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Abstract: U(n) is a semi-direct product group characterized by nontrivial homomorphisms mapping
U(1) into the automorphism group of SU(n). For U(3), there are three nontrivial homomorphisms
that induce three separate defining representations. In a toy model of U(3) Yang–Mills (endowed
with a suitable inner product) coupled to massive fermions, this renders three distinct covariant
derivatives acting on a single matter field. Employing a mod 3 permutation induced by a large gauge
transformation acting on the defining representation vector space, the three covariant derivatives
and one matter field can alternatively be expressed as a single covariant derivative acting on three
distinct species of matter fields possessing the same U(3) quantum numbers. One can interpret this
as three species of matter fields in the defining representation.
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1. Introduction

In this note, we consider a toy model of U(3) Yang–Mills coupled to massive fermionic
matter fields. Off hand, it seems U(3) is an untenable symmetry group for constructing
a gauge field theory. After all, a tenant of standard gauge theory says the most general
symmetry group must be a direct product of semi-simple and U(1) groups (see, e.g., [1]).

From where comes the tenant? For a physically acceptable gauge field theory, one
must start with a compact real group G and impose a positive-definite, Ad-invariant, real
bilinear form on the gauge symmetry Lie algebra g. And it is well known that the Lie
algebra of a compact real group decomposes into a direct sum of semi-simple si and u(1)j
factors

⊕
i,j si ⊕ u(1)j if and only if the Killing form on g is nondegenerate and hence

negative-definite (see, e.g., [2]).
Meanwhile, U(3) is not semi-simple, and its Killing form is degenerate. But a Killing

inner product is only a sufficient condition for an acceptable gauge theory. It happens that
U(3) is a connected, compact real group. Being compact, it is endowed with at least one
bi-invariant metric [3,4]. In fact, it is possible to formulate on u(3) a two-parameter class
of positive-definite, Ad-invariant, real bilinear forms. Hence, it is possible to construct a
consistent gauge theory with U(3) gauge symmetry without using the Killing inner product.

Notably, unlike SU(3)× U(1), where the gauge field associated with U(1) completely
decouples from the rest, all of the U(3) gauge fields will mutually interact as a true U(3)
symmetry dictates. Indeed, we have U(3) = SU(3) ⋊ U(1) as a semi-direct product,
and an element u(3) ∈ U(3) can be factored as u(3) = s(3)u(1) with u(1) ∈ U(1) and
s(3) ∈ SU(3). The semi-direct product SU(3)⋊U(1) is characterized by a (not necessarily
unique) homomorphism φ : U(1) → Aut SU(3) where Aut SU(3) is the automorphism
group of SU(3) [5–7]. In particular, in the defining representation, said homomorphism
induces a (not necessarily unique) representation ϱ : U(1) → LB(C3) where LB(C3) denotes
the set of linear bounded matrix operators on C3. Now, in the defining representation
there are three nontrivial ways to represent the U(1) factor in LB(C3), with eiθ in one of
the diagonal entries, 1 in the other two diagonal entries, and 0 in all off-diagonal entries.
Then, an element of U(3) represented in LB(C3) can be written ρr(u(3)) = ρr(su(3))ρr(u(1)),
where ρr : U(3) → LB(C3) is an extension of ϱr and r ∈ {1, 2, 3}.
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There is no reason to favor one particular representation over another, so when
constructing a gauge field theory coupled to fermions in the defining representation, the
most general Lagrangian contains the standard Yang–Mills term 1

4 F · F and fermion terms

∑r Ψ /D(r)Ψ summed over the three representations ρr. Consider permuting some chosen
basis of C3 with some unitary permutation matrix in LB(C3). There are two classes of such
permutations: one class induces small gauge transformations and the other induces large
gauge transformations. Of course, the small gauge transformations represent a redundant
state description in the quantum version. In contrast, the large gauge transformations
effect a genuine matter field re-characterization: they essentially add phases to permuted
field components that exert their influence through nontrivial global/topological gauge
field configurations. Accordingly, the U(3) symmetry allows the fermion contribution
∑r Ψ /D(r)Ψ to be rewritten with the covariant derivative in a single representation as

∑r Ψ(r) /DΨ(r), where Ψ(r) are three different species of fermion matter fields, each species
a U(3) triplet characterized by three quantum numbers coming from the action of the
Cartan subalgebra.

This is our main result: The most general U(3) gauge invariant Lagrangian for
fermions in a chosen defining representation includes precisely three species of matter
fields relative to an imbedding U(1) ↪→ SU(3)⋊U(1). We make no claim here that U(3)
models QCD phenomenology, and the three types of matter fields coming from U(3) may
or may not be a phenomenological red herring. However, in § Section 3 we briefly dis-
cuss the feasibility of expanding the strong-force symmetry from SU(3) to U(3) within
the Standard Model framework (the U(1) ⊂ U(3) subgroup having nothing to do with
electromagnetism) with the aim of encouraging further investigation. Our primary purpose
though is to point out the viability of semi-direct product groups for gauge field theories in
general and to highlight the emanating effect of multiple defining representations.

Of course, the occurrence of three generations in particle physics is still a mystery,
and there have been attempts to explain the “three” using a variety of mechanisms.
Most notable perhaps are preon models [8–11], super string models [12,13], and so-
called 3-3-1 models [14,15]. But there are also models based on nonanomalous discrete
R-symmetry [16], extra dimensions with anomaly cancellation [17], and the anthropic
principle [18].

2. U(3) Toy Model
2.1. The Inner Product

U(3) is neither simple nor semi-simple, and its Killing form is only semi-definite. So
the first order of business is to construct a suitable inner product on u(3). We start with a
well-known result:

Proposition 1. The Killing form of U(3) is given by K(X, Y) = 6tr(X · Y)− 2tr(X)tr(Y) and is
negative semi-definite for all skew-Hermitian X, Y ∈ u(3).

Proof. The Lie algebra brackets are [uab , ucd] = δbcuad − δaducb where uab ∈ u(3) are a
chosen skew-Hermitian basis with a, b, c, d ∈ {1, 2, 3}. From these brackets, it follows that
the adjoint map is given by adX(uab) = ∑c xcaucb − xbcuac with X = ∑a,b xabuab and xab ∈ R.
Hence,

adX ◦ adY(uab) = ∑
c,d
(xcaydcudb − xbcydaudc + xbcycduad − xcaybducd)

= ∑
c
(xcayac − xbcyaaδcb + xbcycb − xcaybbδac)uab (1)

implies
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K(X, Y) := tr(adX ◦ adY) = ∑
a,b,c

(xcayac − xbcyaaδcb + xbcycb − xcaybbδac)

= 3tr(X · Y)− tr(X)tr(Y) + 3tr(X · Y)− tr(X)tr(Y) . (2)

The center of u(3) is spaniR{1}, and it is easy to see that K(i1, X) = 0 for all X ∈ u(3).
Negativity follows from the skew-hermiticity of X, Y.

This suggests to define a bilinear inner product on the Lie algebra u(3) in the defining
representation ρ : U(3) → LB(C3) by

⟨Λα, Λβ⟩u(3) := −1
6

[
6 tr(ΛαΛ†

β)− 2

(
1 −

g2
1

g2
2

)
tr(Λα)tr(Λ†

β)

]
(3)

where the basis elements {Λα} = {ρ′(uab)} are 3 × 3 skew-Hermitian matrices with α ∈
{1, . . . , 9} and the parameters g1, g2 ∈ R obey 0 < g2

2 < g2
1. It is clearly positive-definite, Ad-

invariant, and real. For a triangular decomposition of the basis {Λα} denoted by {S±
a , Ha}

with a ∈ {1, 2, 3}, the structure constants associated with the brackets [S±
a , Ha] differ from

those associated with the Killing form. These structure constants, which are functions of
(g1, g2), characterize quantum numbers of non-neutral gauge bosons, and eigenvalues of
the (neutral) Cartan generators {Ha} in the defining representation characterize quantum
numbers of matter fields.

2.2. Semidirect Structure of U(3)

Mathematically, it is fruitful to view U(3) as an extension of a group H ∼= U(1) by a
normal subgroup N ∼= SU(3) ◁ U(3). This is represented by the short exact sequence

1 −→ N
f−→ U(3) π−→ H −→ 1 . (4)

If there exists an injective homomorphism s : H → U(3) such that π ◦ s = idH , then the
extension is a semi-direct product N ⋊ H. In this case, U(3) can be regarded as a principle
bundle with base H, structure group N, and global section(s) s : H → U(3). A choice of
section corresponds to a choice of coset representative. Then, s(H) ∼= U(1) ⊂ U(3) yields
a unique decomposition U(3) = SU(3)U(1) with SU(3) ∩ U(1) = {id}, and s induces a
homomorphism φ̃ : s(H) ∼= U(1) → Aut N. These observations are demonstrated by the
following theorem.

Theorem 1 ([5–7]). Let 1 −→ N
f−→ U(3) π−→ H −→ 1 be a short exact sequence equipped

with an injective homomorphism s : H → U(3) such that π ◦ s = idH . Then, there exists a
homomorphism φ : H → Aut N and an isomorphism θ : U(3) → N ⋊φ H.

Proof. For h ∈ H and n ∈ N,

π(s(h) f (n)s(h−1)) = π ◦ s(h)π ◦ f (n)π ◦ s(h−1) = h idH h−1 . (5)

Since f is injective and im f = ker π, then s(h) f (n)s(h−1) = f (n′) for some unique
n′(n, h) ∈ N that depends on (n, h). It is convenient to write φh(·) ≡ n′(·, h) so that
φh : N → N. Note that φh(idN) = idN for all h ∈ H since s is a homomorphism.

Lemma 1. The function φh ∈ Aut N.
First, f (φidH (n)) = f (n) implies φidH (n) = n for all n ∈ N. Next, for n1, n2 ∈ N,

s(h) f (n1) f (n2)s(h−1) = s(h) f (n1)s(h)−1s(h) f (n2)s(h−1) = f (φh(n1)φh(n1)) (6)

where we used s is a homomorphism. On the other hand, from the definition of φh, we have
s(h) f (n1n2)s(h)−1 = f (φh(n1n2)). Injective f then implies φh(n1n2) = φh(n1)φh(n2). This
proves the lemma.



Symmetry 2024, 16, 504 4 of 8

Let φ : H → Aut N by h 7→ φh.

Lemma 2. φ : H → Aut N is a homomorphism.
For h1, h2 ∈ H,

s(h1)s(h2) f (n)s(h2)
−1s(h1)

−1 = s(h1) f (φh2(n))s(h1)
−1 = f (φh1(φh2(n))) . (7)

On the other hand, s(h1)s(h2) f (n)s(h2)
−1s(h1)

−1 = s(h1h2) f (n)s(h1h2)
−1 = f (φh1h2(n))

since s is a homomorphism. Again, injective f implies φh1h2 = φh1 ◦ φh2 . This proves the lemma.

It follows that φ defines a group operation on N ⋊φ H by (n1, h1)(n2, h2) = (n1 φh1(n2),
h1h2) if the inverse is defined by (n, h)−1 := (φh−1(n−1), h−1) for all (n, h) ∈ N ⋊φ H.

Finally, let θ−1 : N ⋊φ H → U(3) by (n, h) 7→ f (n)s(h). Then,

θ−1((n1, h1)(n2, h2)) = θ−1(n1 φh1(n2), h1h2)

= f (n1)(s(h1) f (n2)s(h1)
−1)s(h1)s(h2)

= f (n1)s(h1) f (n2)s(h2)

= θ−1(n1, h1)θ
−1(n2, h2) . (8)

Since the decomposition U(3) = NH is unique (which we won’t bother to prove), the
homomorphism θ−1 is bijective. One can go on to show that the semi-direct product
reduces to a direct product if and only if H ◁ U(3); in which case N and H commute and
φ is trivial.

Observe the homomorphism φ̃ : s(H) ∼= H ∈ N ⋊φ H → Aut N induced by s is given
by

φ̃s(h)(n, idH) = s(h)(n, idH)s(h−1) = [(idN , h)(n, idH)](idN , h−1)

= [(φh(n), h)](idN , h−1)

= (φh(n), idH) . (9)

In this sense, φ̃ induced by the section s coincides with φ. It is important to note that there
may be multiple homomorphisms φ and hence multiple sections s that render a semi-direct
product. Physically, a nontrivial φ corresponds to a direct interaction between the gauge
fields of the respective subgroups.

In particular, for the matrix group U(3) as a semi-direct product, there exist three such
nontrivial sections:

s : H →


diag(eiω, 1, 1)
diag(1, eiω, 1)
diag(1, 1, eiω)

(10)

where ω ∈ R. Each section gives rise to a different conjugation of SU(3) by s(h), and each
of these induces a different representation ϱr : H → LB(C3) where r ∈ {1, 2, 3}. These can
then be extended to three defining representations ρr : U(3) → LB(C3).

2.3. Lagrangian Matter Field Term

Given the existence of a suitable inner product and three representations, constructing
the model is rather elementary. The decisive step is to insist that all allowed defining
representations be included in the Lagrangian.

Postulate 1. The matter field portion of the Lagrangian of a gauge field theory must include all
allowed defining representations.
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For our toy model of Yang–Mills coupled to a massive matter field in the defining
representations, the bare gauge field kinetic term uses the chosen inner product 1

4 ⟨FB, FB⟩u(3)
with F ∈ u(3), and the bare matter field term will be ∑r iΨB /D(r)

B ΨB, where we have

(unconventionally) included the bare mass parameter in the covariant derivative /D(r)
B .

In momentum space, the matrix representation of the covariant derivative is [ /D(r)
B ] =

(/p + mB)[1] + /Aα
B[iΛ

(r)
α ] with gauge fields Aα

µ, and {Λ
(r)
α } a basis of u(3) in the r-defining

representation.
In the quantum version of this model, each covariant derivative /D(r) will give rise to

different vertex factors in the Feynman rules and hence ostensibly different renormalizations
of the gauge fields, matter fields, and mass parameter. The renormalized matter field
term is then ∑r iΨR /D(r)

R ΨR where [ /D(r)
R ] = (/p + m(r)

R )[1] + /Aα
R[iΛ

(r)
α ]. In effect, through

renormalization, the quantum theory distinguishes the classically isomorphic vector spaces
carrying the defining representations. Notably, assuming different renormalizations for
different r, the bare mass degeneracy among the defining representations will be lifted by
the quantum version.

We can make use of the U(3) symmetry to re-characterize the matter field Lagrangian.
There exists a class of elements in U(3) of the form

P(x) :=

 0 0 eiθ1(x)

eiθ2(x) 0 0
0 eiθ3(x) 0

 (11)

with θ1(x), θ2(x), θ3(x) ∈ R. The adjoint action of P(x) on the Lie algebra u(3) leaves
the normal subalgebra su(3) invariant, but it cyclically permutes the generators of the
s(H) matrices

diag(iω, 0, 0)
AdP→ diag(0, iω, 0)

AdP→ diag(0, 0, iω)
AdP→ diag(iω, 0, 0) . (12)

Similarly, P−1(x) = P†(x) permutes in the reverse direction. Crucially, P3 = ei(θ1+θ2+θ3)

diag(1, 1, 1). We claim that θ1(x) + θ2(x) + θ3(x) = ±(2n)π with n ∈ N induces small
gauge transformations while θ1(x) + θ2(x) + θ3(x) = ±(2n + 1)π induces large gauge
transformations. The latter cannot be reached by a gauge transformation homotopic
to the identity because det P = −1. (To see this, use the identity in three dimensions
det A = 1/6

(
(tr A)3 − 3tr A tr (A2) + 2tr (A3)

)
and put A → U(x) with U(x) = 1+ iσα(x)

Λα + O(σ2) an infinitesimal gauge transformation. To first order in σ, find that det U(x)>
0.) It then follows from tr log P = iπ(2k + 1) that log P in this case involves a combination
of Cartan generators (which are not present in the small permutation case) that contributes
a multivalued mod 3 phase to matter field configurations, and it transforms between three
physically distinct classes of gauge field configurations that survive gauge fixing in the
quantized theory.

Given P, we have /D(2) = P /D(1)P−1 and /D(3) = P2 /D(1)P−2. Define the fields Ψ(r) :=
Pr−1Ψ. Clearly, P cyclically permutes the components of Ψ up to phases. For large gauge

transformations, which imply P3 = −1, we can write ∑r ΨB /D(r)
B ΨB = ∑r Ψ(r)

B /DBΨ(r)
B . In the

quantum version, the SU(3)-identical Ψ(r) are physically distinct fields with inequivalent
renormalized masses (again, assuming different renormalizations for different r). Hence
we claim.

Claim 1. Given Postulate 1, matter fields with U(3) gauge symmetry necessarily come in three
species due to the existence of large gauge transformations that realize mod 3 permutations of the
basis in a defining representation.
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This perspective can be turned around: One can view fermions in the defining repre-
sentation as a single field, and different fermion species are just a manifestation of the three
faces of U(3).

3. Outlook

We have presented the simple U(3) toy model in order to focus attention on U(n) ≃
SU(n)⋊U(1) versus SU(n)× U(1) as a (classical) gauge field theory. This is particularly
relevant for string theory phenomenology where U(n) groups arise quite naturally in type
I, IIA, and IIB compactifications of n stacked D-branes. But for practical purposes, one
would like to know if phenomenological models incorporating U(n) have any chance of
being consistent, non-supersymmetric QFTs.

There are phenomenological reasons to suspect there might be some kind of non-
electric charge-carrying gauge field(s) beyond the Standard Model. Along these lines, many
models incorporate a “dark photon” that interacts with a hidden matter-field sector but
may or may not interact with the Standard Model sector. The dark photon literature is
quite extensive: For a review see [19] and references therein. The idea of appending a
hypercolor symmetry group SU(3)H × U(1)H to the minimal supersymmetric SU(5)GUT
is studied in [20–23]. The extra factor group resolves some shortcomings of the model,
and it can be viewed as a D3 − D7 brane system in type IIB supergravity. A model of
dark matter coming from an anomalous U(1) gauge boson in type I, IIA, and IIB string
compactifications is put forward by [24]. They use the trivial representations of U(n) for
U(3)× U(2)× U(1)× U(1). Similarly, a string completion of the 3-3-1 model that contains
a novel seesaw mechanism is given by [15]. They use the trivial representations of U(n) for
U(3)×U(3)×U(1)×U(1) along with symmetry breaking down to SU(3)× SU(3)×U(1),
and they derive conditions for gauge and string anomaly cancellation. Note that the three
defining representations displayed by our toy model might not survive the requisite N = 1
supersymmetry of the string theory models, but perhaps one could dispense with the
Stuekelberg symmetry breaking mechanism owing to the viability of U(n) as a gauge
symmetry group. A genuine semi-direct product group (SU(3)C × SU(2)L)⋊U(1)Y and
anomaly cancellation were used by [25] to put constraints on matter field hypercharge.
Lastly, a model of cosmic inflation due to a U(1) gauge field coupled to a fermionic charge
density was studied in [26]. An evident avenue for further research is to explore how
viewing U(n) as a semi-direct product might impact these various studies.

Apart from the above models, we propose U(3) × U(2) as a candidate symmetry
group for physics beyond the Standard Model. Here the U(3) symmetry is viewed as
an extension of SU(3) that commutes with the electroweak symmetry U(2) which is
spontaneously broken to electromagnetic U(1) in the usual manner. This model is a rather
economical extension of the Standard Model with only the gauge kinetic terms and fermion
representations differing from the Standard Model Lagrangian. A full account of the model
is beyond our present scope, but we will give a brief discussion.

Compare our toy model with the U(3)× U(2) extended Standard Model. The first
difference one sees is the mass term in the toy model versus the Yukawa term for the
Higgs coupling to massless fermions in the Standard Model. Notice that the argument
for three physically distinct fields goes through just the same if the mass term is absent
in the toy model. So the conclusion of three distinct fields holds also for U(3) × U(2),
and the Yukawa term will be a sum over three distinct fields assuming different field
renormalizations. Furthermore, since the U(1) ⊂ U(3) has nothing to do with the U(1)
of electromagnetism, the presence of U(3) affects only the QCD sector of the extended
Standard Model and does not interfere with the electroweak force or symmetry breaking.
The next difference to consider is the possibility of an anomaly associated with U(1) ⊂ U(3).
A detailed study of the full QFT model is required to reliably comment on this since it
is not obvious how the group structure of U(n) will affect anomaly considerations. But
off hand it appears there would be no anomaly for the same reason that SU(3) does not
contribute anomalous currents in the Standard Model given a balance of color fermion and
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anti-fermion representations. Of course, it is possible the fermionic field content might
require modification to ensure anomaly cancellation in the U(2) context.

Assuming no anomaly, model building would branch into (i) symmetry breaking
U(3) → SU(3) producing a new massive gauge boson or (ii) no symmetry breaking.
For no symmetry breaking, it is natural to wonder if there could be realistic strong-force
phenomenology coming from gauged U(3). One might be sceptical, because long ago
Fischbach et al. [27] proposed the symmetry group SU(3)C × U(1)B with SU(3)C being
the color symmetry of QCD and U(1)B coupling to baryon number, but it was effectively
falsified by experiment [28]. However, as we have stressed, the gauge-field interactions
for U(3) differ considerably from the SU(3)× U(1) case. All of the gauge fields associated
with the Cartan subalgebra of U(3) take part in both gauge and matter field interactions.
So if there is somehow any vestige of a long-range charge carrier coming from U(3), it
will couple to both gauge and matter field mass-energy and therefore have a chance of
being consistent with gravity — which ultimately was the downfall of SU(3)C × U(1)B.
Moreover, although the physical dynamics of strongly coupled gluons is difficult to intuit,
one could imagine (by analogy with the photon) the U(1) ⊂ U(3) charge-carrying gluon
having a non-zero effective mass in ponderable matter on a galactic scale. (As a reminder,
the U(1) subgroup is not the electromagnetic gauge symmetry.) Evidently, the U(1) charge-
carrying gluon might have dark matter implications whether U(3) is broken to SU(3) or
not. Of course this is highly speculative, and the suggestion that dark matter might be
associated with strong (non-gravitational) interactions with visible matter runs contrary to
orthodox opinion. Less clear and more imperative is whether unbroken U(3) can somehow
agree with QCD and therefore imply three generations.

4. Summary

Our analysis started with the observation that U(n) gauge symmetry can be incorpo-
rated into gauge field theories via semi-direct products and not simply as direct products.
As such, the generator of the U(1) subgroup couples to all the other gluons producing a
much richer gluon dynamics than can be achieved through SU(n)×U(1). In particular, for
U(3) the construction of the semi-direct product is not unique: it comes in three versions
in the defining representation. We argued these three versions can be interpreted as three
species of matter fields. The interpretation relies on including all three versions of the
semi-direct product in the Lagrangian, the large-gauge-transformation status of certain
permutation operators, and the identification Ψ(r) := Pr−1Ψ.

Many phenomenological models make use of various SU(n)× U(1) gauge symmetry
groups; especially string theory D-brane compactifications. We observed that model
builders might profit by instead using U(n). For example, again specializing to U(3) we
suggested an extension of the Standard Model by enlarging the QCD gauge symmetry
group to U(3). This will yield three species of fermions in the defining representation.
Moreover, the field that carries the charge associated with the U(1) subgroup will almost
certainly behave in novel and perhaps unexpected ways due to the non-commutative
nature of U(3). Specifically, the potential energy of its interactions with the other gluons
will add to the stress-energy tensor and enhance the gluon-fermion interaction dynamics.
One anticipates the augmented stress-energy tensor to at least partially contribute to dark
matter—ironically the ‘dark’ being a consequence of strong rather than weak interactions.
Of course the important question is whether the gluon-fermion QCD phenomenology is
realistic or not. Some initial steps to answer this question have been taken and will be
reported elsewhere.
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