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Abstract: Land-use conflicts (LUCs) are pivotal in assessing human–land interaction, reflecting the
intricate interplay between natural and anthropogenic drivers. However, existing studies often
overlook nuanced non-linear responses and critical threshold recognition, focusing solely on linear
correlations between isolated factors and LUCs. This study, situated in Xinjiang, China’s arid and
semiarid region, introduces a novel analytical framework and threshold application model for
LUCs. Integrating land-use and socioeconomic data, we quantified LUCs using Fragstats, correlation
analysis, and restricted cubic spline (RCS) regression. Exploring non-linear dynamics between LUCs
and 14 potential drivers, including natural and anthropogenic factors, we identified critical thresholds.
LUC zones were delineated using a four-quadrant method, allowing tailored mitigation strategies.
Our findings reveal Xinjiang’s distinct LUC spatial pattern, with intense conflicts surrounding
mountainous areas and milder conflicts in basin regions, showing marked diminishment from 2000
to 2020. RCS effectively identifies LUC thresholds, indicating persisting severity pre- or post-specific
thresholds. Xinjiang’s LUCs are categorized into key control areas, urgent regulation zones, elastic
development territories, and moderate optimization regions, each with significant regional disparities.
Tailored optimization suggestions mitigate linear analysis limitations, providing a fresh perspective
on land zoning optimization. This research supports comprehensive land management and planning
in Xinjiang, China.

Keywords: land-use conflicts; natural and anthropogenic driver; restricted cubic spline; critical
threshold; land zoning

1. Introduction

In the context of societal advancement and progress, the ever-growing human aspira-
tion for wealth accumulation and the pressing need for development exert considerable
pressure on finite land resources. This escalation intensifies tensions within the human–
land interaction, exacerbating conflicts between humanity and the land. Since the Industrial
Revolution, these contradictions and conflicts have rapidly transcended local boundaries
to a global scale. Common challenges such as climate change, energy crises, and food
shortages underscore the imbalance in the human–land system. Land-use conflicts (LUCs),
arising from disparities in interests and needs among different stakeholders, epitomize
the concentrated manifestation of these contradictions. Defined as spatial disputes and
rights conflicts among stakeholders engaged in land resource utilization, LUCs encompass
disputes arising from differences in land-use modes and the natural environment [1]. As a
scarce resource integrating economic, social, and ecological values, land becomes a focal
point of conflicts when stakeholders, driven by diverse value orientations and interest
demands, engage in the land utilization process. These conflicts manifest as economic
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disputes among land-use subjects and as conflicts between economic interests, ecologi-
cal protection, and social development [2]. LUC is a complex process characterized by
the “land–land” conflict (imbalance between land-use quantity and function), with the
“man–land” conflict (mismatch between land-use subject and function) at its core, and
the “man–man” conflict (mismatch between land-use subject and spatial benefit distri-
bution) as its essence. The “man–land” conflict originates from the evolution of regional
human–land relationships influenced by external factors such as systems and markets.
Throughout this evolution, the spatial interest game among various stakeholders forms a
“man–man” conflict, aiming to achieve coordinated human–land relationships. However,
constrained by external policies, systems, and internal economic and social factors, the
evolution often falls short of achieving coordinated human–land relationships, resulting
in a “land–land” conflict. This cyclic process persists. In essence, the root cause of LUC
lies in the imbalance of the human–land relationship, a consequence of the structural and
inherent spatial competition stemming from the ever-growing demand for limited land.
This demand arises from the interplay between human activities, various land-use modes,
and natural ecological processes [3]. Consequently, implementing appropriate control
measures becomes imperative to effectively mitigate LUC [4]. Exploring the complex mech-
anisms influencing LUC, such as urbanization–ecological environment interactions [5], the
economy–environment relationship [6], and the population–land–industry interplay [7],
along with coordinating multiple land-use functions [8], optimizing and controlling the
spatial pattern of the national territory [9,10], are essential measures that can contribute to
the alleviation of LUC.

LUCs stand as a sensitive indicator of the intricate interaction between humans and
the land. The continual escalation of human activities amplifies the conflict between
economic growth and the natural environment, resulting in heightened competition and
LUCs across diverse regions [11]. These conflicts manifest through the conversion of
ecological land into cultivated or construction areas and the frequent mismatch and overlap
between agricultural or industrial zones and ecological conservation spaces [12,13]. These
competitions and contradictions represent complex disputes that, if not addressed promptly,
often give rise to challenging environmental and social problems, potentially diminishing
economic, ecological, or social benefits [14]. Furthermore, they pose a substantial hazard
to sustainable development [15]. The occurrence and development of LUCs result from
multi-dimensional internal and external factors, encompassing the natural environment,
economy, society, and policy system. This intricate interplay shapes a complex mechanism
driving the development and evolution of LUCs. As natural and human factors jointly exert
their influence, the scope and intensity of LUCs gradually expand and intensify [16]. Firstly,
as LUCs stem from the scarcity and multiple suitability of resources, natural environmental
conditions significantly impact conflicts by determining the scarcity and multiple suitability
of land resources. Hence, natural conditions serve as long-term factors influencing the
formation of conflicts [17,18]. Secondly, LUCs are closely linked to economic and social
factors. In the realm of socioeconomics, the burgeoning population and its demands act
as primary catalysts for conflict development [19]. The overlapping interests of land-
use subjects, shaped by human personality characteristics and group behavior, and the
ensuing contradictions in land-use objectives are commonly regarded as the root causes of
conflicts [20,21]. Thirdly, the noteworthy influence of policy and institutional environments
on LUC is indirect and reliant. Essentially, it primarily exerts its influence indirectly by
regulating the process of regional economic and social development [22,23]. This holds
great significance for a thorough scientific exploration and effective comprehension of the
role played by policy and institutional factors in LUC. To mitigate LUC more effectively
and prevent its negative effects from spreading further, a clear understanding of the impact
of natural and anthropogenic drivers on LUC is essential.

Certain studies have emphasized that LUC can be construed as the outcome of the
interplay between economic driving forces, policy and institutional influences, and social
and cultural factors [24]. Consequently, both natural and human factors exert an influence
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on LUC [19,21]. Typically, the intensity of regional LUC hinges on local background condi-
tions and the extent of human development and land resource utilization in subsequent
stages. The level of urbanization among dynamic drivers and terrain constraints among
static factors have been identified as significant drivers affecting LUC [25]. Specifically, a
high degree of coupling and coordination has been observed between the level of urbaniza-
tion, terrain relief, and LUC. Notably, the intensity of LUC undergoes changes when the
urbanization level and topographic relief index reach a certain threshold [26]. This implies
that natural and anthropogenic drivers affecting LUC exhibit non-linearity, suggesting
the potential for a threshold effect between LUC and these drivers. In recent decades, the
proliferation of studies related to LUC has been evident with current research focusing
on understanding conflicts between different subjects of interest through participatory
surveys [27,28]. Quantitative identification of the effects of regional urbanization levels,
population density, and topographic conditions on LUC has also been a key aspect of
contemporary research [26,29]. In conclusion, existing studies have primarily centered on
examining the effect of a single driver on LUC, lacking the analysis of the integrated impact
of multiple factors on LUC. Moreover, there is a dearth of studies considering the nonlinear
effects of different drivers on LUC intensity and the potential existence of thresholds, and
where these thresholds might be applied. The diversity and complexity inherent in LUC
are often overlooked since they result from a combination of anthropogenic activities [25],
potentially leading to a lack of specificity in proposing control measures to mitigate LUC.
Restricted cubic splines (RCS) have proven effective for modeling nonlinear relationships
between explanatory variables and outcomes [30]. However, limited research has been
conducted on the application of RCS in the environmental field, with most existing stud-
ies focused on other areas, such as virology research and family business science [31,32].
Consequently, more research is warranted to explore the potential application of RCS in
other studies.

To effectively bridge this research gap, we applied RCS to the study of LUC and
investigated their nonlinear relationship in Xinjiang. Positioned in the heartland of the
Asia-Europe continent and located within the arid zone of northwestern China, this region
represents a distinctive natural geographic unit. It features interspersed mountain ranges
and basins, with coexisting oases and deserts that together form a unique mountain-oasis-
desert ecosystem. The region contends with harsh natural conditions and relatively fragile
ecosystems, influenced by climatic and hydrological factors. Xinjiang faces substantial
challenges related to water resources and ecology, acting as impediments to economic
development and posing threats to ecological health [33,34]. Furthermore, uncertainties
such as rising temperatures and soil erosion impact the regional ecosystem [35]. In con-
junction with these challenges, the rapid expansion of the Silk Road Economic Belt has
escalated the demand for land resources in the region [36]. Consequently, human activities’
impact on the environment has intensified gradually, accentuating the conflict between the
scarcity of land resources and unrefined land-use practices. This paradoxical relationship
between people and the land emerges as a critical constraint on the regional ecosystem
and sustainable societal development [37], further exacerbating LUC [38]. Regional land
construction and development have become primary concerns [39]. However, current
research on LUC in Xinjiang primarily focuses on specific oasis areas, such as Urumqi city
and the Ili River Valley [3], with less attention paid to LUC on the overall Xinjiang scale.
Therefore, investigating the drivers of LUC in arid and semi-arid regions and zoning of
land-use patterns hold significant importance. This research aims to support the rational
development and utilization of land resources, protection of the ecological environment,
optimization of the spatial pattern of the national territory, harmonization of human–land
relations, and achievement of sustainable development. In this article, we quantitatively
measured the intensity of LUC in Xinjiang from 2000 to 2020, analyzed its spatial and
temporal pattern characteristics, conducted a correlation analysis of 14 typical natural and
anthropogenic driving factors on LUC, and, based on threshold recognition results, classi-
fied the land-use pattern in Xinjiang into four types using an LUC pattern optimization
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model. Suggestions were then presented. In summary, the scientific issues addressed in
this study include the following:

(1) Do different natural and anthropogenic drivers exhibit thresholds that influence LUC
in Xinjiang?

(2) If thresholds exist, how can we effectively identify them?
(3) How can the defined thresholds be used practically for land management zoning?

2. Theoretical Framework
2.1. Threshold Analysis of Drivers of Land-Use Conflicts (LUCs)

From a general understanding, assuming no human intervention, nature will form
an orderly natural pattern and maintain the relative stability of the ecosystem [38]. When
human development is taken into account, the initial natural pattern often fails to meet
human demand for production and living space, and human beings are bound to carry out
long-term and cyclical management and governance activities on land in accordance with
a certain pursuit of interests and development goals, forming land-use behavior [40]. With
the concentration of population and industry in a given area, the entire layout of natural
ecosystems is often disrupted by the intrusion of human activities, including the expansion
of land for construction and agriculture and a reduction in ecological land. Furthermore,
the increasing frequency of land development intensifies the conflict in land utilization.
It has been found that human activities have both positive and negative impacts on land
resources [41,42]. Since the 1980s, the concept of sustainable development has gradually
spread globally, and people have begun to take action to protect the ecological environ-
ment. Consequently, by considering their available resources and development objectives,
LUCs are continuously mitigated, ultimately giving rise to a spatial arrangement of land
utilization that aligns with the local natural resources and socio-economic conditions.

The emergence and progression of LUCs stem from the interplay of multidimensional
endogenous and exogenous factors, with the natural environment and human activities
as primary components [24]. On one hand, land resources, influenced by their inherent
conditions such as topography, distinct spatial characteristics (e.g., parcel geometry, etc.),
and their own physical conditions (soil texture, etc.), as well as unexpected changes in
LUCs due to sea level fluctuations triggered by climate change and natural disasters like
heavy rainfall and drought disrupt the harmony of the LUC structure, consequently incit-
ing and intensifying LUCs [43,44]. On the other hand, LUCs are closely linked to human
factors. Previous research indicates that population growth and associated demands are
primary drivers of conflict development [11,13,19,45]. Conflicts often arise from overlap-
ping interests among land-use stakeholders due to individual and collective behavior traits,
resulting in land-use goal conflicts [20,21]. Cultural differences, diverse political viewpoints
within communities, and variations in education levels may also exacerbate LUCs [46].
Urbanization, as a core process in contemporary socioeconomic development, profoundly
influences LUCs. Disorderly urban expansion, accelerated reduction in agricultural land,
and deterioration of land ecological environments contribute to a decrease in arable land
quantity and quality, land degradation, sudden changes in land use, and increased like-
lihood of conflict occurrence. In summary, the root cause of LUC lies in the imbalance
between human–land relationships, resulting from the escalating demand for limited land
resources, structural and elemental contradictions formed by spatial competition, and
interactions among natural ecological processes, human activities, and different land-use
practices [47]. Natural conditions determine the bottom line of LUC intensity, and human
factors determine the upper limit of conflict intensity [24]. Based on this, we make an
assumption that there are thresholds for the drivers of LUC, and the thresholds of natural
drivers are called natural thresholds, and the thresholds of anthropogenic drivers are called
anthropogenic thresholds. When the natural threshold and the anthropogenic threshold
intersect at a certain point, there will be a turning point in the evolution of LUC; this pivotal
moment marks a shift in the impact of human activities on land use, with a transition from
negative to positive impacts. In addition, land-use patterns have experienced a shift from
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structural imbalance to pattern optimization [18]. Simultaneously, the dynamic between
individuals and the land experiences a transition from a state characterized by LUC to a
state of coordination (Figure 1a).
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2.2. Threshold Application of Drivers of LUC

The evolution of LUC is a dynamic process, and the overall parabola shows an
inverted “U-shape”, which is in line with the characteristics of the conflict curve model [48]
(Figure 1a). With the passage of time, when the conflict breaks through the critical value of
the controllable level, the invisible conflict will be transformed into an open conflict, and all
kinds of conflict problems are becoming more and more prominent, and the controllability
level of the conflict can be categorized into four levels, namely, stable and controllable,
basically controllable, basically out of control, and seriously out of control [49]. In the stable
and controllable stage, regional development will not suffer from LUC. With the gradual
escalation of the conflict, the intensity of its role is increasing, and it begins to gradually
affect the sustainable coordination of the region, and the conflict is upgraded to the basic
controllable level, but its negative effects are not yet obvious, and this stage is the most
critical period for the regulation of the conflict. When the conflict breaks through the critical
value of the controllable level, the stability of the region begins to be broken, the conflict
develops to the basic uncontrolled level, and the impact effect of the conflict tends to be
unstable, with all kinds of conflict problems becoming more and more prominent. If the
conflict further deteriorates, the negative effects of the conflict will have a great impact
on regional development, and if favorable measures are not taken to curb the conflict at
this time, the critical value of the regional crisis will be broken, and regional development
will be imbalanced, and the conflict will rise to the level of serious out of control, and the
conflict will completely break out [25]. After the outbreak of the conflict, all stakeholders
will be harmed to different degrees, and all kinds of compulsory regulatory measures begin
to intervene to curb the adverse effects of spatial conflict, and then gradually resolve the
conflict, so that the regional development is able to restore stability [3,10,11]. From the
analysis of the conflict curve model, different conflict control strategies should be adopted
at different stages of conflict development, and the latent stage is an important stage of
spatial conflict control, where efforts should be made to maintain the level of spatial conflict
at a controllable level in order to avoid regional imbalance.

In view of this, in order to identify the inflection point of the dynamic evolution of
LUC under the influence of anthropogenic and natural factors on the inverted “U” curve in
a specific region, and the role of this inflection point in the regulation of LUC, we drew a
four-quadrant map using the identified critical threshold as the origin, natural conditions
as the horizontal coordinates, and anthropogenic influences as the vertical coordinates.
We drew a four-quadrant diagram from the perspective of the dynamic evolution of
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LUC, taking the identified critical threshold as the origin, the natural conditions as the
horizontal coordinate, and the anthropogenic influences as the vertical coordinate. Since
the background conditions of the natural environment are the result of the long-term and
stable formation of nature, while the anthropogenic factors can be changed through policy
guidance and human behavior, the anthropogenic factors are more controllable than the
natural conditions. Combining the identification results of natural and anthropogenic
thresholds, the land-use pattern can be classified into four categories based on the four-
quadrant method, and corresponding regulatory measures can be taken (Figure 1b).

(Natural threshold, Anthropogenic threshold)

=


(+,+), first quadrant, key control area
(−,+), second quadrant, urgent remediation area
(−,−), third quadrant, elastic development zone
(+,−), fourth quadrant, moderate optimization zone

Quadrant I is the area that exceeds the natural and anthropogenic thresholds, where
the risk of conflict is serious and timely intervention is needed to contain the adverse effects
of the conflict, which is defined as the key control area. Quadrant II is the area that does not
exceed the natural thresholds, but exceeds the anthropogenic thresholds, where favorable
measures are needed to contain the conflict, which is defined as the urgent remediation area.
Quadrant III is an area that has not exceeded the natural and anthropogenic thresholds, and
the land pattern remains stable, and is defined as elastic development zone. Quadrant IV is
an area that has exceeded the natural thresholds but has not exceeded the anthropogenic
thresholds, and the conflict has escalated to a basically controllable level due to the restricted
natural conditions of the region’s background, but its negative effects are not yet obvious,
and can be appropriately controlled. Negative effects are not yet obvious, and human
development activities can be moderately optimized. This stage is the most critical period
for conflict regulation, and this zone is defined as the moderate optimization zone (Note:
When spatial overlap occurs, the higher the risk, the more attention should be paid to the
overlapping area, and the overlapping area is defined as the priority control area, such
as the moderate optimization zone and urgent remediation zone overlapping with the
urgent remediation zone, thus the overlapping zone is preferentially defined as the urgent
remediation zone). Here, Quadrant III and Quadrant IV are considered sustainable, while
Quadrant I and Quadrant II are unsustainable and need to be controlled and optimized
in time.

3. Materials and Methods
3.1. Study Area

Xinjiang (73◦40′ E–96◦23′ E, 34◦25′ N–49◦10′ N) is located on China’s northwestern
border and shares borders with China’s provinces, namely Tibet, Qinghai, and Gansu, in
addition to eight neighboring countries: Russia, India, Kazakhstan, Mongolia, Tajikistan,
Pakistan, Afghanistan, and Kyrgyzstan. This vast province covers an expansive area of
approximately 166.49 × 104 square kilometers, which represents about one-sixth of China’s
total land area. Consequently, Xinjiang stands as the largest province in China, character-
ized by its extensive land borders and its diverse range of neighboring countries (Figure 2).
Xinjiang boasts a distinctive mountain and basin landscape, characterized by what can
be described as a three mountain peaks and two basins’ topography. This geographic
configuration includes the Altai Mountains, Junggar Basin, Tianshan Mountains, Tarim
Basin, and Kunlun Mountains, listed in descending order of prominence. Xinjiang’s geo-
graphical location, distant from the sea and surrounded by mountains, poses a challenge
for oceanic air currents to reach the region. This results in an average annual precipitation
of merely 130 mm, while annual evaporation surpasses 1000 mm [50]. This climatic condi-
tion characterizes Xinjiang as a typical arid and semi-arid region, fraught with ecological
and environmental issues, including drought, soil erosion, and land desertification. Over
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the past two decades, Xinjiang has witnessed significant changes in Land Use and Land
Cover (LULC) due to the intensification of human activities [51,52]. The ecological environ-
ment can face significant pressure due to the unsustainable development of land [53]. As
Xinjiang experiences rapid urbanization, there is a rapid expansion of construction land,
accompanied by a gradual decline in grassland area [54]. The expanding built-up area and
the increasing conflicts between various land-use types introduce substantial stress and
challenges to regional land use, ultimately posing a severe threat to the sustainable develop-
ment of socio-economic elements in the region. In addition, Xinjiang, an autonomous region
of the People’s Republic of China, has historically been a multi-ethnic region with unique
strategic significance and challenges. Previous studies have indicated that such borderland
regions, due to facing multiple “border exclusion” predicaments [55], exhibit relatively
complex land-use conflict issues, making them focal areas of spatial governance disorder
and spatial contradictions [56]. Therefore, conducting research on land-use conflicts in
Xinjiang is of paramount importance for comprehensive regional land management.
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3.2. Research Framework

This study mainly includes four main steps in Figure 3: (1) Diagnosing LUC intensity.
Constructing LUC measurements by utilizing the risk source–risk receptor–risk effect theory.
(2) Correlation analysis. Correlation analysis and curve fitting are utilized to identify the
main drivers and drivers with nonlinear relationships. (3) Threshold identification. Natural
factor thresholds and human factor thresholds affecting LUC are identified separately by
RCS regression. (4) Threshold application. The intersection area identified by the natural
and anthropogenic threshold conditions is delineated as potential high-risk areas of land
use and is discussed in relation to zoning of land-use patterns.
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Figure 3. The research framework.

3.3. Data Processing

In terms of their mode and intensity of influence, natural factors represent long-term
influencing factors in the formation of LUCs [17,47], whereas human factors exhibit a
more pronounced impact on regional land-use conflicts in the short term and at large
spatial scales [53,57], with the policy and institutional environment demonstrating indi-
rect and dependent characteristics in its influence on LUCs [22,23]. Drawing on relevant
studies [11,19,25,29,44,54], and based on the theoretical framework outlined in Section 2
and data availability, a total of seven natural drivers and seven anthropogenic drivers
were selected, all of which are theoretically and empirically known to influence LUCs [24].
Natural drivers include elevation (abbreviated as ELE), slope (abbreviated as SLO), temper-
ature (abbreviated as TEM), precipitation (abbreviated as PRE), evaporation (abbreviated
as EVA), soil erosion (abbreviated as SE), and distance from water systems (abbreviated
as Water). Anthropogenic drivers included human influence index (abbreviated as HII),
human footprint (abbreviated as HF), GDP, population (abbreviated as POP), distance from
roads (abbreviated as Road), distance from railroads (abbreviated as Rail), and distance
from residents (abbreviated as Resident). The specifics of the data are outlined in Table 1.
All data underwent rigorous preprocessing, with spatialization conducted for metrics such
as GDP and POP using ArcGIS software.

Table 1. Overview of the data, resolution, and data source.

Date Resolution Source

Xinjiang administrative
boundaries -

China National Geographic Information
Directory Service

http://www.webmap.cn
(accessed on 1 September 2023)

Road network - https://www.openstreetmap.org
(accessed on 1 September 2023)water -

http://www.webmap.cn
https://www.openstreetmap.org
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Table 1. Cont.

Date Resolution Source

Land-use data 30 m

Resource and Environmental Science Data
Center of the Chinese Academy of Sciences

http://www.resdc.cn
(accessed on 1 September 2023)

Precipitation 1 km
Evaporation 1 km
Temperature 1 km
Soil erosion 1 km

Population data 1 km
GDP data 1 km
DEM data 1 km

Human influence index 1 km Socio-economic data and application center
https://sedac.ciesin.columbia.edu

(accessed on 1 September 2023)
Human footprint 1 km

3.4. Evaluation Model for LUC

In accordance with the theory of human–land relationship, the issue of LUC emerges
as a spatial competition and a clash of rights and interests between people and land. The
resulting imbalance in land-use pattern and spatial relationship is a crucial reflection
of the level of coordination within the human–land system [18]. Although the essence
of the conflict lies in the interest game of many subjects, it is an objective geographical
phenomenon manifested by conflicting elements (the contradiction between the quantity of
land-use allocation and the allocation structure). In this paper, an ecological risk evaluation
model was established to measure the LUC. This model is grounded in the conceptual
framework of ecological risk assessment and incorporates key principles from landscape
ecology [19,49]. The complexity index, vulnerability index, and fragmentation index of
the landscape were used as three indicators reflecting the risk sources, risk receptors, and
risk effects in ecological risk, respectively, and thus diagnosing the intensity of LUC. We
chose to select this model because it treats land use as a complex system including natural
geosystems and socioeconomics, which allows us to analyze the causal relationships among
the elements affecting the system [58], while the results of this study can be presented in
more detail at the grid scale.

3.4.1. Risk Sources

Landscape complexity is a vital risk source (S) indicator, gauging the extent of neigh-
boring landscapes to the target landscape unit. It is defined by the area-weighted average
patch fractal index, expressed by the following formula:

S = CI =
m

∑
i=1

n

∑
j=1

[
2ln

(
0.25pij

)
ln
(
aij

) ( aij

A

)]
(1)

where CI is the complex index; pij signifies the patch perimeter; aij represents the patch
area; and A stands for the total landscape area. This index has been shown to be effec-
tive in describing the degree of anthropogenic disturbance in the context of landscape
pattern complexity [59]. The index has proved to be effective to describe the complex-
ity of landscape pattern under human disturbances [36]. A larger value often indicates
more complex landscape patterns, and more intense land-use conflict interfered by human
activities [10,48].

3.4.2. Risk Receptors

The landscape vulnerability reflects the risk receptors (R), and is used to describe the
capability of land system to external disturbances. It is often intricately linked to land use.
Based on prior research and data [60], the vulnerability of land-use types was determined
by considering the natural characteristics and diversion rates in Xinjiang from 2000 to 2020.
Specifically, the diversion rates of cropland, woodland, grassland, water, construction land,

http://www.resdc.cn
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and unused land during the study period were 0.52%, 0.28%, 0.01%, 0.33%, 1.07%, and
0.02%, respectively. The vulnerability scores order of landscape types in this study, from
weak to strong, was as follows: grassland, unused land, woodland, water, cropland, and
construction land. Then, we calculated the landscape vulnerability using the following
formula [10,11]:

R = VI =
n

∑
i=1

Fi ×
ai
S

(2)

where VI is the vulnerability index, Fi represents the vulnerability score of land-use type
i, ai stands for the area of land-use type i, and S indicates the total area. In our research,
a high vulnerability score of an assessment unit indicated the weaker ability of land-use
structure to resist human disturbances, and then LUC tends to be more intense.

3.4.3. Risk Effects

The landscape fragmentation, an indicator of the risk response (E), reflects how spatial
units react to disturbances such as urbanization and land reclamation. The more fragmented
landscape suggests high competition among different land-use stakeholders and intense
LUC. Here we characterized landscape fragmentation with patch density which was
calculated as shown below:

E = FI =
ni
Ai

(3)

where FI is the fragmentation index, ni stands for the number of patches in landscape unit
i, and A represents the area of the landscape unit. The higher the index value, the more
fragmented the landscape. The fragmented land-use structure often indicates the lack of
land-use stability, which tends to increase land-use conflict.

3.4.4. Land-Use Conflict Index

The intensity of the LUC is characterized using the land-use conflict index (LUCI),
which is calculated by summing the risk source, risk receptor, and risk response using the
following formula:

LUCI = S + R + E (4)

Considering the scale of the study area and data accessibility, by comparing the
scale effects of 6 km, 8 km, and 10 km, conflict effects were most fully and effectively
demonstrated at the 8 km scale. Therefore, we finally selected the 8 km fishing net as
the basic spatial analysis unit, and set the image size of all raster data to 8 km × 8 km,
resulting in a division of the study area into a total of 26,062 grids. In addition, all three
indicators and the final calculated LUC were normalized to the range of 0 to 1 in order to
allow aggregation of the indicators. Larger index indicates more intense LUC.

3.5. Correlation Analysis of Drivers

The strength of the correlation between LUC and drivers was tested by the Pearson
correlation coefficient (r). To determine whether there is a threshold between the response
variable (LUC) and the independent variable (driver) and what the threshold is, we con-
structed a correlation analysis between the response variable and the independent variable
based on a scattered point cloud. To minimize the effect of outliers [61], we applied a local
density-based approach to detect and eliminate them [62]. Subsequently, the potential
relationship between LUC and drivers was analyzed by performing curve fitting, focusing
on optimizing the regression model’s performance (p < 0.05). Curve-fitting analysis is a
powerful tool for representing the nonlinear relationship of variables and gaining insights
into their intrinsic links [63].

3.6. Threshold Recognition and Detection

In addressing the non-linear association between independent and dependent vari-
ables, we employ restricted cubic spline (RCS) for the purpose of characterizing this intricate
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relationship and ascertaining potential thresholds [64,65]. To maintain a smooth curve,
these splines, resembling segmented polynomials, must be continuous and exhibit second-
order differentiability at each threshold point [66]. The conditions under which splines are
applicable include the following: (1) the relationship between the data x and y does not
satisfy the linear or generalized linear premise; (2) the data multivariate regression R2 is
low; and (3) the trend changes significantly before and after a knot. RCS conforms to the
spline function, RCS (X), which renders a smooth curve of a continuous variable, X, over
the entire range of values by choosing the location and number of nodes. When visualizing
curvilinear relationships using RCS, it is essential to set the number and position of the
spline function nodes. Typically, the placement of nodes exerts minimal influence on the fit
of the restricted cubic spline, whereas the number of nodes determines the curve’s shape
and quantity [67]. In our study, we determined the number of nodes for variable X after
evaluating different options. We performed RCS regression analysis using R software,
version 4.2.2, along with the use of rms package [68] and MSTATA software.

3.7. Four-Quadrant Method

The four-quadrant method, also known as the two-dimensional quadrant method,
is a time management theory proposed by Stephen R. Covey, an American management
scientist. In the process of analysis, the evaluation unit is analyzed and weighed by two
attributes, and then the evaluation unit is filled into each quadrant box one by one, and
finally the four quadrants are sorted according to different goal orientation.

3.8. Threshold Application

Thresholds were determined by constructing an RCS between the drivers and LUC.
Most of the drivers can cause the LUC maximally within specific ranges. LUC intensity
remained consistently high within these threshold limits. Drawing upon the results of
threshold identification for both LUC and driver factors, the four-quadrant method was
used to combine the threshold values to determine the partition of LUC.

4. Results
4.1. Spatial-Temporal Patterns of LUC

From 2000 to 2020, landscape complexity in Xinjiang shows a trend of first decreasing
and then increasing, with CI having increased by 0.1353% overall (Table 2). The spatial CI
distribution of different regions in 2000 shows that high-value areas are near the northern
slope of Tianshan Mountain city cluster, the southern Xinjiang city cluster, and the core
urban areas of various cities. Conversely, the low-value CI areas are distributed in the Tarim
Basin in the south of Xinjiang, the Junggar Basin in the north of Xinjiang, and the eastern
region, which includes the three major deserts of Xinjiang, namely Gurbantunggut Desert,
Taklamakan Desert, and Kumutage Desert (Figure 4a1). In 2020, the distribution pattern
of CI high-value areas is basically the same as that in 2000, and they are concentrated
in the central region of Xinjiang, with dense distribution of construction land and large
population, industry, and human disturbance (Figure 4a3). Analyzing the trends over
the past two decades, counties experiencing increased CI value are mainly located in the
built-up areas around the three mountains, the areas with decreased CI value are mainly
scattered in the areas with increased CI value, and the CI value remains unchanged in the
desert areas near the Tarim Basin and Junge Basin. In general, the spatial complexity of
Xinjiang in the past two decades shows the characteristics of higher spatial pattern around
three mountains and lower spatial pattern around two basins.
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Table 2. Index value of land-use conflicts (LUCs) in Xinjiang from 2000 to 2020.

Year Risk Sources (S) Risk Receptors
(R) Risk Effects (E) Land-Use Conflicts

Index (LUCI)

2000 1.0344 0.3537 0.9793 2.3673

2010 1.0352 0.3142 0.9782 2.3276

2020 1.0358 0.3178 0.9779 2.3315

2000–2020 0.1353% ↑ 0.1498% ↓ 0.1430% ↑ 1.5123% ↓
(Note: “↑ “represents increases, “↓ “represents decreases).
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From 2000 to 2020, landscape vulnerability in Xinjiang also shows a trend of first
decreasing and then increasing, with VI having been down 0.1498% overall (Table 2).
The spatial distribution of the fragility of the land system shows that the distribution of
vulnerability in the recent 20 years has exhibited a consistent pattern, characterized by
higher values in the northwest and lower values in the southeast. The VI high-value
areas in both 2000 and 2020 are concentrated in the centers of cities in various states,
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and the vulnerability in 2020 is significantly higher than in 2000. Low-value areas of VI
were distributed in Hami City, Turpan City, and Bayingol Mongol Autonomous Prefecture
(Figure 4b1–b3). From the trend change in the past 20 years, we have noted increased VI in
many districts and counties across Xinjiang, mainly situated along the urban development
axis, such as the Urumqi–Altai development axis, the Lanzhou–Xin Line development
axis, the southern Xinjiang railway development axis, and the Kashi–Hotan–Ruoqiang
development axis. As a result, production and living space encroachment on ecological
space and agricultural space leads to a gradual increase in the landscape vulnerability.

The spatial distribution of landscape fragmentation reveals a consistent pattern over
the past two decades, with the high-value and low-value regions exhibiting an inverse
relationship to spatial stability. High FI value areas were primarily situated in urban
development areas in central, northern, and southern Xinjiang (Figure 4c1), while areas with
low FI value were predominantly found in Tarim Basin in southern Xinjiang, Junggar Basin
in northern Xinjiang, and desert areas in eastern Xinjiang (Figure 4c3). The FI value was
related to the fragmentation degree of landscape patches, and increased human activities
tend to elevate this fragmentation degree, leading to a decrease in stability. According to
the trend of change in the past two decades, counties witnessing an increase in FI values
primarily clustered around the three mountains, exhibiting a trend analogous to the changes
observed in CI values. Meanwhile, landscape fragmentation remained relatively constant
in the desert areas near the Tarim Basin and the Junge Basin.

From 2000 to 2020, the spatial distribution patterns of landscape complexity and frag-
mentation in Xinjiang were basically consistent (Figure 4a1–a3,c1–c3). Regions with higher
levels of human activity exhibited greater patch fragmentation consistent with previous
spatial analysis. High-value areas of LUC are distributed on a certain scale in the northern,
central, and southern parts of Xinjiang, mainly in the oasis areas near the Altai Mountains,
Tian Shan, and Kunlun Mountains. In contrast, low-value regions are primarily found near
the Junggar Basin and Tarim Basin, resulting in a clear spatial distribution pattern that
extends from northwest to southeast. The distribution of landscape vulnerability followed
a similar pattern, with high-value regions clustering near the urban agglomeration in the
northern slope of the Tianshan Mountain and the northern and southern Tarim Basin, while
the low-value regions were scattered around the three mountains (Figure 4b1–b3).

The assessment of LUC in Xinjiang was conducted through a comprehensive approach
involving the integration of complexity, vulnerability, and landscape fragmentation indices.
By applying the natural break point method, supported by ArcGIS, the study area was
categorized into mild conflicts area, moderate conflicts area, intense conflicts area, and
severe conflicts area. The average LUC values of Xinjiang in 2000, 2010, and 2020 were
2.3673, 2.3276, and 2.3315, respectively, reflecting an overarching declining trend, with LUCI
as a whole down 1.5123% (Table 2). The area of mild conflicts increased from 13.58% in 2000
to 14.35% in 2020, and the area of intense and above conflict areas decreased from 70.59%
in 2000 to 69.74% in 2020, indicating that Xinjiang has embarked on addressing the issue
of LUC over the past two decades, implementing effective mitigation measures. Severe
conflict areas in Xinjiang were primarily distributed in the oasis areas along the northern
foothills of the Tianshan Mountains and at the northern edge of the Tarim Basin during the
study period. In contrast, intense conflict areas were prevalent in the vicinity of the Junggar
Basin, Tarim Basin, and Tuha Basin, attributed to their relative landscape vulnerability
despite lower levels of anthropogenic impact. Meanwhile, mild and moderate conflict
areas were dispersed across regions marked by high-covered grasslands and woodlands
surrounding the three mountains (Figure 4d1–d3). In general, from 2000 to 2020, the LUC
in Xinjiang presented a spatial pattern of “strong conflicts around the three mountains and
weak conflicts around the two basins”, which was the result of the comprehensive impact
of the regional geographic environment and human activities on the ecosystem.



Land 2024, 13, 612 14 of 24

4.2. Relationship between LUC and Key Drivers

By employing the Spearman correlation coefficient, we delved into the connection
between LUCs and their driving factors, as illustrated in Figure 5a. As a whole, the
correlation between LUCs and anthropogenic driving factors was stronger than that of
natural driving factors. Notably, significant positive correlations were observed with
POP, HII, HF, and GDP, while there were marked negative correlations with ELE and
SLO. To further examine the degree of fit between LUCs and the drivers, we conducted a
curve-fitting analysis through the mean values of LUCs and the key drivers for 2000, 2010,
and 2020 (Figure 5b1–c7), and the results of the fitted curves showed a potential pattern
between LUCs and the key drivers (p < 0.01). The correlation between LUCs and EVP, ERO,
Water, Rail, Road, and Resident drivers showed a linear monotonic trend. However, not
all relationships between LUCs and other factors were linear and the best-fit curve was
significantly quadratic (p < 0.05). The fitted curves had significant Inverted U or U-shaped
trends alongside monotonic relationships. In the study area, the fitted curves of LUCs
with ELE, SLO, TEM, PRE, HII, and HF all exhibited a U-shaped pattern, whereas the
fitted curves with GDP and POP were an Inverted U. This further indicates a nonlinear
relationship between LUCs and natural and anthropogenic drivers.
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4.3. Thresholds of LUC
4.3.1. The Natural Key Drivers and Their Thresholds

The combination of LUC and natural driver correlation analysis and curve fitting
showed that LUC had strong correlation with ELE and SLO, some correlation with TEM,
PRE, and EVA climatic factors, and no correlation with distance from water. Figure 4
clearly illustrates that some driving factors have relatively small R2 values, such as
distance to water, distance to rail, and distance to resident (R2 < 0.01). In our study,
considering the suitability of RCS curves for polynomial regression with low R2 values in
the data [67,68], we ultimately selected natural drivers with relatively good fit (R2 > 0.1)
for RCS curve analysis to identify thresholds. The results show that the intensity of LUC
varies greatly due to different elevations and slopes (Figure 5b1–b7). The smaller the
slope and the flatter the terrain, the more severe the LUC intensity, i.e., low elevation
and low slope areas are the key areas for LUC occurrence. Concerning the specific values
of thresholds, in Xinjiang, areas with ELE < 2845 m and slope < 9◦ tend to have higher
LUC (Figure 6a,b), and the trend of LUC change gradually slows down when ELE and
slope exceed the thresholds.
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4.3.2. The Anthropogenic Key Drivers and Their Thresholds

The combination of LUC and anthropogenic driver correlation analysis and curve
fitting unveiled that LUC was positively correlated (albeit somewhat negatively correlated
within the threshold range) with all anthropogenic drivers as a whole (Figure 5c1–c7).
Among them, the highest correlation with LUC is with HII and HF, followed by POP and
GDP, and weakly correlated with the distance to rail, road, and resident. LUC increases
with the intensity of human activities and land-use intensity (Figure 6c–6f). Regarding
the specific values of thresholds, LUC intensity gradually increases when HII exceeds 6
(Figure 6c). The LUC intensity gradually increases when HF exceeds 8 (Figure 6d).The ef-
fects of GDP and POP on the LUC are generally consistent. With the economic development
and population growth, the LUC rises sharply. When GDP exceeds CNY 3482 million/km2,
the intensity of LUC gradually increases (Figure 6e). Although the R2 >0.1 between LUC
and POP, the two did not show a nonlinear relationship, i.e., the P for non-linear was 0.065
(Figure 6f), so the threshold was not significant.

In conclusion, the LUC in Xinjiang shows an environmental gradient effect, and the
analysis of the RCS curve shows that the LUC and the driving factors such as ELE, SLO,
HII, and HF show a “U-shaped” trend. With the increase in the driving altitude, the trend
is decreasing and then increasing, but when the ELE exceeds 2845 m and the slope reaches
about 9◦, the increasing trend gradually slows down. From the relationship between LUC
and HII and HF, LUC increases slowly at the beginning, but when HII exceeds 6 and HF
exceeds 8, the increase speed is gradually accelerated. The LUC and GDP are in “L-shape”,
and when GDP exceeds CNY 3482 million/km2, the LUC rises sharply.

4.4. Zoning of Land-Use Patterns Identified by Thresholds

Utilizing the identified thresholds, areas characterized by ELE ≤ 2845 m, Slope ≤ 9◦,
HII ≥ 6, HF ≥ 8, and GDP ≥ CNY 3482 million/km2 were identified as potentially high-risk
areas of land use (Table 3). Figure 7a,b show the spatial distribution of areas in Xinjiang
that exceed the natural and anthropogenic thresholds for LUC, respectively. The natural
thresholds for LUC are exceeded in most regions of Xinjiang, except for the central and
southern fringe regions, which account for about 70% of the area of Xinjiang. The area
exceeding the anthropogenic threshold for LUC accounts for about 12% of the area of
Xinjiang, mainly distributed in the built-up areas of the four prefectures in the center and
south. According to the four-quadrant diagram of Figure 1b, these threshold combina-
tions were classified, and the resulting land-optimization zoning is shown in Figure 7c.
Quantitatively (Figure 7d), the area ratio of moderate optimization zone is the largest,
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followed by elastic development zone, and the area ratio of urgent remediation area is the
smallest; the key control area is the one that exceeds both the natural threshold and the
anthropogenic threshold determined by the intersection area, with a cumulative area of
172,800 km2, equivalent to about 10% of Xinjiang. In terms of spatial distribution, the key
control area is mainly distributed in urban agglomeration in the northern slope of Tian-
shan Mountains and the agricultural development belt on the southern slope of Tianshan
Mountain, including Urumqi metropolitan area, Kashgar urban area, Ili River Valley, Aksu
Prefecture, etc., which are densely populated areas in Xinjiang where economic and social
development are more centralized, these areas are all densely populated areas with more
concentrated economic and social development in Xinjiang. The urgent remediation area
is mainly distributed in the central cities of Xinjiang, such as Urumqi City, Khorgos City,
Hami City, Kuqa county, etc. And the elastic development zone is mainly distributed in the
fringe areas in the central and southern parts of Xinjiang, including the Altai Mountains,
Tian Shan mountains, and Kunlun mountains, which are the three main areas of Xinjiang.
The elastic development area is mainly distributed in the edge area of central and southern
Xinjiang, including the Altai Mountains, Tian Shan mountains, and Kunlun mountains.
The moderate optimization zone is mainly distributed around Junggar Basin, Turpan-Hami
Basin, and Tarim Basin.

Table 3. Natural and anthropogenic thresholds used for identifying areas with potential high land-
use risk.

Type Drivers Used Thresholds

Natural
Elevation (m) ≤-2845

Slope (◦) ≤9

Anthropogenic
Human influence index ≥6

Human footprint ≥8
GDP (million yuan/km2) ≥3482
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5. Discussion
5.1. Critical Thresholds between LUC and Drivers

Our study provided a comprehensive analysis of the threshold identification of natural
and anthropogenic drivers on the LUCs in Xinjiang, China. Overall, among the selected
14 drivers, factors such as elevation, human influence index, and human footprint were
found to have significant impacts on LUCs, while factors like distance to water, resident,
and rail had relatively smaller impacts. However, due to the regional variability of LUC,
the influence of these drivers may vary across different areas [48,58]. This study shows that
by considering these factors and using RCS, it is possible to determine thresholds between
the various drivers of LUCs, substantiating the validity of the hypothesis proposed in
Section 2.1. Within our investigation, we found the presence of pivotal impact thresholds
among these drivers. Notably, the RCS spline function plot shows that, in terms of natural
drivers, LUCs exhibit a decline as terrain slope increases, with the acceleration of LUCs
subsiding when the ELE exceeds 2845 m and the slope reaches about 9◦ above; the increase
in LUCs gradually slows down. This phenomenon may be explained by the fact that
the oasis plain in the center concentrates most of the cropland and construction land
in the study area, which is characterized by flatter terrain and relatively abundant water
resources. The high coverage rate of cultivated land and the rapid expansion of construction
land in this area inevitably contribute to a higher likelihood of LUCs. Consequently,
the distinctive geomorphological characteristics of the study area play a crucial role in
shaping the spatial pattern of LUCs, aligning with previous findings that highlight the
significant negative influence of ELE on LUCs, with higher elevations corresponding to
reduced intensity [19]. The preference for lower, flatter locales for urban development,
industrial expansion, and agricultural utilization amplifies the demand for diverse land-use
types, thereby compounding the challenges posed by LUCs in these areas [69]. Regarding
anthropogenic drivers, LUCs increase with the increase in human influence, and gradually
rise when HII exceeds 6, HF exceeds 8, and GDP exceeds CNY 3482 million/km2. These
findings are consistent with prior research demonstrating the positive correlation between
population density and LUCs [70]. Furthermore, they support that social advancement
contributes to the encroachment of land-use types [71]. Regions exhibiting high land-use
change correspond to areas of intensified LUCs, a consequence of elevated human activities
that induce significant fragmentation of landscape patches and pattern instability. These
outcomes align with the conclusions of previous studies [9]. We also found that the risk of
LUC is more pronounced in northern Xinjiang than in its southern counterpart. This is likely
due to the substantial growth in regional economic co-operation over the past two decades,
predominantly concentrated in the northern areas [72]. The rapid economic growth in
the north has led to an increase in population and land for construction, accelerating
the urbanization process. This, in turn, has resulted in the appropriation of the regional
ecological land, thus exacerbating LUCs. In contrast, southern Xinjiang, characterized by
challenging natural conditions and slower economic development, exhibits a relatively
lower risk of LUCs. Once again, it shows that the spatial pattern of LUC is the result of a
combination of natural and socio-economic factors, consistent with previous research [73].
Therefore, there is an imperative need to comprehensively consider the combination of
multiple thresholds when delineating potential conflicts areas of land use. Therefore, we
use RCS to explore the nonlinear characteristics of LUC in this paper, which can better
reflect its nonlinear relationship and provide a new perspective for the previous research
on the driving factors of LUC.

5.2. Optimal Zoning of Land-Use Pattern

In this study, a threshold detection method was employed to identify potential high-
risk areas of land-use conflicts (LUCs), where changes in LUC intensity occur only when
driving factors reach specific thresholds. Our threshold identification method, incorpo-
rating multiple natural and anthropogenic thresholds, effectively captures the dynamic
processes of natural and anthropogenic drivers on LUC. To further validate the effective-
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ness of applying LUC thresholds, we compared the optimized land-use pattern zoning
map (Figure 6d) with Xinjiang Uygur Autonomous Region Territorial Spatial Planning
(2021–2035). As a guideline for national spatial development and a blueprint for sustainable
development, the land spatial planning strictly adheres to the principles of the “Three zones
and Three lines” (Three Zones represent ecological space, agricultural space, and urban
space; Three Lines represent ecological conservation redline, permanent capital farmland,
and urban development boundary) [53], aiming to rationalize land resource allocation, meet
diverse human needs, and mitigate land-use conflicts. The comparison results demonstrate
a high degree of consistency between the land-use pattern delineated by conflict thresholds
and the land spatial development and protection pattern and “Three zones and Three
lines.” On one hand, the zoning pattern aligns closely with the overall pattern of “two belts,
two rings, and three barriers”. For instance, the “two belts” (agricultural development
belts on the northern and southern slopes of the Tianshan Mountains) correspond to Key
Control Areas, the “two rings” (two oasis ecological rings distributed along the Tarim
Basin and Junggar Basin) correspond to Moderate Optimization Zones, and the “three
barriers “ (ecological barriers formed by the Altai Mountains, Tianshan Mountains, and
Kunlun Mountains–Alataw Mountains) correspond to Elastic Development Zones. Addi-
tionally, Urgent Remediation Areas are primarily located within the planned urban centers,
such as the central city of Urumqi and the sub-central city of Yining. On the other hand,
overlaying the “three control lines” on the optimized land-use zoning map (Figure 6d)
reveals extensive permanent basic farmland in Key Control Areas, where land-use conflicts
primarily stem from competition between residential and agricultural land uses. Urgent
Remediation Areas encompass most urban development boundaries, highlighting the
conflict between human land demand and baseline constraints, necessitating urgent recti-
fication. Elastic Development Zones contain large areas of ecological protection redlines,
with concentrated distribution of woodland, grassland, and other ecological lands, posing
relatively low risks of land-use conflicts and thus conducive to flexible development. In
summary, the comparison with existing planning demonstrates the scientific validity of the
land-use pattern optimization zoning based on thresholds. Moreover, this zoning approach
complements planning schemes, particularly facilitating the validation or optimization of
delineation outcomes.

5.3. Recommendations for Mitigating LUC through Pattern Zoning

Identifying potential high-risk areas becomes crucial for effectively warning against
LUC and enabling decision makers to preemptively address risks. However, the geographi-
cal variations in the extent of LUC necessitate the implementation of differentiated policies
and measures for land-use planning and management in Xinjiang. This targeted approach
aims to address conflicts effectively and promote sustainable regional development. Based
on the outcomes of the four types of zoning for land-use pattern optimization (Figure 8) and
in alignment with current regional planning, the following recommendations are proposed:

(1) Key control area. The optimization suggestion for this region is a focus on con-
trol, emphasizing the need to reasonably manage city scale, promote the consolidation of
inefficient construction land, enhance construction land-use efficiency, and optimize the
spatial layout within the national territory. Taking the urban agglomeration in the northern
slope of Tianshan Mountains as an example (Figure 8a), this area plays a pivotal role in
supporting Xinjiang’s economic growth. Policy and financial support should prioritize re-
vitalizing existing land, strictly controlling construction land expansion, and implementing
measures such as renovating the old city and optimizing land layouts in built-up areas.
Simultaneously, strict protection of arable land and permanent basic farmland is crucial to
maintain both quantity and quality.

(2) Urgent regulation area. The optimization suggestion for this region emphasizes the
need for urgent regulation, vigilance against urban sprawl, and rational adjustment of land-
use patterns for living, production, and ecology. Taking the Ili River Valley as an example
(Figure 8b), with the implementation of the “Two Ho and Two yi” integration development
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strategy, the regional population has increased, and the demand for land resources has
increased, especially in Yining City and Horgos City as the two core cities in the region. The
influence of human factors on land-use changes has deepened gradually, and the built-up
areas of the cities will continue to spread outward, encroaching on the agricultural and
ecological land in the vicinity of them. The urban built-up areas will continue to spread and
expand outward, encroaching upon nearby agricultural and ecological land. Consequently,
it becomes imperative to strictly enforce the restriction known as the “Three Zones and
Three Lines” policy, which pertains to ecological, agricultural, and urban functions. The
“three lines” consist of the permanent basic farmland, urban development boundary line,
and ecological protection red line [53], to coordinate the arrangement of the three spaces,
control the scale of urban expansion, reduce the load pressure on the land and ecological
environment caused by overpopulation and overgathering, alleviate the pressure on the
bearing of land resources, and promote the optimal matching of population size, economic
development, and land resources in the region. Simultaneously, it becomes essential to
control the direction of urban expansion and preserve the continuity and integrity of the
remaining natural land. By doing so, the degradation of the ecosystem can be mitigated to
some extent, facilitating sustainable socio-economic development.

(3) Elastic development zone. The optimization proposal for this region is elastic
development, acting as a “blank zone” for transferring excess land-use demand to ensure
regional land space security and stability. Mainly located near ecological barriers such as
the Altai Mountains, Tianshan Mountains, and Kunlun Mountains, this region requires
a stringent ecological protection system. Illustrated by Kashgar Prefecture (Figure 8c),
strengthening ecological construction, protection, and conversion of farmland to forests
can alleviate ecological pressures. This approach supports the development of cities, towns,
and agriculture, maximizing ecological benefits for social and economic advancement.

(4) Moderate optimization zone. The optimization proposal for the land-use pattern
in this region is to moderately optimize, coordinate, and harmonize agricultural land use,
and control and slow down land sanding. This type of zone is predominantly distributed
around Xinjiang’s basins. Taking Bortala Mongol Autonomous Prefecture as an example
(Figure 8d), the region is mainly a large homogeneous territory of arable land and waters,
which can strengthen the development and transformation of barren and unutilized land,
improve the utilization of land resources, and gradually change the land-use mode from
rough to fine. At the same time, the region is an ecological protection zone, so it is necessary
to reasonably avoid permanent basic farmland and the ecological protection red line,
strengthen ecological monitoring, protect and repair ecological corridors, and reduce the
crowding out of ecological and agricultural land by human development activities.
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5.4. Limitations and Future Research Directions

While our study provides novel insights, we acknowledge several limitations that
warrant consideration. Firstly, we evaluated the LUCs using a landscape ecological model,
and although this method is currently a common method for LUC evaluation [25,48,49] and
its effectiveness has been demonstrated by relevant studies [73], the method still has some
limitations. For example, in addition to altering landscape patterns, LUC leads to the gener-
ation of social, economic, and ecological negative effects [3], and it is necessary to consider
multiple dimensions in the assessment of LUCs. Secondly, our focus on constructing corre-
lations between LUCs and the identified 14 drivers, while informative, may not capture
the full array of influences contributing to LUCs. Land suitability, resource scarcity [17],
and socio-economic elements such as urban expansion, policies, and institutions [23] play
crucial roles in shaping LUCs. In Xinjiang, where water resources are intricately linked
to land-use patterns [73], coupled with the region’s developmental complexity and strate-
gic importance, our study, regrettably, did not delve into the impact of water resources,
policies, and historical factors. Additionally, while all driving factors may exhibit linear
relationships with LUCs [26,73], our consideration was limited to nonlinear impacts, which
could potentially affect the research outcomes. Future research endeavors should strive
for a more comprehensive inclusion of these factors, ensuring a holistic understanding
of the key drivers of LUCs in Xinjiang. Moreover, our study, while providing a valuable
perspective on delineating potential LUC areas, does not prescribe specific development
and protection strategies for these identified conflict zones. Addressing this gap requires
refining and expanding our recommendations in future research endeavors. In forthcoming
studies, we plan to explore the nonlinear relationships of additional factors, including
policies, history, and institutions, on LUCs. Our intention is to integrate the thresholds
of both natural and anthropogenic drivers into land-use monitoring practices. By doing
so, we aim to enhance the precision of our control suggestions for potential conflict zones,
contributing to effective mitigation strategies for regional LUCs.

6. Conclusions

In conclusion, this study employed a comprehensive LUC analysis framework and a
threshold application model to quantitatively assess LUCs in Xinjiang, China, spanning
the period from 2000 to 2020. Spatial and temporal patterns of LUCs were analyzed,
and correlation analyses and RCS curves were employed to identify key natural and
anthropogenic drivers as well as critical thresholds affecting LUCs. Incorporating the results
of conflicts threshold recognition, this study applied a four-quadrant method to partition the
LUC pattern. Differentiated land comprehensive regulation strategies were subsequently
proposed based on this partitioning. This study revealed a distinct spatial pattern of
LUCs in Xinjiang, characterized by “strong conflicts around the three mountains and weak
conflicts around the two basins.” Significantly, the extent of LUCs exhibited a noticeable
mitigation trend from 2000 to 2020. The application of RCS proved effective in capturing
the nonlinear effects of both natural and anthropogenic drivers on LUCs, unveiling critical
thresholds such as ELE (2845 m), slope (9◦), human influence index (6), human footprint (8),
and Gross Domestic Product (CNY 3482 million/ km2). Furthermore, based on threshold
recognition results, the land-use pattern in Xinjiang was categorized into key control areas,
urgent remediation areas, elastic development zones, and moderate optimization zones.
Notably, key control areas were predominantly situated in urban agglomeration in the
northern slope of Tianshan Mountains and the south slope of the Tianshan agricultural
development belt, constituting approximately 10% of Xinjiang’s total area. This study
introduces an innovative and pragmatic framework for identifying potential LUC areas,
particularly in response to evolving natural and anthropogenic conditions. The identified
potential LUCs serve as early warning indicators for land-use planning, contribute valuable
information for spatial development initiatives, and guide the comprehensive integration
and zoning of land use in Xinjiang, China.
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