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Abstract: Large-scale symmetric and asymmetric matrices have emerged in predicting the relationship
between genes and diseases. The emergence of large-scale matrices increases the computational
complexity of the problem. Therefore, using low-rank matrices instead of original symmetric and
asymmetric matrices can greatly reduce computational complexity. In this paper, we propose an
approximation conjugate gradient method for solving the low-rank matrix recovery problem, i.e., the
low-rank matrix is obtained to replace the original symmetric and asymmetric matrices such that
the approximation error is the smallest. The conjugate gradient search direction is given through
matrix addition and matrix multiplication. The new conjugate gradient update parameter is given
by the F-norm of matrix and the trace inner product of matrices. The conjugate gradient generated
by the algorithm avoids SVD decomposition. The backtracking linear search is used so that the
approximation conjugate gradient direction is computed only once, which ensures that the objective
function decreases monotonically. The global convergence and local superlinear convergence of the
algorithm are given. The numerical results are reported and show the effectiveness of the algorithm.

Keywords: approximation conjugate gradient method; low-rank matrix recovery; backtracking linear
search technique; global convergence; superlinear convergence

MSC: 49M37; 65K05; 90C30; 90C56

1. Introduction
Problem Description Motivation

The low-rank matrix plays an important role in a broad range of applications and mul-
tiple scientific fields. For example, many bioinformatics experts use the matrix restoration
technique to predict the relationship between diseases and genes [1]. In many bioinfor-
matics problems, the information between genes and diseases is presented in the form
of a symmetric or asymmetric matrix, but the dimensions of symmetric and asymmetric
matrices are extremely large, which makes it difficult to calculate effectively in practical
situations and even leads to the inability to perform calculations. Hence, it is often possible
to recover it due to the low-rank structure. In many cases, the rank r of the low-rank matrix
is fixed and the matrix decomposition M = UVT is completed, where M ∈ Rm×n is a
known matrix and U ∈ Rm×r, V ∈ Rn×r is the variable matrices of the following problem:

min
U∈Rm×r ,V∈Rn×r

F(U, V) =
1
2
∥UVT − M∥2

F. (1)
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In many cases, matrix M is a symmetric matrix, i.e., M ∈ Rn×n and the matrix
decomposition M = UUT , U ∈ Rn×r, problem (1) is equivalent to solving the following
low-rank symmetric matrix recovery problem:

min
U∈Rn×r

F(U, U) =
1
2
∥UUT − M∥2

F. (2)

As the factorized problem (1) or (2) involves only (m + n)r or 2nr variables, these
methods are, in general, more scalable and can cope with larger matrices. The solution to
the matrix recovery problem has also attracted the interest of many scholars.

On the Euclidean manifold, Sun and Luo [2] established a theoretical guarantee for
the factorization-based formulation to correctly recover the underlying low-rank matrix.
Tu et al. [3] proposed a Procrustes Flow algorithm for solving the problem of recovering a
low-rank matrix from linear measurements.

On other Riemannian manifolds, Keshavan et al. [4] introduced an efficient algorithm
such that the method could reconstruct matrix M ∈ Rmα×n from O(rn). Ngo and Saad [5]
described gradient methods based on a scaled metric for low-rank matrix completion. Van-
dereycken [6] proposed a new algorithm for matrix completion. Mishra and Sepulchre [7]
introduced a nonlinear conjugate gradient method for solving low-rank matrix completion.
Mishra et al. [8] proposed a gradient descent and trust-region algorithm for low-rank
matrix completion. Boumal and Absil [9] exploited the geometry of the low-rank constraint
to recast the problem as an unconstrained optimization problem on a single Grassmann
manifold. Wei et al. [10] introduced a family of Riemannian optimization algorithms for
low-rank matrix recovery problems. In the past year, Najafi and Hajarian [11] proposed
an improved Riemannian conjugate gradient method to solve robust matrix completion
problems. Duan et al. [12] proposed the Riemannian conjugate gradient method for solving
the low-rank tensor completion problem.

In addition to the aforementioned work, there are also some algorithms for solving
matrix completion problems (see [13–18]). For solving matrix recovery problems, some
algorithms and related research have also been widely studied (see [19–24]).

Inspired by the algorithm ideas in [25,26], this paper proposes an approximation con-
jugate gradient method to solve the low-rank matrix recovery problem. The approximation
conjugate gradient direction is given such that the search direction is the descent direction
of the objective F(U, V). The algorithm avoids the singular value decomposition of the
matrix and only obtains the search direction of the problem through the multiplication of
the matrix. The backtracking line search technique ensures that the objective function of
problem (1) is monotonic descent.

In this paper, the approximation conjugate gradient direction is introduced in Section 2.
In Section 3, the detailed steps of the approximation conjugate gradient algorithm are pro-
posed. The global convergence of the algorithm is given in Section 4. In Section 5, the
local superlinear convergence of the algorithm is given. Numerical results are presented in
Section 6, and in Section 7, some conclusions are given.

Notation
In this paper, the low-rank matrix recovery problem is solved by the approxima-

tion Newton algorithm. In problem (1), let Z ∈ Rm×n denote the variables, and Z∗ be
the optimal solution of objective function f (Z). The F-norm of matrix Z is defined as

∥Z∥2
F =

m,n
∑

i=1,j=1
Z2

ij. A symmetric and positive semidefinite matrix B − A is represented as

A ⪯ B. Given any matrix A, B ∈ Rm×n, A • B denotes the usual trace inner product of
A and B.
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2. The Approximation Conjugate Gradient Step

In this paper, we propose a new approximation conjugate gradient algorithm for
solving problem (1). Next, we first introduce the traditional conjugate gradient algorithm
for solving the unconstrained nonlinear programming problem.

In the Euclidean case, the conjugate gradient methods are line search algorithms to
solve the unconstrained nonlinear programming problem, where the objective function is
f : Rn → R. The sequence {xk} in Rn is generated by

xk+1 = xk + αkη̂k,

with αk > 0 for all k ≥ 0 from an initial point x0 ∈ Rn, and the search directions η̂k ∈ Rn

are computed using the gradient ĝk = ∇ f (xk) as η̂0 = −ĝ0 and

η̂k+1 = −ĝk+1 + βk+1η̂k = −∇ f (xk+1) + βk+1η̂k

for all k ≥ 0. The computation of real values βk+1 is crucial for the performance of conjugate
gradient methods. A famous real value of βk+1 is

Conjugatedescent : βCD
k+1 =

∥ĝk+1∥2
2

−ĝT
k η̂k

.

It was proposed by Fletcher [27].
To solve problem (1), we let

∇FU(Z) =∇FV(U, V) = (UVT − M)V,

∇FV(Z) =∇FU(U, V) = (UVT − M)TU.

Hence,

∇F(Z) = ∇F(U, V) =

[
∇FU(U, V)
∇FV(U, V)

]
=

[
(UVT − M)V
(UVT − M)TU

]
,

and

gk = ∇F(Zk) = ∇F(Uk, Vk) =

[
∇FU(Uk, Vk)
∇FV(Uk, Vk)

]
=

[
(UkVT

k − M)Vk
(UkVT

k − M)TUk

]
,

on iteration point Zk =

[
Uk
Vk

]
.

The sequence {Zk} is generated by

Zk+1 = Zk + αkηk,

from an initial point Z0 ∈ R(m+n)×r with αk > 0 for all k ≥ 0. The search direction
ηk ∈ R(m+n)×r are computed using the gradient gk = ∇F(Zk) as η0 = −g0 = −∇F(Z0)
and

ηk+1 =− gk+1 + βk+1ηk

=−∇F(Zk+1) + βk+1ηk, (3)

for all k ≥ 0. To obtain better search directions, we constructed the following real value
βk+1 of Algorithm 1 based on the structure of the problem itself,

βk+1 =


∥∇F(Zk+1)∥2

F
−∇F(Zk+1)•ηk

, if|∇F(Zk+1) • ηk| > ϵ2

2 ,
∥∇F(Zk+1)∥2

F
2ϵ2 , otherwise,

(4)
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where ∇F(Zk+1) • ηk denotes the usual trace inner product of ∇F(Zk+1), ηk ∈ R(m+n)×r

and ϵ ∈ (0, 1).

Algorithm 1 (ACGA)

Input: Choose an initial Z0 =

[
U0
V0

]
, where U0 ∈ Rm×r, V0 ∈ Rn×r. Let 0 < β < 1, ϵ > 0

and set k = 0.
Main step:
1. If k = 0, then compute ∇F(Zk) and let ηk = −∇F(Zk).
2. If k = 0 and ∥∇F(Zk)∥F ≤ ϵ, then stop, Zk is the optimal solution of problem (1).
3. Compute αk ∈ (0, 1] such that

F(Zk + αkηk) ≤ F(Zk) + αkβ∇F(Zk) • ηk. (5)

4. Let Zk+1 = Zk + αkηk.
5. Calculate ∇F(Zk+1), if ∥∇F(Zk+1)∥F ≤ ϵ, then stop, Zk+1 is the optimal solution of
problem (1).
6. Compute βk+1 as (2) and

ηk+1 = −∇F(Zk+1) + βk+1ηk,

let k = k + 1, go to 3.

3. The Approximation Conjugate Gradient Algorithm (ACGA)

In Section 2, we introduce the approximation conjugate gradient step with updated
real value βk. .

Remark 1. We obtain the step size αk by the backtracking line search based on objective function
F(Z), i.e., given ω ∈ (0, 1), let αk = 1, ω, ω2, · · · until (5) holds.

Remark 2. We can randomly generate initial m × r matrix U0 and initial n × r matrix V0 with
rank r. We can generate the matrices U0 ∈ Rm×r and V0 ∈ Rn×r as follow,

U0 =


1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 · · · 0


m×r

and V0 =


1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 · · · 0


n×r

.

4. Convergence Analysis

In this section, to prove the convergence of the algorithm (ACGA), we require the
model to satisfy the following assumption:

Assumption 1. Assume that the objective functions of problem (1) are twice continuous differen-
tiable, i.e., for any F(Z), it is twice continuous differentiable. For any point Z ∈ R(m+n)×r in our
method, we define the level set

L(Z0) = {Z ∈ R(m+n)×r, F(Z) ≤ F(Z0)}.

Assume the level set L(Z0) is bounded.

Assumption 2. Assume the gradient of F(Z) is Lipschitz-continuous, i.e., there exists κH > 0
such that

∥∇F(X)−∇F(Y)∥F ≤κH∥X − Y∥F,

for any X, Y ∈ Rm×n.
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The bounded function F(Z) is important for the proof of convergence of Algorithm 1
and the following lemma presents the boundedness of the objective function F(Z).

Lemma 1. Under Assumption 1, there exists constant κ f > 0 and κg > 0 such that

∥F(Zk)∥F ≤κ f ,

∥∇F(Zk)∥F ≤κg.

Proof. The proof is similar to Lemma 3.2 in [28].

The purpose of step 3 of Algorithm 1 is to monotonically decrease the objective
function of problem (1). Hence, we need to prove that ∇F(Zk) • ηk < 0 when Algorithm 1
does not terminate.

Lemma 2. If Algorithm 1 dose not terminate, i.e., for constant ϵ > 0, we have ∥∇F(Zk)∥F > ϵ, then

∇F(Zk) • ηk < 0.

Proof. If Algorithm 1 dose not terminate, i.e., ∥∇F(Zk)∥ > ϵ, then according to the defini-
tion of ηk, we have that

∇F(Zk) • ηk =∇F(Zk) • (−∇F(Zk) + βkηk−1)

=−∇F(Zk) • ∇F(Zk) + βk∇F(Zk) • ηk−1

=− ∥∇F(Zk)∥2
F + βk∇F(Zk) • ηk−1. (6)

If |∇F(Zk) • ηk−1| > ϵ2

2 , by (4) and (6), we have that

∇F(Zk) • ηk =− ∥∇F(Zk)∥2
F + βk∇F(Zk) • ηk−1

=− ∥∇F(Zk)∥2
F +

∥∇F(Zk)∥2
F

−∇F(Zk) • ηk−1
∇F(Zk) • ηk−1

=− 2∥∇F(Zk)∥2
F

≤− 2ϵ2 < 0.

If |∇F(Zk) • ηk−1| ≤ ϵ2

2 , then we have that

∇F(Zk) • ηk =− ∥∇F(Zk)∥2
F + βk∇F(Zk) • ηk−1

≤− ∥∇F(Zk)∥2
F + βk|∇F(Zk) • ηk−1|

≤ − ∥∇F(Zk)∥2
F + βk

ϵ2

2

≤− ∥∇F(Zk)∥2
F +

∥∇F(Zk)∥2
F

2

=− ϵ2

2
< 0.

Step 3 is important for Algorithm 1 because it ensures that the objective function is
monotonically decreasing. But we must prove that step 3 is to terminate in a finite step, i.e.,
there exists αk > 0 such that (5) holds.

Lemma 3. Under Assumptions 1 and 2, let {Zk} be the sequence generated by Algorithm 1, then
step 3 is to terminate in a finite step, i.e., there exists αk > 0 such that (5) holds.
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Proof. Suppose Algorithm 1 dose not terminate on iteration k, i.e., there exists positive
constant ϵ > 0 such that ∥∇F(Zk)∥F ≥ ϵ. First, we prove that ∥ηk∥F is bounded for all
k ≥ 0. We use mathematical induction to prove this conclusion. When k = 0, we have
η0 = −∇F(Z0), according to Lemma 1, we have ∥η0∥F = ∥∇F(Z0)∥F ≤ κg, suppose ηk is
bounded, then by (3), we have that

∥ηk+1∥F =∥ −∇F(Zk+1) + βk+1ηk∥F

≤∥∇F(Zk+1)∥F + |βk+1|∥ηk∥F. (7)

By (4), if |∇F(Zk+1) • ηk| > ϵ2

2 , then

βk+1 =
∥∇F(Zk+1)∥2

F
−∇F(Zk+1) • ηk

.

By the bounded of ∇F(Zk+1) and ηk, we know that

|βk+1| =
∥∇F(Zk+1)∥2

F
|∇F(Zk+1) • ηk|

≤
2κ2

g

ϵ2 .

If |∇F(Zk+1) • ηk| ≤ ϵ2

2 , then by (4), we know that

|βk+1| =
∥∇F(Zk+1)∥2

F
2ϵ

≤
κ2

g

2ϵ2 .

Hence, let κβ =
κ2

g
2ϵ2 , we have that |βk+1| ≤ κβ. Hence, by (7), we have that

∥ηk+1∥F ≤ κg + κβ∥ηk∥F.

According to the assumption of the bounded of ηk, we obtain that there exists a positive
constant κη such that

∥ηk+1∥ ≤ κη .

According to Assumption 2, the gradient of F(Z) is Lipschitz-continuous, then

F(Zk+1) ≤ F(Zk) + αk∇F(Zk) • ηk +
κHα2

k
2

∥ηk∥2
F. (8)

If |∇F(Zk) • ηk−1| > ϵ2

2 , then by (5) and (8), we have that

F(Zk+1)− F(Zk)− αkβ∇F(Zk) • ηk

≤αk∇F(Zk) • ηk +
α2

k
2

κH∥ηk∥2
F − αkβ∇F(Zk) • ηk

=(1 − β)αk∇F(Zk) • ηk +
α2

kκH

2
∥ηk∥2

F

≤(1 − β)αk∇F(Zk) • (−∇F(Zk) + βkηk−1) +
α2

kκ2
H

2
κ2

η

≤(1 − β)αk

(
−∥∇F(Zk)∥2

F +
∥∇F(Zk)∥2

F
−∇F(Zk) • ηk−1

∇F(Zk) • ηk−1

)
+

α2
kκ2

H
2

κ2
η

≤− 2(1 − β)αkϵ2 +
α2

kκ2
H

2
κ2

η . (9)
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By (9), we want F(Zk+1)− F(Zk)− αkβ∇F(Zk) • ηk ≤ 0, then

−2(1 − β)αkϵ2 +
α2

kκ2
H

2
κ2

η ≤ 0. (10)

By (10), we have that

αk ≤
4(1 − β)ϵ2

κ2
Hκ2

η

.

Hence, we let αk =
2(1−β)ϵ2

κ2
Hκ2

η
> 0, then the conclusion holds.

If |∇F(Zk) • ηk−1| ≤ ϵ2

2 , similar to the proof of (9), we have that

F(Zk+1)− F(Zk)− αkβ∇F(Zk) • ηk

≤(1 − β)αk

(
−∥∇F(Zk)∥2

F +
∥∇F(Zk)∥2

F
2ϵ2 ∇F(Zk) • ηk−1

)
+

α2
kκ2

H
2

κ2
η

≤(1 − β)αk

(
−∥∇F(Zk)∥2

F +
∥∇F(Zk)∥2

F
2

)
+

α2
kκ2

H
2

κ2
η

≤− (1 − β)αkϵ2

2
+

α2
kκ2

H
2

κ2
η .

Hence, to ensure F(Zk+1) − F(Zk) − αkβ∇F(Zk) • ηk ≤ 0, we want − (1−β)αkϵ2

2 +
α2

kκ2
H

2 κ2
η ≤ 0, then

α2
kκ2

H
2

κ2
η ≤ (1 − β)αkϵ2

2
,

which means that

αk ≤
(1 − β)ϵ2

4κ2
Hκ2

η

.

Let αk =
(1−β)ϵ2

8κ2
Hκ2

η
> 0, then the conclusion holds.

The following theorem shows that the sequence {Zk} generated by Algorithm 1
converges to the critical point of problem (1).

Theorem 1. Under Assumptions 1 and 2, the sequence {Zk} generated by Algorithm 1 satisfy

lim
k→∞

∥∇ f (Zk)∥F = 0.

It means that the iteration sequence {Zk} converges to the critical point of problem (1).

Proof. By (6), we have that

∇F(Zk) • ηk = −∥∇F(Zk)∥2
F + βk∇F(Zk) • ηk−1.
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By (4), if |∇F(Zk) • ηk−1| > ϵ2

2 , we have that

−∇F(Zk) • ηk =∥∇F(Zk)∥2
F − βk∇F(Zk) • ηk−1

=∥∇F(Zk)∥2
F +

∥∇F(Zk)∥2
F

∇F(Zk) • ηk−1
∇F(Zk) • ηk−1

=2∥∇F(Zk)∥2
F. (11)

If |∇F(Zk) • ηk−1| ≤ ϵ2

2 , then

−∇F(Zk) • ηk =∥∇F(Zk)∥2
F − βk∇F(Zk) • ηk−1

=∥∇F(Zk)∥2
F −

∥∇F(Zk)∥2
F

2ϵ2 ∇F(Zk) • ηk−1

≥
∥∇F(Zk)∥2

F
2

. (12)

Combining (5), (11) and (12), we can see that

F(Zk)− F(Zk+1) ≥− αkβ∇ f (Zk) • ηk

≥αkβ

2
∥∇ f (Zk)∥2

F,

hence, for any large enough N > 0, we have that

F(Z0)− F(ZN) =
N

∑
k=0

F(Zk)− F(Zk+1)

≥
N

∑
k=0

1
2

αkβ∥∇F(Zk)∥2
F

=
1
2

β
N

∑
k=0

αk∥∇F(Zk)∥2
F. (13)

According to Assumption 1, we know that F(Z) is blow bounded, hence, by (13), we
have that

lim
N→∞

αN∥∇F(ZN)∥F = 0. (14)

According to Lemma 3, we know that αN ≥ (1−β)ϵ2

8κ2
Hκ2

η
> 0 for any index N

if ∥∇F(ZN)∥F > ϵ, and

αN∥∇F(ZN)∥F ≥ (1 − β)ϵ2

8κ2
Hκ2

η

∥∇F(ZN)∥F. (15)

Combining (14) and (15), we have that

lim
k→∞

∥∇F(Zk)∥F = 0.

5. Local Convergence

In Section 4, we have shown that the sequence {∥∇F(Zk)∥F} generated by the con-
jugate gradient algorithm converges globally to zero. We now discuss the superlinear
convergence in a neighborhood of the solution Z∗.

First, we show that if ∥ηk∥2
F

∥∇F(Zk)∥2
F
≤ 1−β

κH
, then αk = 1 for any iteration index k.
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Lemma 4. Under Assumptions 1 and 2, let {Zk} be the sequence generated by Algorithm 1, if
∥ηk∥2

F
∥∇F(Zk)∥2

F
≤ (1−β)

κH
, then αk = 1.

Proof. First, we consider the follow inequality

F(Zk+1)− F(Zk)− β∇F(Zk) • ηk

≤(1 − β)∇ f (Zk) • ηk +
κH
2
∥ηk∥2

F

≤− 1 − β

2
∥∇F(Zk)∥2

F +
κH
2
∥ηk∥2

F.

We want f (Zk+1)− f (Zk)− β∇ f (Zk) • ηk ≤ 0, then

κH
2
∥ηk∥2

F ≤ 1 − β

2
∥∇F(Zk)∥2

F. (16)

By (16) and ∥ηk∥2
F

∥∇F(Zk)∥2
F
≤ 1−β

κH
, we have that f (Zk+1)− f (Zk)− β∇ f (Zk) • ηk ≤ 0 holds,

which means that αk = 1.

Finally, we show that the sequence {Zk} generated by Algorithm 1 converges to critical
point Z∗ superlinearly.

Theorem 2. Under Assumptions 1 and 2, if ∥ηk∥2
F

∥∇F(Zk)∥2
F
≤ 1−β

κH
and the objective function F(Z)

satisfies the local error bound condition, i.e., there exists κ1 > 0 such that ∥F(X)− F(Y)∥F ≥
κ1∥X − Y∥F for all X, Y ∈ Rm×n, then the sequence {Zk} generated by Algorithm 1 converges to
critical point Z∗ superlinearly.

Proof. Because ∥ηk∥2
F

∥∇F(Zk)∥2
F
≤ 1−β

κH
, according to Lemma 4, we have αk = 1. Then,

κ1∥Zk+1 − Z∗∥F ≤∥F(Zk+1)− F(Z∗)∥F

=∥∇F(Zk+1) • (Zk+1 − Z∗) + o(∥Zk+1 − Z∗∥F)∥F

=∥(∇F(Zk+1)−∇F(Zk)) • (Zk+1 − Z∗)

+∇F(Zk) • (Zk+1 − Z∗) + o(∥Zk+1 − Z∗∥F)∥F

≤∥∇F(Zk+1)−∇F(Zk)∥F∥Zk+1 − Z∗∥F

+ ∥∇F(Zk) • (Zk + ηk − Z∗)∥F + o(∥Zk+1 − Z∗∥F)

=∥∇F(Zk+1)−∇F(Z∗) +∇F(Z∗)−∇F(Zk)∥F∥Zk+1 − Z∗∥F

+ ∥∇F(Zk) • (Zk + ηk − Z∗)∥F + o(∥Zk+1 − Z∗∥F)

≤∥∇F(Zk+1)−∇F(Z∗)∥F∥Zk+1 − Z∗∥F + ∥∇F(Zk)−∇F(Z∗)∥F∥Zk+1 − Z∗∥F

+ ∥∇F(Zk) • (Zk + ηk − Z∗)∥F + o(∥Zk+1 − Z∗∥F)

≤∥∇F(Zk+1)−∇F(Z∗)∥F∥Zk+1 − Z∗∥F + ∥∇F(Zk)−∇F(Z∗)∥F∥Zk+1 − Z∗∥F

+ ∥∇F(Zk)−∇F(Z∗)∥F∥Zk − Z∗∥F + ∥∇F(Zk) • ηk∥F + o(∥Zk+1 − Z∗∥F). (17)

According to Assumption 2,

∥∇F(Zk+1)−∇F(Z∗)∥F∥Zk+1 − Z∗∥F ≤κH∥Zk+1 − Z∗∥2
F

∥∇F(Zk)−∇F(Z∗)∥F∥Zk+1 − Z∗∥F ≤κH∥Zk+1 − Z∗∥F∥Zk − Z∗∥F

∥∇F(Zk)−∇F(Z∗)∥F∥Zk − Z∗∥F ≤κH∥Zk − Z∗∥2
F. (18)
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By (11) and (12), we have that

∥∇F(Zk) • ηk∥F ≤3∥∇F(Zk)∥2
F

=3∥∇F(Zk)−∇F(Z∗)∥2
F

≤3κ2
H∥Zk − Z∗∥2. (19)

Combining (17), (18) and (19), we have that

κ1∥Zk+1 − Z∗∥F ≤κH∥Zk+1 − Z∗∥2
F + κH∥Zk+1 − Z∗∥F∥Zk − Z∗∥F

+ κH∥Zk − Z∗∥2
F +

1
2
∥∇F(Zk)−∇F(Z∗)∥2

F + o(∥Zk+1 − Z∗∥F)

≤κH∥Zk+1 − Z∗∥2
F + κH∥Zk+1 − Z∗∥F∥Zk − Z∗∥F

+ 3κ2
H∥Zk − Z∗∥2

F + o(∥Zk+1 − Z∗∥F). (20)

Since Zk → Z∗, we know that

max{o(∥Zk+1 − Z∗∥F), κH∥Zk+1 − Z∗∥2
F} ≤ κ1

4
∥Zk+1 − Z∗∥F,

for large enough k.
Hence, by (20), we obtain that

κ1∥Zk+1 − Z∗∥F ≤ κH∥Zk+1 − Z∗∥F∥Zk − Z∗∥F + 3κ2
H∥Zk − Z∗∥2

F +
κ1

2
∥Zk+1 − Z∗∥F,

which means that

κ1

2
∥Zk+1 − Z∗∥F ≤ κH∥Zk+1 − Z∗∥F∥Zk − Z∗∥F + 3κ2

H∥Zk − Z∗∥2
F. (21)

Divide by ∥Zk − Z∗∥F on both sides of the inequality (21), we have that

∥Zk+1 − Z∗∥F
∥Zk − Z∗∥F

≤ 2κH
κ1

∥Zk+1 − Z∗∥F +
6κ2

H
κ1

∥Zk − Z∗∥F.

As Zk+1 → Z∗ and Zk → Z∗ when k → +∞, we can obtain that

∥Zk+1 − Z∗∥F
∥Zk − Z∗∥F

→ 0, (22)

as k → +∞, i.e.,

∥Zk+1 − Z∗∥F = o(∥Zk − Z∗∥F),

which means that the sequence {Zk} generated by Algorithm 1 converges to critical point
Z∗ superlinearly.

6. Numerical Results

In Section 3, the approximation conjugate gradient method is given, and the global and
local superlinear convergence of this algorithm are given in Sections 4 and 5, respectively.
Next, we give the numerical experiments to illustrate the performance of the method
proposed in this paper. We apply ACGA to synthetic problems. The synthetic data of the
experiments are increased as they are in [29]. First, the matrices U ∈ Rm×r and V ∈ Rn×r

with independent and identically distributed Gaussian entries such that M = UVT is filled
with zero-mean and unite-variance nonindependent Gaussian entries are given. Then,
the sample K = ρr(m + n − r) is given at random, where ρ is the oversampling factor.
To test the effectiveness of the algorithm, we compare ACGA to RMC [29], AOPMC [30],
GRASTA [31], and l2 method RTRMC [9].
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RMC was the method for solving the low-rank matrix completion, in which the fraction of
the entries was corrupted by non-Gaussian noise and typically outliers. This method smoothed
the l∞ norm, and the low-rank constraint was dealt with by Riemannian optimization.

AOPMC was a robust method for recovering the low-rank matrix using the adaptive
outlier pursuit technique and Riemannian trust-region method when part of the measure-
ments was damaged by outliers.

GRASTA was a Grassmannian robust adaptive subspace tracking algorithm. This
method needed the rank-r SVD decomposition for the matrix and could improve computa-
tion speed while still allowing for accurate subspace learning.

RTRMC exploited the geometry of the low-rank constraint to recast the problem as an
unconstrained optimization problem on a single Grassmann manifold. The second-order
Riemannian trust-region methods and Riemannian conjugate gradient methods are used to
solve the unconstrained optimization problem.

Before solving the low-rank recovery problem, we will introduce the parameters
selected in the actual calculation of the algorithm proposed in this paper. The important
parameter of this paper is β ∈ (0, 1). To obtain a larger search step size and the objective
function of problem (P) descent more quickly, the backtracking line search parameter β
in step 3 of the algorithm selects a smaller value close to 0, so β = 0.15 is selected in the
algorithm proposed in this paper.

To solve the low-rank recovery problem using the algorithm in this paper, we use
MATLAB (2014a) to write a computer program, and the computer is a ThinkPad T480 (CPU
is i7-8550U, main frequency is 1.99 Hz, memory is 8 G). The termination accuracy of the
algorithm is chosen by ϵ = 10−2, ϵ = 10−3 and ϵ = 10−5, respectively.

In this paper, we selected 12 problems to test the effectiveness of the algorithm. The
number of rows and columns of the selected questions, as well as the rank of matrices U
and V, are shown in the following Table 1. In Table 1, m and n denote the number of rows
and columns of matrix M, respectively. r denotes the rank of matrices U and V. To test our
algorithm, we randomly generated 50 different scenarios for each problem in Table 1 and
obtained the final number of iterations by a weighted average of all random problem results.
We have set three different termination accuracies for our algorithm (ϵ = 10−2, 10−3, 10−5)
and used our algorithm to calculate the test problems in Table 1 for each accuracy. We also
used the four classic methods mentioned above to solve every test problem in Table 1 and
recorded the number of iterations of each method to solve every test problem in Table 1.
The comparison results of our algorithm with the other four algorithms under different
termination accuracies are shown in Figures 1–3.

Table 1. The information of test problems.

Problem m n r Problem m n r

1 100 100 20 7 100 300 20
2 300 300 20 8 100 500 20
3 500 500 20 9 100 800 20
4 800 800 20 10 100 1000 20
5 1000 1000 20 11 300 1000 20
6 50 100 20 12 500 1000 20

To draw a comparison diagram of the results of five algorithms, we use the perfor-
mance comparison formula of the algorithm proposed by Dolan and More [32] to calculate
the computational efficiency between different algorithms. Here are the specific formulas:

rp,s =
τp,s

min{τp,u : u ∈ S} , (23)
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where S denotes the set of algorithms. Let P denote problems set, ns = |S| and np = |P|.
For ∀t ≥ 1, let

ρs(t) =
1

np
size{p ∈ P : rp,s ≤ t}, (24)

where ρs(t) represent the efficiency of each solver.
We solve the test problems in Table 1 using ACGA, RMC, AOPMC, GRASTA and l2

method RTRMC, respectively. First, the terminate parameter is chosen by ϵ = 10−2. The
test results are reported in the following Figure 1.

Figure 1. Comparison results of the number of iterations between ACGC and the other four
algo−rithms when ϵ = 10−2 and r = 20.

From Figure 1, we can see that our algorithm has significant effectiveness compared
to the other four algorithms for calculating low-rank matrices. Especially when t = 1,
our algorithm has reached 0.83 and even reached 0.9 in comparison with RTRMC, but
other algorithms only reach between 0.1 and 0.2. This indicates that at an accuracy level
of ϵ = 10−2, our algorithm can solve 83–90% of test problems faster than the other four
algorithms. By (23) and (24), the red curve representing our algorithm tends to 1 faster
than the blue curve representing other algorithms, indicating that our algorithm is more
effective in solving the test problems in Table 1 using all five algorithms. From the abscissa
of the four subgraphs mentioned above, it can be seen that our algorithm spends much
fewer iterations solving most testing problems than the other four algorithms. In summary,
our algorithm is more effective in solving the test problems in Table 1.

Next, we use five algorithms to solve the test problems when the terminate parameter
is chosen by ϵ = 10−3. The test results are reported in Figure 2.

From Figure 2, we can see that when the termination parameter is set to ϵ = 10−3,
it indicates that our algorithm’s red curve tends to 1 much faster than the other four
algorithms. When t = 1, the red curve has already reached 0.8, or even 0.9, while other
algorithms only reach around 0.2, with a worst-case value of 0.1. This indicates that even
with improved termination accuracy, our algorithm still has high computational efficiency,
i.e., our algorithm spends fewer total iterations when solving more than 80% of problems.
According to the abscissa of each subgraph, it can be seen that our algorithm spends much
fewer iterations in solving many testing problems in Table 1 than the other four algorithms,
indicating that our algorithm has higher efficiency in solving testing problems.
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Figure 2. Comparison results of the number of iterations between ACGC and other four algorithms
when ϵ = 10−3 and r = 20.

From Figure 3, we clearly see that with the continuous improvement of termination
accuracy, the five algorithms listed in this article have shown a decrease in efficiency
when solving test problems compared to those with accuracies of ϵ = 10−2 and ϵ = 10−3.
In other words, the number of iterations required to solve all test problems has greatly
increased. However, when the termination accuracy is ϵ = 10−5, our algorithm still has
higher efficiency compared to the other four algorithms. The main manifestation is that
the red curve representing our algorithm has reached a range of 0.8 to 0.9 when t = 1, but
other algorithms only reach around 0.4 or 0.5. This indicates that our algorithm spends less
iteration time solving most test problems than the other four algorithms. In addition, the
speed at which the red curve tends to 1 is also faster than the blue curve representing other
algorithms, and it can be clearly seen from the abscissa that although the overall solving
efficiency has decreased, our algorithm still spends far fewer iterations on solving some
problems than the other four algorithms.

Finally, we changed the termination parameter to ϵ = 10−5 and still used five different
algorithms to solve the test problem. The results are reported in Figure 3.

Figure 3. Comparison results of the number of iterations between ACGC and other four algorithms
when ϵ = 10−5 and r = 20.
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We choose the rank r = 15, r = 25, r = 30 and r = 35 for solving the test problems
in Table 1 using Algorithm 3, RMC, AOPMC , GRASTA and RTRMC, respectively. The
number of iterations of every method for solving every problem of Table 1 is reported.
Using (23) and (24), we obtain a comparison graph of the number of iterations when we
solve every problem in Table 1 using four algorithms. The comparison results are reported
in Figure 4.

Figure 4. Comparison results of the number of iterations for five algorithms when we choose r = 15,
r = 25, r = 30, and r = 35, respectively.

By (23) and (24), we can see that the red curve tends to 1 and is also faster than
other curves representing other algorithms. This means that our algorithm costs fewer
iterations than the other four algorithms when we solve all test problems in the table, with
r = 15, r = 25, r = 30, and r = 35, respectively.

Next, we will test our algorithm on the Netflix dataset, which is a real-world dataset
in the Netflix Prize [33]. Netflix is a movie rental company that recommends movies to its
users. Hence, they have much information from users. This information is translated into a
480,189 × 17,770 matrix (this matrix is denoted as M). To test our algorithm, we randomly
selected 10 matrices of 500 × 1000 in M, and the rank of U and V are chosen by r = 20. We
will choose ϵ = 10−2, ϵ = 10−3, ϵ = 10−4 and ϵ = 10−5 to test five algorithms. The number
of iterations for each algorithm at different accuracies and ranks is recorded in Figure 5.

From Figure 5, we can see that the speed at which the red curve tends towards 1 is
the fastest at different accuracies. This means that for different termination accuracies, the
number of iterations of our algorithm is less than the other four algorithms in most cases
when solving all real-test problems, indicating that our algorithm is effective in solving
practical problems.

We determine the complexity of the algorithm by recording the CPU time when the
algorithm solves the problems in Table 1. In other words, the more CPU time is spent,
the higher its complexity; conversely, the lower its computational complexity. Next, we
calculate the test problems in Table 1 using five different algorithms and record the CPU
time by each algorithm in Figure 6.
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Figure 5. Comparison results of number of iterations for five algorithms when we choose ϵ = 10−2,
ϵ = 10−3, ϵ = 10−4 and ϵ = 10−5, respectively.

Figure 6. Comparison results of CPU time for five algorithms when we choose ϵ = 10−2,
ϵ = 10−3, ϵ = 10−4 and ϵ = 10−5, respectively.

From Figure 6, we can see that the speed at which the red curve tends towards 1
is the fastest, indicating that our algorithm spends less CPU time than other algorithms
when solving most of the test problems in Table 1. In particular, from Figure 6, we can see
that the yellow curve representing the SVD decomposition algorithm is much lower than
the red curve representing our algorithm, which means that our algorithm has a lower
computational complexity than the SVD algorithm.

7. Concluding Remarks

The main purpose of this paper is to introduce the approximation conjugate gradient
method, which avoids the complex SVD decomposition for solving the low-rank matrix
recovery. The idea is to extend the approximation conjugate gradient method and the
conjugate gradient parameter update technique to the matrix calculation and obtain the
search direction. The backtracking linear search technique ensures the global convergence
of the algorithm. At the same time, this technique ensures that the objective function
decreases monotonously. The local superlinear convergence of the algorithm is also given,
and the numerical results are reported to show the effectiveness of the algorithm.
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