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Abstract: To address the problems of existing 2D image-based imbalanced fault diagnosis methods
for rolling bearings, which generate images with inadequate texture details and color degradation,
this paper proposes a novel image enhancement model based on a dual-branch generative adversarial
network (GAN) combining spatial and frequency domain information for an imbalanced fault
diagnosis of rolling bearing. Firstly, the original vibration signals are converted into 2D time–
frequency (TF) images by a continuous wavelet transform, and a dual-branch GAN model with a
symmetric structure is constructed. One branch utilizes an auxiliary classification GAN (ACGAN) to
process the spatial information of the TF images, while the other employs a GAN with a frequency
generator and a frequency discriminator to handle the frequency information of the input images
after a fast Fourier transform. Then, a shuffle attention (SA) module based on an attention mechanism
is integrated into the proposed model to improve the network’s expression ability and reduce the
computational burden. Simultaneously, mean square error (MSE) is integrated into the loss functions
of both generators to enhance the consistency of frequency information for the generated images.
Additionally, a Wasserstein distance and gradient penalty are also incorporated into the losses of
the two discriminators to prevent gradient vanishing and mode collapse. Under the supervision
of the frequency WGAN-GP branch, an ACWGAN-GP can generate high-quality fault samples
to balance the dataset. Finally, the balanced dataset is utilized to train the auxiliary classifier to
achieve fault diagnosis. The effectiveness of the proposed method is validated by two rolling bearing
datasets. When the imbalanced ratios of the four datasets are 0.5, 0.2, 0.1, and 0.05, respectively,
their average classification accuracy reaches 99.35% on the CWRU bearing dataset. Meanwhile, the
average classification accuracy reaches 96.62% on the MFS bearing dataset.

Keywords: imbalanced fault diagnosis; image enhancement; dual-branch generative adversarial
network; spatial and frequency information; shuffle attention

1. Introduction

With the emergence of industry 4.0, the significance of mechanical equipment in
modern industrial technology has become increasingly prominent. As a symmetry device,
the rolling bearing is a crucial component in mechanical equipment and plays a vital role
in ensuring the efficient and stable operation of such equipment [1]. Due to the long-term
impact of thermal fatigue, alternating loads, mechanical vibration, wear, and other factors,
it is also one of the most vulnerable mechanical components of mechanical equipment.
Common types of faults include spalling, pitting, and wear. According to relevant statistics,
the annual fault rate of rolling bearings is approximately 35%. Among these faults, the
predominant issues are with the inner and outer rings and rolling bodies, accounting for
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about 90% [2]. Once the rolling bearing fails, it will affect the reliability of the mechanical
equipment, and even lead to catastrophic consequences. Therefore, studying the fault
diagnosis methods of the rolling bearing is essential to ensure mechanical equipment’s
accuracy, reliability, and safety and to extend its service life [3,4].

Common fault diagnosis techniques for rolling bearings include methods based on
vibration, sound, electrical, and temperature signals, among others. Among these, meth-
ods based on vibration signals are the most commonly used. Scholars have extensively
researched methods for fault diagnosis in rolling bearings. In traditional fault diagnosis
methods, qualitative approaches tend to be relatively imprecise and contain redundant
information, and may lead to non-unique diagnosis results [5]. Methods that rely on
semi-quantitative information can have significant errors. Diagnosis methods that rely on
analytical models require precise parameters for the dynamic modeling of rolling bearings.
However, due to the complex working environment and the difficulty in identifying fault
mechanisms, the applicability of this method is limited.

In recent years, machine learning, especially deep learning, has been extensively uti-
lized in monitoring bearing conditions and diagnosing faults in rotating machinery [6–8].
Compared to traditional methods that rely on manual feature extraction, deep learning
models have potent capabilities for extracting features at a deep level and have achieved
tremendous success in the latest applications for machine state monitoring and fault diag-
nosis [9,10]. For instance, Qiao et al. [11] utilized deep convolutional and LSTM recurrent
neural networks to concurrently capture the temporal and frequency domain characteristics
of vibration signals to achieve end-to-end fault diagnosis. Long et al. [12] proposed a multi-
scale convolutional capsule network that integrates the multi-scale features extracted by a
CNN with the spatial relationship features in CapsNet for the fault diagnosis of industrial
robots. Huo et al. [13] presented an improved Adaptive Dimension Conversion–CNN
approach for fault diagnosis. In this approach, 1D vibration signals were transformed into
2D matrices and then input into a 2D-CNN, fully leveraging the CNN’s ability to extract
features from 2D data.

Data imbalance can significantly impact the stability and reliability of deep learning
model training, leading to a substantial decrease in the performance of fault diagnosis
models. Therefore, a significant amount of balanced data is crucial for training the deep
diagnostic model to achieve accurate and reliable fault diagnosis results. However, in
practical situations, mechanical equipment usually operates under normal working con-
ditions, making it easy to collect sufficient operational data from the equipment under
these conditions. On the contrary, mechanical equipment seldom operates under fault
conditions, making it challenging to gather enough fault samples [14]. As a result, obtaining
an extensive and balanced dataset to train deep learning models is difficult, significantly
limiting the ability of deep learning models to achieve accurate fault diagnosis.

To solve the problem of imbalanced datasets in fault diagnosis, an increasing number
of researchers have been investigating effective solutions [15,16]. For instance, Wu et al. [17]
proposed a novel adaptive oversampling technique based on expectation maximization
(EM) for local weighted minority oversampling in industrial fault diagnosis. Mao et al. [18]
proposed a sequence prediction method based on an extreme learning machine to tackle the
issue of imbalanced fault diagnosis, which incorporated the principal curve and granulation
division to simulate the flow and overall distribution of fault data, effectively preserving
the important features of fault samples. Shi et al. [19] proposed an undersampling tech-
nique that utilizes linear discriminant analysis and the gray wolf optimizer algorithm for
threshold adjustment to improve the performance of fault classification.

However, the traditional methods mentioned above have a common drawback; they
may generate incorrect or unnecessary samples and fail to increase the diversity of the
original fault samples, resulting in issues such as overfitting and poor generalization ability,
and only low diagnosis accuracy can be obtained.

In recent years, with the development of deep learning, the generative adversarial
network (GAN) provides an alternative approach to addressing imbalanced fault diagno-
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sis [20]. Originally used as a framework for generating images, the GAN has been proven
to exhibit strong performance in image generation. However, the quality of the samples
generated by the GAN is inferior due to unstable training. Therefore, to improve the
performance of the GAN, an increasing number of models derived from the GAN have
been proposed [21,22]. For example, to address the issue of data imbalance in practical
industrial environments, Liu et al. [23] transformed 1D original vibration signals into 2D
grayscale images and proposed an auxiliary classification GAN based on spectral normal-
ization and gradient penalty. This GAN is employed to generate high-quality samples and
incorporate them into the original dataset for data augmentation. Similarly, Fu et al. [24]
proposed a small-sample data enhancement method for rotating machinery based on a
fusion attention-guided Wasserstein GAN. This method reduces the multisensor data to
three channels by principal component analysis, then converts the 1D data of each channel
into a 2D pixel matrix and generates an RGB image by fusing the three-channel 2D image.
Liu et al. [25] proposed an imbalanced fault diagnosis method based on an improved multi-
scale residual GAN. By designing a multi-scale residual network structure and hybrid loss
function, the original GAN model is improved, and high-quality time–frequency features
are generated to balance fault data distribution. Xu et al. [26] proposed a semi-supervised
conditional GAN with spectral normalization to generate time–frequency fault images with
a similar distribution.

However, the existing imbalanced fault diagnosis methods based on the 2D time–
frequency images mentioned above still face the following two drawbacks. (1) They all
extract features from images in the spatial domain [27]. The images generated by these
methods suffer from blurring, artifacts in texture details, and degradation of fake images
compared to real images in terms of color. (2) They still suffer from inadequate extraction of
local and global features. Although some models incorporate spatial or channel attention
to overcome this deficiency [28,29], they do not consider the internal connection between
these two types of attention, and are computationally complex, seriously affecting the
reliability of diagnosis results.

The reasons for the limitations mentioned above are that the neural network tends to
prioritize fitting the low-frequency components of the objective function when processing
input images, especially as the network’s depth increases. On the other hand, the image’s
texture details and color information are part of the high-frequency information, which the
neural network does not prioritize fitting during training. Secondly, in the spatial domain,
the color and brightness information of images are integrated through the intensity of pixel
values in the three RGB channels. Therefore, processing the image in the spatial domain
will impact the color information due to the lower brightness value. In contrast, in the
frequency information domain, the image’s color information is primarily represented
as high-frequency components, while the brightness information of the image is mainly
represented as low-frequency components. Therefore, when processing the image in
the frequency information domain, color and brightness are independent of each other,
reducing interference between them.

Inspired by the above analysis, a novel data augmentation framework in which image
enhancement based on a dual-branch GAN combining spatial and frequency domain
information is established to improve the quality of the generated image. Meanwhile, the
spatial domain information processing branch utilizes an auxiliary classification generative
adversarial network (ACGAN) with a discriminator that can distinguish between true and
false and realize fault diagnosis. The main contributions of this paper are summarized
as follows:

(1) A new dual-branch image enhancement GAN model combined with spatial and fre-
quency domain information is proposed. Guided by the frequency domain GAN branch,
the spatial domain ACGAN generates high-quality images with distinct texture de-
tails and vivid color. The generative capacity of this model significantly enhances the
quality of the generated TF images, effectively addressing the data imbalance problem.
Meanwhile, the auxiliary classifiers can achieve precise fault classification.



Symmetry 2024, 16, 512 4 of 23

(2) The shuffle attention [30] module based on spatial and channel attention mechanisms
is integrated into the proposed model to form a pixel-level feature extraction network.
The network is motivated to extract the local and global features of fault samples fully,
enhancing the network’s expressive power. Compared to other attention modules,
shuffle attention uses a parallel computation model, which makes it easier to focus on
sensitive feature information and reduces computational complexity.

(3) The Wasserstein distance and gradient penalty are incorporated into the loss function
of the proposed model, significantly enhancing the data generation capability and
solving the problems of gradient explosion and mode collapse during training.

The rest of this paper is organized as follows. We provide a brief introduction to the
theory related to the GAN and its improved models in Section 2. We introduce the detailed
structure and training method of the proposed model in Section 3. Section 4 discusses
the experimental results and analysis of rolling bearing fault diagnosis. Finally, Section 5
summarizes the entire paper and gives a conclusion.

2. Basic Theory

In fault diagnosis tasks of rolling bearings, data imbalance often leads to overfitting
and model instability, which reduces the accuracy and reliability of fault diagnosis. The
generative adversarial network (GAN) is widely recognized as effective for generating high-
quality images and data. Meanwhile, the GAN excels in learning and capturing complex
data distributions, especially when dealing with imbalanced data. With the advancement
of GAN technology, many variants have been proposed. These improved models offer
better performance and generation results, making them more suitable for the imbalanced
fault diagnosis of rolling bearings. Therefore, in this paper, GANs are employed to generate
samples of specific fault categories to address the issue of data imbalance. This method
can effectively enhance the quality of the generated data and fault diagnostic accuracy.
Accordingly, the principles of the GAN and its derived models will be described in detail.

2.1. The GAN and Its Improved Models

The GAN [31] comprises a generator G and a discriminator D, which participate in a
mutually antagonistic game. The decisions made by both sides of the game will combine
to form a Nash equilibrium point, at which neither side will be able to increase their
benefits through their behavior. During the training process, the generator constructs a
mapping space Pz that satisfies the joint Gaussian distribution, gradually fitting the input
noise z to the distribution Pr of real samples x to generate a new sample distribution
Pg. The discriminator’s task is to receive true sample distribution Pr and the generated
sample distribution Pg, and to distinguish between the authenticity of input samples. The
ultimate objective is to identify the position that minimizes the losses of the generator and
discriminator. The objective function of the entire process is as follows:

min
G

max
D

V(D, G) = Ex∼Pr(x)[log2 D(x)] + Ez∼Pz [log2(1 − D(G(z)))] (1)

where E represents the expectation of the corresponding distribution, G(z) denotes the
generated sample from generator, and D signifies the output of discriminator.

However, traditional GAN models suffer from defects such as training instability
and mode collapse. The ACGAN [32] introduces conditional attribute information, which
improves the model’s training stability and convergence speed while generating more
diverse and attribute-specific samples. The loss function of the ACGAN includes discrim-
inative loss and classification loss, and its general framework is shown in Figure 1. The
discriminative loss function is as follows:

Ldis = Ex∼Pr(x)[log D(x, cr)] + Ez∼Pz [log(1 − D(G(z, cg)))] (2)
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where x and cr represent the real data and their respective category labels; cg represents the
label of the generated samples. cg and z are input into generator G together to obtain the
generated sample G(z, cg), while D[G(z, cg)] represents the probability that the discriminator
D judges the generated G(z, cg) to be true.

Symmetry 2024, 16, x FOR PEER REVIEW 5 of 23 
 

 

discriminative loss and classification loss, and its general framework is shown in Figure 
1. The discriminative loss function is as follows: 

( )[log ( , )] [log(1 ( ( , )))]= + − r zdis x P x r z P gL E D x c E D G z c  (2) 

where x and cr represent the real data and their respective category labels; cg represents 
the label of the generated samples. cg and z are input into generator G together to obtain 
the generated sample G(z, cg), while D[G(z, cg)] represents the probability that the discrim-
inator D judges the generated G(z, cg) to be true. 

The classification loss function compels the generator to generate samples that align 
with the specified target category. The classification loss function is as follows: 

( )[ log( ( | ))]= − = r

r
cls x P x rL E P c c x  (3) 

( )[ log( ( | ( , )))]= − = z

g
cls z P z g gL E P c c G z c  (4) 

where P(c|x) represents the probability distribution of the category labels computed by 
the auxiliary classifier C. 

In summary, the total loss functions during ACGAN training are as follows: 

= − + +r g
D dis cls clsL L L L  (5) 

= + +r g
G dis cls clsL L L L  (6) 

During adversarial training, the discriminator needs to minimize LD, and the gener-
ator needs to minimize LG. 

C

C

G(z)

X

Z

T

F
Class labels

Random noise

Generator

Real samples

Generated samples

Discriminator

True/False

Classes

G
D

 
Figure 1. The structure of the ACGAN. 

2.2. CWGAN-GP 
The reliability of the ACGAN still needs to be improved because it uses JS divergence 

to distinguish the distance between the real distribution Pr and the fake distribution Pg. 
Furthermore, the JS divergence is discrete. When the two distributions of Pr and Pz do not 
overlap, the value of JS divergence remains a constant. This can make the model suscep-
tible to gradient vanishing and mode collapse. 

The CWGAN model is proposed to solve the problems mentioned above. It uses the 
Wasserstein distance to measure the discrepancy between these two distributions and can 
effectively address the limitations of the JS divergence. The Wasserstein distance is calcu-
lated as 

( , ( ))( , )
( , ) inf ( )

r z
r z x G zP P

W P P E x G zγγ Π
=  −  

 (7) 
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The classification loss function compels the generator to generate samples that align
with the specified target category. The classification loss function is as follows:

Lr
cls = Ex∼Pr(x)[− log(P(c = cr

∣∣∣x))] (3)

Lg
cls = Ez∼Pz(z)[− log(P(c = cg

∣∣∣G(z, cg)))] (4)

where P(c|x) represents the probability distribution of the category labels computed by the
auxiliary classifier C.

In summary, the total loss functions during ACGAN training are as follows:

LD = −Ldis + Lr
cls + Lg

cls (5)

LG = Ldis + Lr
cls + Lg

cls (6)

During adversarial training, the discriminator needs to minimize LD, and the generator
needs to minimize LG.

2.2. CWGAN-GP

The reliability of the ACGAN still needs to be improved because it uses JS divergence
to distinguish the distance between the real distribution Pr and the fake distribution Pg.
Furthermore, the JS divergence is discrete. When the two distributions of Pr and Pz do not
overlap, the value of JS divergence remains a constant. This can make the model susceptible
to gradient vanishing and mode collapse.

The CWGAN model is proposed to solve the problems mentioned above. It uses
the Wasserstein distance to measure the discrepancy between these two distributions and
can effectively address the limitations of the JS divergence. The Wasserstein distance is
calculated as

W(Pr, Pz) = inf
γ∼Π(Pr ,Pz)

E(x,G(z))∼γ[∥x − G(z)∥] (7)

where Π(Pr, Pz) represents the set of all possible joint distributions obtained by combining
the true sample distribution Pr with the generated sample distribution Pz. For each possible
joint distribution γ, one can sample (x, G(z))~γ from it to obtain samples x and G(z), and
|| x − G(z)|| represents the distance between the pairs of samples. Since it is impossible
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to solve for an exact lower bound on the Wasserstein distance directly, the Kantorovich–
Rubinstein dual form is used. The Wasserstein distance is converted as

W(Pr, Pz) =
1
K

sup
∥ f ∥L≤K

{
Ex∼Pr(x)[ f (x)]− Ez∼P(z)[ f (G(z))]

}
(8)

where sup is the minimum upper bound. f is a continuous function, ||f ||L≤ K indicates
that f must satisfy the Lipschitz continuity condition, and there exists a constant K ≥ 0 such
that it meets |f (x) − f (G(z))| ≤ K|(x − G(z)| in the domain of definition. The objective
function of the CWGAN is

min
G

max
D∈∆

V(G, D) = Ex∼Pr [D(x|c)]− Ez∼Pz [D(G(z|c))] (9)

where ∆ denotes the set of 1-Lipschitz functions. To implement the CWGAN, the dis-
criminator D should belong to 1-Lipschitz functions, and it should satisfy condition
|D(x) − D(G(z))| ≤ |x − G(z)|. To meet this requirement, the CWGAN truncates the
discriminator D’s parameters at [−c, c] after each iteration.

However, this optimization strategy is susceptible to gradient explosion. To tackle this
issue, Gulrajani et al. [33] proposed the gradient penalty term, which effectively solves the
problem above by incorporating the gradient penalty term (GP) into the CWGAN. The
objective function of the CWGAN-GP is as follows:

LD = Ez∼Pz(z)[D(G(z|c))]− Ex∼Pr(x)[D(x|c)] + λEx̂∼Px̂(x̂)

[
(∥∇x̂D(x̂|c)∥2 − 1)2

]
(10)

LG = −Ez∼Pz(z)[D(G(z
∣∣∣c))] (11)

x̂ = εxr + (1 − ε)xg,
xr ∈ Pr, xg ∈ Pz, ε ∈ Uni f orm[0, 1]

}
(12)

where λ represents the gradient penalty weight, xr and xg represent the data in the real
distribution Pr and the fake distribution Pz, x̂ is the data sampled by random interpolation
of random noise on the line between xr and xg, Px̂(x̂) represents the set of sampled data,
ε represents the random number obeying the uniform distribution, and ∥∇x̂D(x̂|c)∥2
represents the L2-paradigm of the gradient of the D.

2.3. ACWGAN-GP

The ACWGAN-GP [34] effectively solves the shortcomings of traditional GAN models
described above. It significantly enhances the reliability of GAN model training and
improves the quality of the generated samples. The main idea is to use an ACGAN-based
Wasserstein distance and evaluate the difference between the fake distribution and real
distribution while employing a gradient penalty to satisfy the Lipschitz constraints. The
loss function of the ACWGAN-GP is as follows:

LD = Ex∼Pr [log D(x, cr)]− Ez∼Pz [log D(G(z, cg))]− λEx̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
+Ex∼Pr [log P(Y = y|Sreal)]

(13)

LG = Ez∼Pz [log D(G(z, cg))] + Ez∼Pz [log P(c = cg
∣∣G(z, cg))] (14)

where P(Y = y|Sreal) represents the probability distribution on the category labels.
In summary, the GAN possesses a powerful ability to generate high-quality images

and data samples. However, its training process often encounters instability issues, such
as gradient vanishing and mode collapse, compromising its robustness in practical ap-
plications. To address these challenges, researchers have proposed various enhancement
methods. The ACGAN builds upon the original GAN by introducing conditional attribute
information, leading to more diverse and attribute-specific generated samples. Nonetheless,
it remains susceptible to gradient vanishing, and the model’s performance requires further
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optimization. The CWGAN-GP effectively addresses the issues of pattern collapse and
gradient vanishing by incorporating the Wasserstein distance and gradient penalty terms.
However, compared with the original GAN, the CWGAN-GP requires more training data
to achieve enhanced generative capability and stability. The ACWGAN-GP combines
the advantages of the ACGAN’s conditional attribute information and the CWGAN-GP’s
training stability. Although its complexity increases the computational requirements, the
ACWGAN-GP can generate high-quality samples with robust classification performance,
positioning it as an excellent choice for imbalanced fault diagnosis of rolling bearing.

2.4. Continuous Wavelet Transform Feature Extraction

The continuous wavelet transform (CWT) [35] is widely used to extract the time and
frequency domain features of the original vibration signals, the essence of which is to
describe the original signal by translating and scaling the wavelet mother function; the time
domain information of the signal is obtained by translating, and the frequency domain
information of the signal is obtained by scaling the wavelet mother function. Wavelet
analysis can locally amplify the time–frequency domain of the signal, adjust the scale factor,
and change the time resolution of low-frequency and high-frequency signals and frequency
resolution to adapt to the signals of different compositions, so the wavelet analysis method
shows promising results in fault diagnosis, image processing, and other aspects.

Assuming the vibration signal is s(t) ∈ L2(R), the wavelet transform can be repre-
sented as follows:

cs(a, b) = s ∗ ψa,b(t) =
1√
|a|

∫ ∞

−∞
s(t)ψa,b

(
t − b

a

)
dt (15)

where a b ∈ R, a > 0 are the scaling and translation factors, respectively. ψa,b(·) is the scaling
and translation factor. Analyzing the signal through the expansion of ψ(t) in the scale and
the translation in the time domain, i.e., decomposing the existing time-domain signal into a
two-dimensional time–frequency plane, is a TF domain analysis, which is more conducive
to the extraction of local features of the original vibration signal. Generally, rolling bearing
faults are always expressed as impulse shocks, whose shapes are similar to Morlet wavelets.
Therefore, this paper uses a Morlet wavelet as the basis function to transform the original
vibration signals into TF images with apparent local features.

This paper employs the CWT to convert one-dimensional original vibration signals
into two-dimensional time–frequency images, which are used as inputs to the proposed
enhanced GAN model. Accordingly, the GAN’s excellent image generation capability is
utilized to generate time–frequency images of specific fault categories and balance the
original dataset.

3. The Proposed Method

In the spatial domain, images represent color and brightness information by combining
intensity values across the three RGB channels. Low brightness values can affect the color
information in TF images. Conversely, in the frequency domain, color and brightness
information are represented by high-frequency and low-frequency components. Therefore,
when dealing with TF images in the frequency domain, the color and brightness information
are independent and do not interfere.

Based on the above problem and aiming at the problem of color distortion in images
generated by existing 2D image-based GAN models for imbalanced fault diagnosis, this
paper proposes a novel image enhancement model based on a dual-branch GAN com-
bining spatial and frequency domain information. The overall flowchart of the proposed
model is shown in Figure 2. The spatial domain information processing branch utilizes
an auxiliary classification GAN, which comprises a generator (G) and a discriminator
(D). Meanwhile, the frequency domain information processing branch uses a GAN with
a frequency generator (FG) and a frequency discriminator (FD). A fast Fourier transform
is used to transform the input image from the spatial domain to the frequency domain.
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The MSE is integrated into the loss function of both generators to enhance the consistency
of frequency information for the generated images. Two of the GANs receive the same
noise and labeling information and the ACWGAN-GP is responsible for generating high-
quality image samples and balancing the original dataset. Finally, the auxiliary classifier
is trained with a balanced dataset to achieve intelligent imbalanced fault diagnosis of the
rolling bearing.
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3.1. Fast Fourier Transform and Consistency Measure Mean Square Error Loss
3.1.1. Fast Fourier Transform

In image processing, the FFT is an effective method for separating the frequency
information components of an image from the spatial domain [36]. Therefore, this paper
utilizes the FFT to separate the frequency information of the input image from the spatial
domain. The computational method of the FFT is defined as follows:

F(u, v) =
W−1

∑
x=0

H−1

∑
y=0

S(x, y) · e−j2π( ux
W +

vy
H ) (16)

where S(x, y) denotes the pixel value of the image at the spatial domain coordinate (x, y); H
and W are the height and width of the image, respectively. After the FFT operation, the input
image will get the spectrogram with the same size as H and W, which is the representation
of the image in the frequency domain. The F(u, v) represents the frequency components’
intensity and phase information at the frequency domain’s spectral coordinates (u, v).

3.1.2. Consistency Measure Mean Square Error Loss

Consistency measure mean square error (MSE) is a commonly used statistical metric
to measure the difference between the expected and actual values. It has a significant
advantage in calculating the discrepancy in pixel values between two images [37]. The
formula is defined as follows:

MSE =
1
N

N

∑
i=1

(yi − h(xi))
2 (17)

where yi and xi represent the actual and expected values of the ith frequency component,
respectively, and N represents the total number of frequency components.

For the training loss of the proposed model, the discriminator loss function of the spa-
tial domain generative model is kept consistent with the ACWGAN-GP mentioned above,
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according to the knowledge discussed in Section 2. At the same time, by introducing the
MSE loss into the generator, the loss of the spatial domain generator network is as follows:

LG = α[−Ez∼Pz [log D(G(z, cg))] + Ez∼Pz [− log P(c = cg
∣∣G(z, cg))]] + (1 − α)MSE (18)

Accordingly, the frequency information branch using the CWGAN-GP and the loss
function of the frequency generator is as follows:

LG = −αEz∼Pz(z)[D(G(z
∣∣∣cg))] + (1 − α)MSE (19)

where α is a hyperparameter to adjust the weight ratio between the two loss functions, and
the α is set to 0.01 in this paper.

This paper introduces MSE loss in the two generators to evaluate the disparity between
the frequency information of the spatial and frequency domain pseudo-images. The
gradients of the loss functions of the two generators are updated during training to enhance
the consistency of the frequency information for the generated images. Therefore, the
frequency information branch can supervise the spatial information branch in learning the
detailed texture features of images more comprehensively, allowing the G to generate fault
images with a higher resolution.

3.2. Shuffle Attention Module

Recently, the use of attention mechanisms in fault diagnosis has become increasingly
widespread. Efficient channel attention (ECA) focuses on the intrinsic connections between
pixel-level feature information. The convolutional block attention mechanism (CBAM) en-
ables the model to focus on the spatial relationships of features and the intrinsic connection
between channels by combining spatial and channel attention [38,39]. However, they do
not adequately consider the intrinsic connection between spatial and channel attention
mechanisms and still have limitations in terms of computational efficiency.

To enhance the expression ability of the proposed model and alleviate the compu-
tational burden caused by the dual GAN structure, the shuffle attention (SA) module is
proposed, employing a parallel computation approach that enables the model to extract
global feature information and reduce computational complexity significantly.

As shown in Figure 3, the input feature map is denoted as X ∈ RC×H×W , where C
represents the number of channels, H represents the height, and W represents the width.
Additionally, SA sets the value of G as the segmentation parameter. The input feature
map X is divided into G sub-feature maps along the channel to form a branch, denoted
as X = [X1, . . ., XG] and Xk ∈ RC×H×W/G. Each branch Xk is computed in parallel during
the feature extraction process, enhancing computation speed and obtaining new weight
parameters through the attention module in the feature extraction process. After each
branch enters the attention module, Xk is further subdivided into two branches along the
channel, denoted as Xk1, Xk2 ∈ RC×H×W/2G; Xk1 and Xk2 form the preliminary channel
attention feature map and spatial attention feature map through the feature information
between channels and sub-feature maps, respectively. At this point, the model obtains the
source information of different feature maps.

To enhance the integration of feature information between the channel attention and
the spatial attention feature map, the overall feature information is extracted using global
average pooling (GAP), denoted as S ∈ RC×1×1/2G, and Xk1 is recomputed using the
overall feature information.

s = GAP(Xk1) =
1

H × W

H

∑
i=1

W

∑
j=1

Xk1(i, j) (20)



Symmetry 2024, 16, 512 10 of 23

The sigmoid activation function is utilized to regulate the fusion of the dual-channel
feature information, and the final channel attention output is:

X′
k1 = σ(F(s)) · Xk1 = σ(W1s + b1) · Xk1 (21)

where W1 and b1 ∈ RC×1×1/2G are the parameters used to rescale the output feature map.
Spatial attention focuses more on the source of information. After calculating the

output of channel attention obtained by Xk1, it is also necessary to calculate the spatial
attention of Xk2. This ensures that all feature information can be effectively obtained when
the two branches are merged. The group norm (GN) is used for Xk2 to obtain the spatial
features, and then the enhancement F(·) is applied. The final output of spatial attention is

X′
k2 = σ(W2 · GN(Xk2) + b2) · Xk2 (22)

where W2 and b2 ∈ RC×1×1/2G merge the two attention feature map branches, denoted as
X′

k = [X′
k1, X′

k2]∈ RC×H×W/G, W1, b1, W2, b2, and the GN hyperparameters are generated
in the SA module, and the number of channels in each branch is split by the G-parameter,
ensuring that the SA is sufficiently lightweight. Finally, the shuffle operator is used to merge
and flow the feature information of each branch along the channels across the branches,
ensuring that the final output of the SA module is consistent with the size of X.
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Figure 3. Structure of the SA: GAP represents the global average pooling, GN stands for group 
norm, F(x) = ωx + b, σ(⸱) represents the activation function, ⊗ represents the element-wise product, 
and C and S stand for the concat and channel shuffle operators, respectively. 
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F(x) = ωx + b, σ(·) represents the activation function, ⊗ represents the element-wise product, and C
and S stand for the concat and channel shuffle operators, respectively.

In summary, compared with other attention mechanisms, shuffle attention allows the
input feature information to flow between different channels. This enables the effective
capture of the relationship between global and local features in both spatial and frequency
domains. In addition, it can perform both spatial and channel branching feature extraction,
making it more computationally efficient and lightweight. Therefore, in this paper, shuffle
attention is incorporated into the proposed model to enhance the feature extraction capa-
bility of the network while reducing the computational burden associated with the dual
GAN structure.

3.3. Overall Flow of the Proposed Method

This paper aims to generate time–frequency images with sufficient texture details
and color information to improve fault diagnosis accuracy. A dual-branch GAN model
that combines information from both the spatial and frequency domains of images is
proposed. The general flow of the proposed diagnosis method is shown in Figure 4. In
the spatial domain generator, 100-dimensional noise and the label C (fake) are input into
a fully connected (FC) layer. A reshape function transforms the FC layer’s output into
4 × 4 × 384 images. Then, seven feature extraction modules are employed, each containing
a convolution layer, batch normalization, and ReLU activation function. The 4th and
7th feature extraction modules contain shuffle attention layers. The size of the image is
altered by employing multiple 4 × 4 convolution kernels. The number of output channels
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of the last layer is 3, corresponding to the channels of the RGB image. Simultaneously,
the discriminator consists of 8 feature extraction modules, and the input image size is
64 × 64 × 3. The shuffle attention layer is included in the 4th and 8th feature extraction
modules. To enhance the discriminator’s performance, the LeakyReLU activation function
is employed. The output layer constructs an auxiliary classifier using the softmax activation
function to achieve fault learning and recognition. The detailed network parameters of G
and D are shown in Table 1. It is worth noting that the network parameters of the frequency
domain WGAN-GP are the same as those of the spatial domain ACWGAN-GP, except that
the last layer of the FG has only one output channel and does not include a fully connected
layer with a softmax activation function.
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The TF images are divided into a training set and a test set with a ratio of 4:1, and
the balanced dataset is used to train the auxiliary classifier in the spatial discriminator.
Then, the performance of the trained classifier is evaluated using the test set. During
the training of the proposed model, the learning rates of the two sets of generators and
discriminators are set to 0.0001 and 0.0002, respectively. The number of training iterations
for the generative task is 500, while the number of training iterations for the auxiliary
classifier is 200, and the batch size is 32. Adam’s algorithm is used as the optimizer for this
model, with momentum parameters β1 and β2 set to 0.5 and 0.999, respectively. The model
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also utilizes LeakyReLU and Dropout with parameters of 0.2 and 0.5, and the value of the
gradient penalty coefficient λ is 5.

Table 1. The specific network parameters of the generator and discriminator.

Network Layer Kernel Strides Maps N AF

Generator

Input (100, 10) — — — — —
Full connection — — 768 — —

Deconv2d 4 × 4 1 × 1 384 BN ReLU
Deconv2d 4 × 4 2 × 2 256 BN ReLU
Deconv2d 4 × 4 2 × 2 192 BN ReLU

Shuffle attention — — 192 — —
Deconv2d 4 × 4 2 × 2 64 BN ReLU
Deconv2d 4 × 4 2 × 2 64 BN ReLU
Deconv2d 4 × 4 2 × 2 64 BN ReLU

Shuffle attention — — 16 — —
Deconv2d 4 × 4 2 × 2 3 BN Tanh

Discriminator

Input(64 × 64 × 3) — — — — —
Conv2d 3 × 3 2 × 2 16 — LeakyReLU
Conv2d 3 × 3 1 × 1 32 BN LeakyReLU
Conv2d 3 × 3 2 × 2 64 BN LeakyReLU

Shuffle attention — — 64 — —
Conv2d 3 × 3 1 × 1 128 BN LeakyReLU
Conv2d 3 × 3 2 × 2 256 BN LeakyReLU
Conv2d 3 × 3 1 × 1 512 BN LeakyReLU
Conv2d 3 × 3 2 × 2 512 BN LeakyReLU

Shuffle attention — — 512 — —
Conv2d 3 × 3 2 × 2 512 BN LeakyReLU

Full connection — — 1 — sigmoid
Full connection — — 10 — softmax

Note: N and AF stand for “Normalization” and “Activation Function”, respectively. Maps represent the number
of output channels.

4. Experimental Verification

To comprehensively confirm the validity of the proposed method, we conducted
detailed experiments on two bearing datasets. The rolling bearing dataset for case 1 was
obtained from the Case Western Reserve University (CWRU) bearing data center. The
dataset for case 2 was obtained from the Mechanical Fault Simulation Platform (MFS). The
experiment was conducted on a computer running the 64-bit Windows 10 operating system.
The hardware configuration included an Intel(R) Core (TM) i5-13490F CPU, an NVIDIA
GeForce RTX3060Ti GPU, 32GB of RAM, Python 3.9.15, and PyTorch 1.13.1.

4.1. Case 1: The Case Western Reserve University (CWRU) Bearing Dataset
4.1.1. Description of The Dataset

The bearing dataset from CWRU is a well-recognized standard dataset in bearing fault
diagnosis and is widely used in related research and practice. The experimental platform
included a 2-horsepower motor, torque sensor and decoder, power tester, and electronic
control equipment. Single-point damage faults were created on the outer raceway, inner
raceway, and balls of the bearing using electrical discharge machining (EDM).

The damage diameters were 0.007, 0.014, and 0.021 inches, respectively. To collect
vibration signals from various fault categories, the experimental data selected for this study
are as follows; a vibration acceleration sensor with a sampling frequency of 12 kHz, a motor
load of 0 hp, and a motor speed of 1797 rpm were chosen. The damage diameters of the
fault samples were 0.007, 0.014, and 0.021 inches. The fault locations were identified as
follows: outer raceway of the bearing (outer fault), inner raceway of the bearing (inner
fault), and the ball (ball fault), resulting in a total of nine types of fault data. These were
combined with the normal bearing vibration data, resulting in a total of ten types of samples.
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They are marked from 0 to 9 in order and denoted as Normal, BF7, BF14, BF21, IRF7, IRF14,
IRF21, ORF7, ORF14, and ORF21 in that sequence.

4.1.2. Dataset Setting

The original vibration signal for each fault contained 120,000 sample points, with each
fault sample consisting of 600 sampling points. To increase the number of training samples
while maintaining sample diversity [40], a 120-point interval was used for overlapping
samples. The original vibration signal of each fault was converted into 1000 TF images by
CWT, including 800 training samples and 200 test samples.

To simulate the imbalance of datasets in practical engineering, the TF images were
randomly segmented and reorganized into five datasets. Dataset E is a fully balanced
dataset for evaluating the classifier’s performance. A, B, C, and D are distributed with
imbalanced ratios of 2:1, 5:1, 10:1, and 20:1 between the number of normal and faulty
samples for each category, respectively. The proposed generative model in this paper
was first utilized to generate class-specific fault samples to balance the four datasets.
Subsequently, the balanced datasets A′, B′, C′, and D′ were employed to train the auxiliary
classifier in the spatial discriminator. Finally, the dataset E was utilized as a test set to
assess the diagnostic accuracy of the different balanced datasets. The number of samples
for specific fault categories is shown in Table 2.

Table 2. The detailed division of the CWRU rolling bearing dataset.

State Normal Ball Fault Inner Fault Outer Fault

Fault
Diameter (inches) 0 0.007/0.014/0.021 0.007/0.014/0.021 0.007/0.014/0.021

Dataset A 800 400/400/400 400/400/400 400/400/400
Dataset B 800 160/160/160 160/160/160 160/160/160
Dataset C 800 80/80/80 80/80/80 80/80/80
Dataset D 800 40/40/40 40/40/40 40/40/40
Dataset E 200 200/200/200 200/200/200 200/200/200

4.1.3. Quality Assessment of Generated Images

To verify the capability of the proposed model to generate high-quality images with
clear texture details and rich colors, a qualitative visual comparison was conducted be-
tween the proposed model and the CWGAN-GP, a widely used data enhancement model
known for its excellence. As shown in Figure 5, it is evident that CWGAN-GP effectively
generates the important features of faults and exhibits high visual quality. However, it still
suffers from spectral inhomogeneity and lacks sufficient local detailed features. In contrast,
the images generated by the proposed method have more apparent texture details and
color information.

The structural similarity index (SSIM) was designed based on the visual perceptual
properties of images, integrating the three aspects of brightness, contrast, and structure.
It is suitable for objectively assessing image quality in image processing. By utilizing
the Inception model to extract image features, the Fréchet inception distance (FID) can
sensitively capture subtle differences between images, making it particularly effective
for quality assessments of the generated images. Peak signal-to-noise ratio (PSNR) is a
straightforward and intuitive image quality assessment method that evaluates an image’s
quality by calculating the maximum possible error between the original and processed
images. It has a simple formula and is well-suited for scenarios where image quality
needs to be assessed quickly. Therefore, to objectively evaluate the generative ability of the
proposed method, this paper uses SSIM, FID, and PSNR metrics to quantitatively evaluate
the similarity between the generated and the original images. As shown in Table 3, in
each of these four imbalanced datasets, the mean SSIM value for the ten categories of
fault images exceeds 0.8, the mean FID values are around 60, and the mean PSNR values
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are around 29. These results indicate that the discrepancy between the fake and original
distributions is minimal, and the generated images are of high quality.
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Table 3. Mean values of the metrics for the original samples and generated samples on the CWRU datasets.

Datasets SSIM FID PSNR

A 0.883 58.893 29.150
B 0.876 59.215 29.086
C 0.824 61.329 28.592
D 0.813 64.092 26.757

To fully demonstrate the ability of the proposed method to generate high-quality
TF images, we compare the evaluation metrics with existing generative models such
as the DCGAN, ACGAN, and CWGAN-GP on dataset A. It is worth noting that the
hyperparameters are consistent across all models, ensuring a fair comparison. Table 4
presents the results of the comparison of their generative abilities. From the comparison,
the generative ability of the DCGAN is significantly inferior, while the ACGAN and
CWGAN-GP are relatively superior. However, the proposed method achieves optimal
performance in all key metrics compared to these three models. Specifically, it achieves
a mean SSIM value of 0.883, while the mean PSNR value is 29.150, indicating that the
generated TF images are highly similar to the original images. The comparison results
confirm that the proposed model possesses excellent image generation capability and
provides more reliable input samples for fault classification.

Table 4. Performance comparison of different data enhancement models.

Methods SSIM FID PSNR

DCGAN 0.621 108.031 21.364
ACGAN 0.639 106.165 21.962

CWGAN-GP 0.743 71.027 24.425
The proposed method 0.883 58.893 29.150

4.1.4. Experiment Results

After the auxiliary classifier completed training on these four balanced datasets A′, B′,
C′, and D′, the test set E was used to assess the reliability of the training results. The four
confusion matrices depicting the classification results of the test set E are shown in Figure 6.
This visual representation intuitively illustrates the accuracy of fault classification. The
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rows and columns of the confusion matrix represent the actual labels of the fault categories
and the predicted labels, respectively. It can be noted that with an imbalance ratio of 2:1, the
classification accuracy reaches 100%. At the imbalance ratio of 5:1, only one of the samples
with fault categories BF7 and BF14 was misclassified, and only two of the fault samples
with fault category IRF7 were misclassified. Meanwhile, only around 5% of the samples
in the IR7 category were misclassified when the imbalance ratio is 20:1. These results
demonstrate the effectiveness of the proposed method in enhancing the original dataset,
enabling the ACWGAN-GP network to effectively capture the characteristic distribution of
fault samples.
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Figure 6. Confusion matrix of classification results for the CWRU datasets with different imbal-
ance ratios.To further illustrate the feature learning performance of the proposed diagnostic model 
with various unbalanced datasets, we utilized the t-distributed stochastic neighbor embedding (t-
SNE) algorithm [41] to visualize the classification results of the model on the test set. As shown in 

Figure 6. Confusion matrix of classification results for the CWRU datasets with different imbalance
ratios.To further illustrate the feature learning performance of the proposed diagnostic model with
various unbalanced datasets, we utilized the t-distributed stochastic neighbor embedding (t-SNE)
algorithm [41] to visualize the classification results of the model on the test set. As shown in Figure 7,
it is evident that the feature distributions of the test set samples with different health states in the
four datasets exhibit significant differences. Although there are a few samples with conflated feature
distributions, this impact on the model’s diagnosis results can be largely disregarded. This further
validates the confusion matrices’ classification results and underscores the proposed model’s excellent
feature learning and fault diagnosis capability.
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4.1.5. Comparison of Different Diagnosis Models

To further verify the diagnostic performance of the proposed model, the classification
results of the model were compared with those of different models, including AlexNet,
MobileNet, and VGG, at four different imbalance ratios. Their number of training iterations
was set to 200, and the learning rate was fixed at 0.0002. The Adam optimization algorithm
was also applied to the three comparison diagnostic models, and all hyperparameters
remained consistent with those of the proposed models. Five experiments were conducted
for each method to minimize random errors, and their average value was calculated. The
diagnostic accuracies of various models are shown in Figure 8. It is evident that MobileNet
has the poorest results, with classification accuracies of only 79.40% and 66.35% in datasets
C and D, respectively. In contrast, AlexNet and VGG show significant improvements in
classification accuracy across the four datasets. It is worth noting that the proposed model
has the highest diagnostic accuracy among all models in the four datasets. Even in the case
of an imbalanced ratio of 20:1, the diagnostic accuracy of the proposed model still reaches
98.65%, indicating the model has excellent feature extraction capability.
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4.2. Case 2: Mechanical Fault Simulation (MFS) Platform Bearing Dataset
4.2.1. Description of the Dataset

To further verify the strong performance and generalization capability of the proposed
model, the Mechanical Fault Comprehensive Simulation Platform from the laboratory was
utilized. As shown in Figure 9, the experimental platform consisted of an AC motor, a
coupling, an acceleration sensor, a rotor, an experimental bearing, an alignment adjustment
plate, an inverter, and a data acquisition box, and the motor speed was 1000 rpm. As
shown in Figure 10, the experiment collects bearing data from five fault states at a sampling
frequency of 16 kHz. These states include the normal state and four fault states labeled
from 0 to 4, representing normal, inner race fault (IRF), outer race fault (ORF), ball fault
(BF), and combination fault (CF), in that order.
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4.2.2. Dataset Setting

Similar to case 1, four datasets (A, B, C, and D) with different imbalance ratios of 2:1,
5:1, 10:1, and 20:1, respectively, were established. Additionally, dataset E, a fully balanced
dataset, was used as a test set, and the detailed division of the datasets is shown in Table 5.

Table 5. The detailed division of the MFS bearing dataset.

State Normal IRF CF ORF BF

Dataset A 500 250 250 250 250
Dataset B 500 100 100 100 100
Dataset C 500 50 50 50 50
Dataset D 500 25 25 25 25
Dataset E 125 125 125 125 125

4.2.3. Quality Assessment of Generated Images

Similar to case 1, the generated images for each category were quantitatively compared
with the original images using SSIM, FID, and PSNR, and the average of the comparison
results for all fault categories was calculated and is shown in Table 6; it is evident that
all three metrics show excellent results across various datasets, indicating a low level
of distortion and further demonstrating the excellent image generative capacity of the
proposed model.

Table 6. Mean values of the metrics for the original samples and generated samples on the MFS
datasets.

Datasets SSIM FID PSNR

A 0.840 59.994 28.882
B 0.827 60.146 28.630
C 0.793 64.230 26.080
D 0.774 65.720 25.154

4.2.4. Experimental Results

After completing the training of the auxiliary classifier using balanced datasets, the
test set E was employed to assess the reliability of the classifier. Confusion matrices
illustrating the classification results of the four datasets on the test set are shown in Figure 11.
It is evident that almost all fault categories can still be correctly classified, even with
extreme data imbalance, demonstrating the exceptional capability of the proposed model
in capturing fault features.
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Figure 11. Confusion matrix of classification results for the MFS datasets with different imbalance 
ratios. To better evaluate the diagnostic performance of the proposed model in a more intuitive 
way, the t-SNE dimensionality reduction visualization results are shown in Figure 12. It is evident 
that each fault category still exhibits a distinct classification boundary, further indicating the excel-
lent data generation and fault diagnosis performance of the proposed model, along with its strong 
generalization ability. 

Figure 11. Confusion matrix of classification results for the MFS datasets with different imbalance
ratios. To better evaluate the diagnostic performance of the proposed model in a more intuitive way,
the t-SNE dimensionality reduction visualization results are shown in Figure 12. It is evident that
each fault category still exhibits a distinct classification boundary, further indicating the excellent
data generation and fault diagnosis performance of the proposed model, along with its strong
generalization ability.
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4.2.5. Comparison of Different Diagnosis Models

To further validate the performance of the proposed diagnostic model, we compare
its classification results on the test set with existing state-of-the-art deep learning models,
including AlexNet, VGG, and MobileNet. As shown in Figure 13, it is evident that the
proposed method achieves the highest classification accuracy across all four imbalance
ratios. On the contrary, MobileNet exhibits the poorest performance among all the models,
achieving only 46.50% accuracy in the unbalanced ratio of 20:1. This issue may be attributed
to the low complexity of the MobileNet model, which fails to adequately capture the
intricate features present in the dataset. Additionally, it may suffer from issues such as data
imbalance or overfitting.
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5. Conclusions

To address the issues of insufficient texture details and color distortion in the image
generated by the existing image-based imbalanced fault diagnosis models, this paper
proposes a novel image enhancement model based on a dual-branch GAN combining
spatial and frequency domain information for imbalanced fault diagnosis of rolling bearing.
First, the method applies a CWT to convert the 1D raw data into 2D time–frequency images.
Then, a Wasserstein distance and gradient penalty are incorporated into the loss functions
of the proposed model to prevent gradient vanishing and mode collapse. Therefore, in the
proposed model, the spatial domain information processing branch employs an ACWGAN-
GP, while a CWGAN-GP is applied to the frequency domain information processing branch
after the fast Fourier transform. Subsequently, the MSE is integrated into the loss functions
of both generators to enhance the consistency of frequency information for the generated
image. SA is also incorporated into this model to alleviate the computational load resulting
from the dual GAN structure and enhance the expression ability of the network. Under the
supervision of the frequency domain information processing branch, the ACWGAN-GP
generates high-quality TF images and balances the original dataset. Finally, the auxiliary
classifier is used to train the balanced dataset for comprehensive feature extraction and
accurate fault diagnosis.
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Experimental results on two bearing datasets indicate the high feasibility of the pro-
posed method in both theory and practice. By comparing the performance with the existing
state-of-the-art generative models, the results indicate that this method can generate higher-
quality images with more apparent texture details and color information and enhance fault
diagnosis performance and generalization ability. In addition, comparing the results of
different diagnostic models indicates that the proposed method maintains high diagnosis
accuracy on both datasets.

Although the integration of SA in the proposed model can alleviate the computational
burden imposed by the dual GAN to some extent, the training of the proposed model is
still time-consuming. Therefore, future research will further explore how to reduce the
training time of the model more effectively and combine the frequency domain information
of images with unsupervised learning. Furthermore, it is worth noting that the proposed
method only applies to specific fault types and experimental subjects. Therefore, future
work will incorporate transfer learning to diagnose more complex fault classes.
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