FN (False Negative)
represent the respective counts of test samples.

2.4. Analysis of the Spatiotemporal Characteristics and Driving Factors of Abandoned Cropland
2.4.1. Analysis of Spatiotemporal Characteristics of Cropland Abandonment

In addressing the third research question (“What spatiotemporal pattern characterizes
cropland abandonment in the study area, and what are the influencing factors?”), both
spatiotemporal feature analysis and factor analysis were conducted. For spatiotemporal
feature analysis, the abandonment rate was calculated annually for each township, as well
as the four-year average abandonment rate:

Pi =
Ai
Si

× 100% (9)

where Pi represents the cropland abandonment rate for township i, Ai denotes the cropland
abandonment area for township i, and Si is the total cropland area for township i.

2.4.2. Analysis of Driving Factors of Cropland Abandonment

Geodetectors are a spatial statistical method used to analyze the spatial variability of
geographical elements and the relationships among potential driving factors [56]. Within
this framework, factor detectors serve as a fundamental component and are capable of
discerning whether independent variables act as driving factors for dependent variables,
partially explaining the spatial distribution mechanism of the dependent variable. There-
fore, in this study, factor detectors were chosen to analyze the driving factors of cropland
abandonment, as depicted by the following expression:

Q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (10)
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where Q signifies the explanatory power index of the driving factors of cropland abandon-
ment, ranging from [0, 1]. A higher Q value indicates the stronger explanatory power of the
factor variables for cropland abandonment. h represents the number of zones or categories,
N and Nh denote the total number of units in the study area and the number of units in
subregion h, respectively, while σ2 and σ2h indicate the variance in the dependent variable
for the entire region and subregion h, respectively.

The Optimal Parameter Geographic Detector (OPGD) model was utilized to effectively
manage the selection of optimal discretization methods and quantities for the type of
data, thereby minimizing the influence of subjective factors [57]. After optimizing the
data discretization, factor detection was employed to conduct a driver factor analysis of
cropland abandonment in hilly areas. The implementation of this analysis was carried out
using the Geodetector model, which is accessible through the R programming language
package (https://cran.r-project.org/, accessed on 6 January 2024).

3. Results
3.1. Mapping Accuracy
3.1.1. Results of Land Use Classification

By analyzing satellite images from 2018 to 2022, annual land use classifications were
obtained (Figure 5a–e) (Table 4). This study reveals that the overall accuracy of land cover
types for each period exceeded 88.67%, with an average Kappa coefficient of 0.87. Notably,
both the user accuracy (UA) and producer accuracy (PA) for cropland classification in each
period surpassed 88%, peaking in 2021, where UA and PA reached 91.92% and 92.44%,
respectively (Table 5). However, the average PA and UA values for garden land were
relatively lower, at 88.33% and 84.62%, respectively. PA and UA reached values of 89.43%
and 88.68% for shrubland, and 87.18% and 91.36% for forest. The classification accuracy for
water was the highest, with average PA and UA values of 94.68% and 95.31%, respectively.
Finally, the PA and UA for impervious surfaces were 90.27% and 89.48%, respectively.

Table 4. The proportion of each land use class area in Mingshan County from 2018 to 2022.

Class
Area (%)

2018 2019 2020 2021 2022

Cropland 20.29 19.41 19.81 19.15 20.88
Garden land 31.37 31.26 31.25 31.29 29.65
Shrubland 6.81 6.85 6.68 6.64 5.86

Forest 29.46 29.67 27.96 27.40 27.62
Water 1.94 2.13 2.59 2.52 2.54

Built-up 10.13 10.68 11.71 13.01 13.46

Table 5. Land use classification accuracy.

Class
2018 2019 2020 2021 2022

UA PA UA PA UA PA UA PA UA PA
/% /% /% /% /% /% /% /% /% /%

Cropland 91.19 91.74 87.34 88.11 87.87 88.61 91.92 92.44 89.61 90.25
Garden

land 84.51 88.24 83.94 87.79 83.33 87.30 85.53 89.04 85.81 89.26

Shrubland 89.07 89.80 88.11 88.89 88.61 89.36 88.84 89.58 88.80 89.54
Forest 91.74 87.72 90.91 86.54 89.89 85.11 92.11 88.24 92.14 88.28
Water 95.54 94.94 95.24 94.59 94.49 93.75 95.81 95.24 95.48 94.87

Built-up 89.29 90.09 90.16 90.91 88.24 89.11 90.91 91.60 88.79 89.62

OA/% 90.46 89.15 88.67 91.02 90.14
Kappa 0.88 0.87 0.86 0.89 0.88

https://cran.r-project.org/
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To further evaluate the classification results, spatial consistency comparisons were
made between high-resolution images available on Google Earth, the global ESRI 2020 land
cover dataset, and the classification results of 2020 in this study (Figure 6). Overall, the
classification results in this study were significantly superior to those of the global ESRI
2020 land cover dataset.
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3.1.2. Results of Abandoned Cropland Extraction

Field survey data from 2022 yielded 65 sample points for abandoned land and 40
sample points for non-abandoned land (Figure 7). The overall accuracy of abandoned land
identification for 2021–2022 was determined to be 0.87, with precision (P) at 0.87, recall (R)
at 0.89, and F1 score at 0.88. The monitoring classification maps of cropland abandonment
in Mingshan County for the periods 2018–2019, 2019–2020, 2020–2021, and 2021–2022 were
derived using the described method (Figure 8).
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3.2. Spatiotemporal Characteristics of Cropland Abandonment
3.2.1. Spatial–Temporal Distribution Characteristics of Abandoned Cropland in
Various Townships

Concerning abandoned cropland area, in 2018, Mingshan County witnessed
1229.15 hectares of cropland abandonment, primarily concentrated in the southwest region,
encompassing Mengdingshan Town, Mengyang Street, Yongxing Street, and Wangu Town
(Figure 9a). By 2019, the area of abandoned cultivated land in Mingshan County decreased
to 970.72 hectares, marking a 25.09% reduction from the previous period. The distribution
shifted, with major abandonment observed in Maling Town, Mengyang Street, and Cheling
Town notably moving towards the northeast (Figure 9b). In 2020, the abandoned cultivated
land area in Mingshan County increased to 1218.08 hectares, representing an increase of
247.37 hectares compared to the previous phase, with the distribution shifting southeast-
ward, concentrating in Jinjin Town, Mengyang Street, and Yongxing Street (Figure 9c). By
2021, Mingshan County witnessed a decrease in abandoned cultivated land area, totaling
only 864.45 hectares, which was mainly found in Maling Town, Mengyang Street, and
Mengdingshan Town (Figure 9d). Since 2018, the trend in the abandoned cultivated land
area in Mingshan County has shown fluctuations and a downward trajectory. Mengyang
Street, Mengdingshan Town, and Yongxing Street have recorded the highest cumulative
abandonment area, while Baizhang Town, Maohe Town, and Heizhu Town have seen
the least.
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In terms of abandonment rates, Mingshan County recorded a rate of 4.93% in 2018,
with Mengdingshan Town and Wangu Town experiencing particularly severe rates, both
exceeding 10% (Figure 9a). By 2019, the abandonment rate reached its lowest point at
4.58%, and was concentrated spatially in Maling Town, Zhongfeng Town, and Wangu
Town (Figure 9b). In 2020, the abandonment rate increased to 5.77%, marking a 1.19%
rise from the previous period. Cultivated land abandonment remained concentrated in
Maling Town, Wangu Town, and Zhongfeng Town (Figure 9c). By 2021, the abandonment
rate decreased to 4.85%, and was down by 0.92% from the previous period, being mainly
distributed in Maling Town, Mengdingshan Town, and Wangu Town (Figure 9d). Since
2018, the abandonment rate of cultivated land in Mingshan County has shown a fluctuating
trend, with Maling Town, Wangu Town, and Mengdingshan Town exhibiting the highest
abandonment rates, while Cheling Town, Heizhu Town, and Maohe Town have recorded
the lowest rates.

3.2.2. Spatial–Temporal Characteristics of Abandoned Cropland under Different Natural
and Social Factors

As elevation increases, the abandoned cropland area initially experiences a rise fol-
lowed by a decline (Figure 10a). Within the altitude range of 600 to 700 m, the abandoned
cropland area reaches its peak, corresponding to a continuous increase in the cropland
abandonment rate. Specifically, between 2018 and 2019, areas with elevations exceeding
1000 m witnessed a staggering abandonment rate of 50.09%, highlighting the prevalence of
cropland abandonment in high-altitude regions.

Apart from the period between 2018 and 2019, the area of abandoned cropland re-
mained relatively consistent across different slope ranges from 2019 to 2020, 2020 to 2021,
and 2021 to 2022, fluctuating between 150 and 200 hectares (Figure 10b). However, the
cropland abandonment rate continued to rise, indicating that this phenomenon mainly
occurs in steep terrain.

As the distance from the river increases, the abandoned cropland area gradually
decreases (Figure 10c). The most concentrated abandoned cropland lies within the range of
0 to 250 m from the river, while the cropland abandonment rate fluctuates, suggesting that
the distance from the river has minimal impact on cropland abandonment trends.

The abandoned cropland area decreases with the distance from the road (Figure 10d).
It reaches its lowest point within the range of 800 to 1000 m from the road. However, the
abandonment rate shows an increasing trend, emphasizing that cropland abandonment
mainly occurs in areas far from the road.

As the distance from town increases, the area of abandoned cropland initially rises
before declining, mainly concentrated within the range of 2000 to 3000 m (Figure 10e).
Concurrently, the cropland abandonment rate displays an upward trajectory, confirming
that cropland abandonment primarily occurs in areas distant from the town.

Furthermore, the farther the distance from the rural settlement, the more likely the
abandoned cropland area exhibits an initial increase followed by a decrease, and this
is mainly concentrated within the range of 800 to 1200 m (Figure 10f). The cropland
abandonment rate continues to rise, with the rate of increase accelerating beyond 1600 m,
reaffirming that cropland abandonment mainly occurs in areas far from rural settlements.
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abandoned cropland area and the ratio of abandoned cropland area within a certain interval to the
cropland area in that interval in the Mingshan County from 2018 to 2022.

3.3. Driving Factors of Cropland Abandonment
3.3.1. Discretization of Continuous Factors

One notable advantage of the Geodetector module is its ability to derive the optimal
ranges of the factors under consideration. This capability is particularly valuable as it aids
in identifying the thresholds necessary for subsequently driving factor analyses [58]. The
q-value should be calculated for every continuous factor using different grading methods
(equidistant grading, natural interval grading, quantile interval grading, geometric interval
grading, and standard deviation interval grading) and different numbers of breakpoints.
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Moreover, the parameter combination (grading method and number of breakpoints) with
the highest q-value should be selected. Since it is preferable to have fewer than eight
categories, the number of breakpoints should initially range between three and eight
categories. Taking the discretization of abandoned cropland from 2018 to 2019 as an
example, when employing the natural interval classification method with eight categories
for elevation, the highest q-value is achieved (Figure 11a), thus selecting the natural interval
method to categorize elevation into eight categories (Figure 11b). Similarly, the natural
interval grading method is selected to divide the slope into seven categories (Figure 11a,b).
The discretization approach for other continuous factors follows the same principle.
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3.3.2. Single Factor Detection Results

Using the Optimal Parameter Geographic Detector, the explanatory power of indi-
vidual factors for cropland abandonment was identified (Figure 12a). On average, natural
factors exhibited a q-value of 0.1520, while social factors had an average q-value of 0.0979.
This suggests a notably stronger explanatory capacity of natural factors compared to
social factors.
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Among the natural factors, elevation exhibited the highest explanatory power, fol-
lowed by slope and distance to the river. Specifically, elevation exhibited the highest
explanatory power during the 2018–2019 period, with a q-value of 0.3138. Slope demon-
strated relatively high explanatory power in the subsequent periods: 2019–2020, 2020–2021,
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and 2021–2022, with values of 0.1925, 0.1917, and 0.2403, respectively. However, the ex-
planatory power of distance to river consistently remained low, with all values below 0.03.

The explanatory power of social factors ranks relatively lower and ranked from highest
to lowest as distance to road, rural settlement, and town. The explanatory power of road
distance initially increased and then decreased over time. For the period of 2018–2019,
the q-value was 0.0947, which rose to 0.1359 in 2019–2020, peaked at 0.1490 in 2020–2021,
and then decreased to 0.0882 in 2021–2022. The q-values for distance to town fluctuated
between 0.0604 and 0.1051, while those for distance to rural settlement remained relatively
stable, ranging from 0.0937 to 0.1133.

The explanatory power (p-values) of all factors was below 0.01, indicating significant
detection results. The analysis indicates that slope and elevation exert a predominant
influence on cropland abandonment in Mingshan County, while the distance from the road,
rural settlement, and the town also hold significant importance. However, the influence of
distance to the river appears to be relatively weak.

3.3.3. Interaction Detection Results

Based on single-factor detection, interaction analysis was conducted for six factors
(Figure 12b). Under interaction, the influence of each factor on cropland abandonment
significantly intensifies, with q-values ranging from 0.0693 to 0.4507, indicating both bi-
factor enhancement and non-linear enhancement.

The interaction among different natural factors is particularly noteworthy. During the
period of 2018–2019, the interaction between elevation and slope exhibited the strongest
explanatory power, with a q-value of 0.4507, indicating that these two factors combined can
account for 45.07% of cropland abandonment. Similarly, for the periods of 2019–2020 and
2021–2022, the interaction between elevation and slope remained prominent, with values
of 0.2939 and 0.3467, respectively, indicating their significant role in explaining cropland
abandonment.

The interaction between different social factors appears to be relatively subdued.
Notably, during the period of 2020–2021, the interaction between distance to road and
slope, along with the distance to rural settlement, exhibited the strongest explanatory
power, with a q-value of 0.2462. This value surpassed the explanatory power of distance to
road and rural settlement when all were considered as individual factors.

Furthermore, in the interaction between natural and social factors, the interaction of
each social factor with elevation and slope emerged as the most significant, surpassing
the individual effects of each social factor. The q-values ranged from 0.378 to 0.511, indi-
cating significant enhancement. During the period of 2018–2019, the interaction between
distance to rural settlement and elevation was the most significant, with a q-value of 0.3784,
indicating bi-factor enhancement.

The findings from interaction analysis indicate that while the impact of individual so-
cial factors on cropland abandonment may not be significant, their interaction with natural
factors leads to non-linear enhancement in explanatory power. This indicates that specific
social conditions exacerbate cropland abandonment significantly when encountering high
elevation and steep slopes.

4. Discussion
4.1. Mapping Cropland Abandonment in Cloudy Hilly Regions

This study introduces a framework developed for identifying various trajectories and
patterns of cropland abandonment within hilly and cloudy areas by utilizing multisource
satellite imagery. Taking Mingshan County as an example, cropland abandonment maps
were generated based on land cover changes, addressing the first research question. Be-
tween 2018 and 2022, Mingshan County exhibited an average abandonment rate of 5.03%,
showing a fluctuating trend. Previous studies have confirmed that in environmentally
challenging areas, such as hilly and mountainous regions, the phenomenon of cropland
abandonment is common [16,23,59], significantly affecting agricultural sustainability. Upon
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examination, the overall accuracy of land use classification surpassed 88.67%, with a com-
mendable identification accuracy in abandoned cropland reaching 87.00%. These results
indicate that the method employed for extracting abandoned cropland is not only highly
rational but also feasible, offering precision and ease of implementation [13]. The dataset
derived from multiple remote sensing sources, combining Landsat 8 and Sentinel-2 im-
ages, offers a greater abundance of cloud-free pixels compared to using either Landsat 8
or Sentinel-2 images alone [42]. Additionally, by integrating Sentinel-1 radar data with
optical vegetation indices, it was possible to effectively mitigate the impact of clouds and
cloud shadows across different scales [35]. Consequently, compared to monitoring based
on MODIS time series data with resolutions of 250 m and 500 m, the developed method
enabled the tracking of multiple cropland abandonment trajectories at finer scales [27,60],
thereby contributing to addressing the second research question. At the same time, a
method was successfully devised for generating a stable sample set of land use types. This
method is based on a small subset of stable sample points that represent different land use
categories and are used to generate training data annually. With this approach, coherent,
annually updated high-dynamic land use type maps can be produced, eliminating the
cumbersome process of manually selecting training data each year. This method improves
efficiency and ensures data accuracy, providing strong support for sample collection in
large-scale research areas [4]. Furthermore, classification accuracy depends on feature
combinations with or without auxiliary data. The utilization of machine learning methods
to classify spatial datasets from various sources presents an opportunity to integrate multi-
ple satellite and spatial data, thereby improving the accuracy of cropland abandonment
classification [18].

4.2. Spatial–Temporal Characteristics and Driving Factors of Cropland Abandonment

In this study, six major indicators were selected from both natural and social perspec-
tives to analyze the spatiotemporal characteristics of cropland abandonment, addressing
the third research question. The results indicate that cropland abandonment tends to occur
in areas characterized by high elevation, steep slopes, and distance from roads, towns, and
rural settlements. In regions with high altitudes and steep terrain, cropland is more likely
to transition into orchards. This shift is primarily driven by the increased operating costs
associated with higher elevations and steep slopes, prompting a transition from cropland
to orchards with higher economic value [13]. Moreover, as the distance from towns, resi-
dential areas, and roads increases, human intervention decreases, rendering cropland more
susceptible to abandonment [23].

Utilizing the optimal parameter geographical detector, the driving factors behind
cropland abandonment were investigated. The findings underscore the pivotal role of
natural elements in shaping the spatial distribution pattern of abandoned cropland, while
social factors also contribute significantly to cropland abandonment. Previous studies
have also highlighted the intertwined effects of economic and environmental factors on
abandoned farmland [60,61]. Factors like elevation and slope serve as prerequisites for the
spatial distribution of cropland. Past research has suggested that elevation and slope may
act as limiting factors for mechanization in mountainous areas, contributing to cropland
abandonment [22,55]. Additionally, social factors such as the distance to roads, towns, and
rural settlements significantly influence the phenomenon of abandoned farmland. This
observation confirms findings from other studies, which have noted cropland abandon-
ment in regions with poor agricultural production conditions and inadequate infrastruc-
ture [9,61,62]. The abandonment rate fluctuates with the distance from the river. However,
prior research has indicated that irrigation, as a crucial aspect of agricultural production,
can significantly enhance grain yields [63]. This effect is likely due to the humid and rainy
climate in the Ya’an area, where water resources may not solely depend on rivers but also
on natural rainfall or channel irrigation. Therefore, being farther away from rivers does
not necessarily lead to easier abandonment. Previous studies have predominantly relied
on static data types to analyze social factors. However, such approaches can only explore
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the static spatial distribution driving force and fail to directly reflect changing driving
factors [64]. In contrast, this study incorporates dynamic distance-based social data into the
analysis, explaining the differences in cropland abandonment across different stages using
evolving social data. An important future direction for this research involves continuously
optimizing and refining the established indicator system of driving factors while exploring
the underlying mechanisms from a multi-stakeholder perspective [65,66]. This approach
will facilitate more meticulous and precise analysis at the micro-level, further validating
the findings of this study and providing firmer theoretical support and practical guidance
for the development of related fields.

4.3. Policy Implications

Initially, in response to the phenomenon of cropland abandonment, the government
and relevant departments should implement proactive and effective measures, particularly
targeting areas with high elevation and steep slopes. This includes implementing land
governance projects, advancing terrace construction to address slope issues, constructing
high-standard cropland, and organizing land consolidation efforts to merge scattered plots,
providing robust support for mechanized agricultural production [67,68]. For cropland
with steep slopes, the government should take active measures, implementing policies for
retiring cropland and reforesting to effectively prevent soil erosion.

Subsequently, when formulating land use policies, the government should consider ge-
ographic factors. Distance from roads, towns, and rural settlement significantly influences
cropland abandonment, highlighting the need to consider the rationality and sustainability
of land use in planning and development processes. Priority should be given to locating
cropland within a reasonable distance from roads, towns, and rural settlement to ensure
farmers can conveniently engage in agricultural production and sales [18]. Planning should
balance the needs of agricultural development and urban–rural construction, avoiding
excessive distance between cropland and towns or rural settlement to reduce farmers’
transportation and living costs. Furthermore, efforts should be made to improve rural
transportation networks to lower transportation costs for agricultural products and enhance
farmers’ economic benefits.

Additionally, the protection and management of rivers cannot be ignored, especially
those closely related to agricultural production. Despite the relatively weak explanatory
power of distance from rivers on abandonment rates according to the findings of this study,
the risks of river water pollution and overuse must be intensely considered [63]. These
potential issues may adversely affect agricultural production and land use. Therefore, the
government should take effective measures to safeguard river ecosystems, maintain stable
water supplies, and thus support the sustainable development of agriculture and land use.

4.4. Limitations and Future Research Perspectives

Firstly, the variability in the definitions of cropland abandonment significantly affects
the identification results [13,16,18,69]. There is no uniform standard for defining abandoned
cropland, as scholars have different definitions for abandoned cropland in different study
areas. Existing definitions of abandonment include “land left fallow for more than one
year”, “land left fallow for one season or more”, and “land left uncultivated for two years
or more”. Additionally, due to the launch of the Sentinel-2 satellite in 2017, the time span
of this study is relatively short, limiting the ability to conduct long-term monitoring of
land cover changes. Therefore, based on the actual conditions of the study area and data
sources, this study defines abandoned cropland as “cropland left fallow or uncultivated for
one year or more (including one year)”. In the future, methods for identifying quarterly,
annual, and multi-year abandonment can be further explored based on the determination
of whether cropland is abandoned.

Secondly, the accuracy of land classification can result in error propagation [16,69].
Due to the complexity of cropland abandonment phenomena, it is challenging to directly
identify abandoned land through remote sensing imagery. This study employs change
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detection in land use between adjacent years to extract the distribution of abandoned
cropland. However, classification errors inherent in remote sensing imagery can propagate
into the extraction of abandoned cropland, leading to inaccuracies. These errors are difficult
to eliminate and can only be mitigated by improving the classification accuracy of remote
sensing imagery to reduce errors in the extraction of abandoned cropland. In the future,
we will utilize higher-resolution images and deep learning methods to better understand
agricultural changes within each pixel, thereby enhancing the precision and accuracy of
assessments [18].

Lastly, this study did not comprehensively explore the driving factors behind cropland
abandonment. Cropland abandonment is influenced by a multitude of factors, including
natural, demographic, socio-economic, and policy factors [69]. While this study integrated
multiple factors and utilized Geodetectors to investigate the causes of abandonment, the
spatiotemporal characteristics of abandonment are also influenced by household-level and
policy predictors directly related to farmer decision making. To accurately identify the
immediate causes of abandonment, future research should conduct in-depth analyses and
collect variables from household-level data.

5. Conclusions

Using Google Earth Engine (GEE) and the random forest algorithm, this study pro-
poses a method that integrates multi-source data from Landsat 8, Sentinel-2, and Sentinel-1
to generate land use maps covering the hilly and cloudy areas of southwestern China
between 2018 and 2022. This method is applied to extract abandoned cropland, providing
a framework for mapping abandoned cropland across various hilly areas globally and
thereby serving as a reference point for similar initiatives. Furthermore, this research
explores the spatiotemporal distribution patterns and underlying mechanisms of crop-
land abandonment, aiming to offer policy recommendations to decision makers. The key
findings are outlined as follows:

First, the method achieves an overall accuracy exceeding 88.67% in land use classifi-
cation, with a Kappa coefficient exceeding 0.87. The accuracy of identifying abandoned
cropland reaches 87.00%. From 2018 to 2022, the abandonment rate in Mingshan County
fluctuates between 4.58% and 5.77%, with an average of 5.03%. The lowest abandonment
rate occurred in 2019–2020, while the highest was observed in 2020–2021.

Second, within the elevation range of 600 to 700 m, the abandoned cropland area
reaches its peak. It maintains relative stability across different slope ranges, ranging be-
tween 150 and 200 hectares. Abandoned cropland is most concentrated within 0 to 250 m of
river. Conversely, within the 800 to 1000 m range from road, the area of abandoned cropland
reaches its lowest point. Additionally, abandoned cropland is mainly concentrated within
the 2000 to 3000 m range from town and the 800 to 1200 m range from rural settlements.

Third, cropland abandonment results from both natural and social factors. Elevation
and slope are the primary driving factors, while distance to road, town, and rural settlement
also play significant roles. The abandonment rate exhibits positive correlation with these
five factors, although distance to river shows relatively weaker explanatory power.
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