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Abstract: This paper focuses on addressing the adaptive fuzzy fixed-time issue for a class of non-
linear systems with uncertainty functions and mismatched disturbances. Fuzzy logical systems are
utilized for identifying unknown functions. Additionally, to tackle challenges posed by mismatched
disturbances, disturbance observers are constructed based on the backstepping method. Utilizing the
adding one power integrator approach and the fixed-time control method, this paper introduces a
fixed-time adaptive fuzzy control algorithm. Notably, this algorithm accommodates the presence
of unknown mismatched disturbances and nonlinear functions. The paper establishes, through the
application of the Lyapunov stability theory, that the designed adaptive fixed-time fuzzy control
algorithm ensures practical fixed-time stability for the resulting closed-loop systems. Finally, the
effectiveness of the derived strategy is demonstrated through an illustrative example involving
two cases.

Keywords: adaptive backstepping control; disturbance observer; fixed-time control

1. Introduction

Over the past decade, finite-time control and backstepping control have emerged as
two prominent research focuses in nonlinear systems. They have found widespread appli-
cation in diverse practical engineering systems, including robot control systems, spacecraft
control systems, unmanned marine vehicles, and multi-unmanned aerial vehicles [1–5]. In
contrast to asymptotic control strategies, finite-time control strategies offer several advan-
tages, including enhanced disturbance rejection capabilities, higher control precision, and
faster convergence rates [6,7]. On the other hand, the technique of backstepping, introduced
in 1991 by Kanellakopoulos, has evolved into a commonly employed method for deriving
control laws in systems with nonlinear dynamic models [8–10]. It has been instrumental
in the progress of systems exhibiting both multi-input and multi-output characteristics,
as well as those featuring single-input and single-output attributes [11,12]. It is crucial to
emphasize that all the aforementioned control algorithms do not take into account model
uncertainties and disturbances.

In real-world engineering applications, uncertainties and disturbances are preva-
lent [13]. Specifically, systems like multi-missiles and multi-hydraulic manipulators are
prone to mismatched uncertainties. External factors, such as wind, variation in parameters,
and environmental forces, directly impact the system’s performance, bypassing the actuator
input pathway [14–16]. Feedback controllers do not have a direct means to mitigate these
influences. In recent developments, significant progress has been made in establishing
effective methods to bolster the system’s resilience in the face of unknown disturbances
and uncertainties. Notable examples include H∞, terminal sliding-mode control, and con-
trollers utilizing disturbance observers. Among these methods, a control method based on
disturbance observers stands out as a promising approach to strike a balance between the
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demands of disturbance rejection capabilities and performance indices. In [17], a distur-
bance observer-based control approach with terminal sliding-mode control was utilized to
alleviate the effects of mismatched disturbances, ensuring the stability of the system. In [18],
a new finite-time distributed observer-based containment control algorithm was derived
for a category of nonlinear multi-agent systems subject to mismatched disturbances. In [19],
an innovative method for active anti-disturbance output consensus was introduced for
addressing mismatched disturbances in nonlinear multi-agent systems. Nevertheless, the
aforementioned robust control approaches can only assure the asymptotical or finite-time
stability of the controlled systems.

It is worth noting that a limitation of finite-time control is its dependence on the initial
states for convergence time [20–23]. The applicability of finite-time control is impeded by
the necessity to have information about initial states for determining convergent time, a
requirement that may not always be met due to uncertainties in the initial conditions in
real-world applications [24–26]. Hence, the finite-time controller incorporates the concept
of fixed-time stability, ensuring that the convergent time remains unaffected by the initial
conditions [27–29]. Up to this point, researchers have derived controllers with fixed-time
characteristics for nonlinear systems [30–32]. However, these schemes did not consider
disturbances and model uncertainties, significantly limiting the applicability of the de-
rived fixed-time control laws. The presence of entirely unknown nonlinear terms and
mismatched disturbances adds complexity to the controller design. Under these circum-
stances, achieving fixed-time control for nonlinear systems with mismatched disturbances
becomes a nontrivial challenge, and existing research results are insufficient to address this
challenge. This motivation prompted the investigation presented in this paper.

In summary of the preceding discussions, our investigation centers on deriving a
fixed-time controller for a category of uncertain nonlinear systems with mismatched dis-
turbances. A pioneering fuzzy fixed-time control algorithm, incorporating disturbance
observers, is presented to guarantee the practical fixed-time stability of the controlled
systems. The primary contributions of this paper are emphasized as follows: (1) This paper
investigates the fixed-time stability problem for nonlinear systems, seeking the convergence
of states in the resulting closed-loop system to a small region around the origin within
fixed-time. Importantly, the convergence time in this study is unaffected by the initial
conditions. Nonetheless, it is acknowledged that initial conditions may significantly influ-
ence the convergence time of finite-time controllers in [20,21,33]. (2) Unlike the fixed-time
controllers mentioned in [34–38], our approach takes into account mismatched disturbances.
The challenge posed by uncertain functions and mismatched disturbances is concurrently
addressed by incorporating fuzzy logical systems, adaptive laws, and disturbance ob-
servers. (3) In comparison to some studies on fixed-time control, where the terminal sliding
mode was applied to design control schemes [38], this paper proposes a new fixed-time
control protocol. Designed for uncertain nonlinear systems, it incorporates the adding one
power integrator approach and backstepping technique to prevent non-continuous and
singular issues.

The remainder of this article is structured as follows. The problem statement and some
preliminaries are presented in Section 2. Section 3 provides a comprehensive overview
of the principal outcomes related to designing the fixed-time control protocol. Section 4
includes an illustrative example for clarification, and the paper concludes with Section 5.

Notations: Rp×q represents the set of p × q real matrices. sign(·) represents the sign
function. sigb(·) = sign(·)| · |b. ∥ · ∥ refers to the Euclidean norm.
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2. Problem Formulation
2.1. Problem Formulation

Considering a category of uncertain nonlinear systems,

ẋi = fi(x̄i) + xi+1 + di, 1 ≤ i ≤ n − 1

ẋn = fn(x̄n) + u + dn

y = x1

(1)

where x̄n = [x1, . . . , xn]T ∈ Rn represents the plant state vector, u ∈ R represents the control
input, y ∈ R represents the plant output vector. fi(x̄i) represents unknown nonlinear
functions, and di denotes the mismatched disturbance with i = 1, . . . , n.

Control objective: to design a fixed-time adaptive fuzzy control algorithm for
Equation (1) with mismatched disturbances, which renders the controlled systems practi-
cally fixed-time stable. Moreover, all signals in the evolved systems converge to a small
region around the origin within fixed-time.

To facilitate the design of the control strategy, some lemmas are given.

Lemma 1. Based on reference [39], for zk ∈ R, k = 1, . . . , p and s > 1, one has

( p

∑
k=1

|zk|
)s

≤ 1
n1−s

p

∑
k=1

|zk|s (2)

( p

∑
k=1

|zk|
)1/s

≤
p

∑
k=1

|zk|1/s (3)

Lemma 2. Based on reference [39], for c > 0, k > 0, and ξ > 0 , we have

|x|c|z|k ≤ cξ

c + k
|x|k+c +

kξ−c/k

c + k
|z|c+k (4)

Lemma 3. Based on reference [40], for a ∈ R, z ∈ R, and s ≥ 1, one has

|a + z|s ≤ 2s−1|sigs(a) + sigs(z)| (5)

|a − z|s ≤ 2s−1|sigq(a)− sigs(z)| (6)

Lemma 4. Based on reference [38], for the nonlinear system,

ẏ = h(y, t), h(0, t) = 0, y ∈ Rn (7)

Based on us assume the existence of a Lyapunov function V(y) and some positive constants
ς1, ς2, m, n ∈ R+, ς2k > 1, ς1k < 1, and 0 < c < ∞, such that

V̇(y) ≤ −(mV(y)ς1 + nV(y)ς2)k + c, y ∈ Uo (8)

Subsequently, the solution of Equation (7) is practical fixed-time and satisfies{
lim
t→T

y|V(y) ≤ min
{

m− 1
ς1
( c

1 − ηk

) 1
ς1k , n− 1

ς2
( c

1 − ηk

) 1
ς2k

}}
(9)

where 0 < η < 1. The settling time is given by

T ≤ 1
mkηk(1 − ς1k)

+
1

nkηk(ς2k − 1)
(10)
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2.2. Fuzzy Logic Systems

The unknown nonlinear term is approximated using fuzzy logical systems (FLSs) in
this article, which can be described as

y(x) =
∑l

ı=1θı ∏n
i=1 φFı

i
(xi)

∑l
ı=1 ∏n

i=1 φFı
i
(xi)

(11)

where y ∈ R and x = [x1, . . . , xn]T ∈ Rn denote the input and output vector, respectively.
φFı

i
(xi) is membership function, ı = 1, 2, . . . , l and l refers the number of rules, θı =

maxy∈RφGı(y). Then, fuzzy basis functions can be modeled by

φı(x) =
∏n

i=1 φFl
i
(xi)

∑l
ı=1

[
∏n

i=1 φFl
i
(xi)

] (12)

Denote θT = [θ1, θ2, . . . , θl ] and φT(x) = [φ1, φ2, . . . , φl ]. According to Equation (12),
one has φT(x)φ(x) < 1. Then, based on Equations (11) and (12), we have

y(x) = θT φ(x) (13)

Furthermore, if f (x) is a continuous function defined on a compact set A, there exists
the FLSs for an arbitrary ε > 0 satisfying the following inequality

sup
x∈A

| f (x)− θT φ(x)| ≤ ε (14)

Remark 1. In certain earlier studies on nonlinear systems, constraints were imposed on the
nonlinear functions to fulfill specific conditions, like the quadratic and Lipschitz conditions [41,42].
Nevertheless, this paper does not impose any requirements to satisfy these constraints. Therefore, this
description is more general. Additionally, practical engineering systems may experience mismatched
disturbances, which can adversely affect the properties of the control system and potentially induce
system instability. Consequently, it is highly significant to consider mismatched disturbances in the
design of controllers for these universal systems.

3. Main Results

In this section, we will derive a fixed-time adaptive control law for nonlinear sys-
tems encountering mismatched disturbances and uncertainty functions. This will be
achieved through the utilization of the adding one power integrator and the backstepping
control approach.

3.1. Fuzzy Adaptive Fixed-Time Controller

To streamline the control protocol development, the coordinate transformations ϑ1
and ϑn are formulated as follows:

ϑ1 = sig1/τ1(x1)− sig1/τ1(σ1)

ϑi = sig1/τi (xi)− sig1/τi (σi), i = 2, . . . , n
(15)

where τ1 = 1, 0 < τi+1 = τi + b < 1, −1 < b < 0, σ1 = 0, σi(i = 2, . . . , n) represent virtual
control schemes to be proposed later.

Step 1: Choose the Lyapunov function as

V1 =
∫ x1

σ1

sig2−τ2
(
sig1/τ1(s)− sig1/τ1(σ1)

)
ds +

1
2

χ̃2 +
1
2

θ̃T
1 θ̃1 +

1
2

Ψ̃2
1 (16)



Symmetry 2024, 16, 560 5 of 21

where χ̂, θ̂1, and Ψ̂1 are estimations of χ∗, θ1, and Ψ1, respectively. χ̃ = χ∗ − χ̂, θ̃1 = θ1 − θ̂1,
Ψ̃1 = Ψ1 − Ψ̂1, and the definitions of χ∗, θ1, and Ψ1 are to be given at a later stage. Based
on (16), we obtain

V̇1 =sig2−τ2(ϑ1)(x2 − σ2) + sig2−τ2(ϑ1)( f1(x1) + d1(t)) + sig2−τ2(ϑ1)σ2

− χ̃ ˙̂χ − θ̃T
1

˙̂θ1 − Ψ̃T
1

˙̂Ψ1
(17)

Based on Lemma 1 to 3, we find

sig2−τ2(ϑ1)(x2 − σ2) ≤ |ϑ1|2−τ2 |x2 − σ2| ≤ 2|ϑ1|2−τ2 |ϑ2|τ2 ≤ |ϑ1|2 + ς|ϑ2|2 (18)

where ς = τ2(2 − τ2)
(2−τ2)/τ2 > 0 is a constant.

The FLSs serve as an approximator to identify f1(x1), such that

f1(x1) = θT
1 φ1 + ϵ1 (19)

where ϵ1 is the approximate error with ϵ̄1 ≥ |ϵ1| as its upper bound. Let Ψ1 = d1(t) + ϵ̄1,
which denotes compound disturbance.

Then, the virtual control scheme σ2 and update law of θ̂1 are defined as

σ2 = −sigτ2(ϑ1)(ℓχ̂ + 1 + ψ)− 1
4

sig2−τ2(ϑ1)− θ̂T
1 φ1 − Ψ̂1 − 23β−2|ϑ1|ηsigτ2−2(ϑ1) (20)

˙̂θ1 = sig2−τ2(ϑ1)φ1 − γ1θ̂1 (21)

where β = η
2−b > 1, ℓ > 0, η > 2 − b, γ1 > 0, and ψ > 0 are parameters.

Construct the disturbance observer as

Ψ̂1 = δ1(x1 − ϕ1)

ϕ̇1 = x2 + θ̂T
1 φ1 + Ψ̂1

(22)

where δ1 > 0 is a design parameter and ϕ1 denotes an auxiliary function.
Based on Equation (22), we have

˙̂Ψ1 = δ1(Ψ̃1 + θ̃T
1 φ1) (23)

Invoking Equations (18) to (23), we have

V̇1 ≤ |ϑ1|2 + ς|ϑ2|2 + sig2−τ2(ϑ1)( f1(x1) + d1(t)) + sig2−τ2(ϑ1)σ2 − χ̃ ˙̂χ − θ̃T
1

˙̂θ1 − Ψ̃T
1

˙̂Ψ1

≤− ψϑ2
1 − 23β−2|ϑ1|η − ϑ2

1ℓχ̂ + ς|ϑ2|2 + sig2−τ2(ϑ1)(θ
T
1 φ1 + ϵ1 + d1(t)− θ̂T

1 φ1

− Ψ̂1 −
1
4

sig2−τ2(ϑ1))− χ̃ ˙̂χ − θ̃T
1

˙̂θ1 − Ψ̃T
1

˙̂Ψ1

≤− ψϑ2
1 − 23β−2|ϑ1|η + sig2−τ2(ϑ1)(θ

T
1 φ1 + Ψ1 − θ̂T

1 φ1 − Ψ̂1 −
1
4

sig2−τ2(ϑ1))

− ϑ2
1ℓχ̂ + sig1−b(ϑ1)Ω1(x)− χ̃ ˙̂χ − θ̃T

1
˙̂θ1 − Ψ̃T

1
˙̂Ψ1

(24)

Note that Ω1(x) = sigb−1(ϑ1)ς|ϑ2|2. With the ability of FLSs to approximate Ω1(x1, σ2),
one has

Ω1(x1, σ2) = θT
Ω1,1 φΩ1,1 + ϵΩ1 (25)

where ϵΩ1 is the approximation error.
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Furthermore, we have

Ω1 = θT
Ω1

φΩ1 + ϵΩ1 ≤ θ̄T
Ω1

φ̄Ω1 (26)

where θ̄T
Ω1

= [θT
Ω1

, ϵ̄Ω1 ], ϵ̄Ω1 is a positive constant satisfying ϵ̄Ω1 ≥ |ϵΩ1 |, φ̄T
Ω1

= [φΩ1 , 1].
According to Lemma 2 and property 0 < φT

Ω1
φΩ1 ≤ 1, we find

sig1−b(ϑ1)Ω1(x) ≤|ϑ1|1−b h̄
2−τ2

2
1 ≤ |ϑ1|1−bχ∗ 1−b

2 ≤ ℓϑ2
1χ∗ + Γ1

(27)

where h̄1 = (
√

2∥θ̄Ω1∥)
2/(1−b) and Γ1 = 1+b

2
( 2

1−b ℓ
)−(1−b)/(1+b).

Then, substituting Equation (27) into Equation (24) yields

V̇1 ≤− ψϑ2
1 − 23β−2|ϑ1|η − ϑ2

1ℓχ̂ + ℓϑ2
1χ∗ + Γ1 − χ̃ ˙̂χ + Ψ̃1(Ψ̇1 − δ1Ψ̃1)

+ (1 +
p
2

δ2
1)Ψ̃

2 +
ι

2p
∥θ̃1∥2 + γ1θ̃T

1 θ̂1

≤− ψϑ2
1 − 23β−2|ϑ1|η + χ̃(ℓϑ2

1 − ˙̂χ) + Γ1 + Ψ̃1(Ψ̇1 − δ1Ψ̃1)

+ (1 +
p
2

δ2
1)Ψ̃

2
1 +

ι

2p
∥θ̃1∥2 + γ1θ̃T

1 θ̂1

(28)

where p is a design parameter and ι is the node number of FLSs.
Step 2: The Lyapunov function in step 2 is given by

V2 = V1 +
∫ x2

σ2

sig2−τ2+1
(
sig1/τ2(s)− sig1/τ2(σ2)

)
ds +

1
2

θ̃T
2 θ̃2 +

1
2

Ψ̃2
2 (29)

Similar to the derivation process in step 1, the virtual control scheme σ3 and update
law of θ̂2 are defined as

σ3 = −sigτ3(ϑ2)(ℓχ̂ + 1 + ψ)− 1
4

sig2−τ3(ϑ2)− θ̂T
2 φ2 − Ψ̂2 − 23β−2|ϑ2|ηsigτ3−2(ϑ2) (30)

˙̂θ2 = sig2−τ3(ϑ2)φ2 − γ2θ̂2 (31)

where β = η
2−b > 1, ℓ > 0, η > 2 − b, γ2 > 0, and ψ > 0 are parameters.

Construct the disturbance observer as

Ψ̂2 = δ2(x2 − ϕ2)

ϕ̇2 = x3 + θ̂T
2 φ2 + Ψ̂2

(32)

where δ2 > 0 is a design parameter and ϕ2 denotes an auxiliary function.
Then, at step 2, V2 satisfies

V̇2 ≤− ψ
2

∑
k=1

ϑ2
k − 23β−2

2

∑
k=1

|ϑk|η + χ̃(ℓ
21

∑
k=1

ϑ2
k − ˙̂χ) + (2)Γ1 +

2

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

2

∑
k=1

Ψ̃2
k +

ι

2p

2

∑
k=1

∥θ̃k∥2 + γk

2

∑
k=1

θ̃T
k θ̂k

(33)

Step i(3 ≤ i ≤ n − 1): The Lyapunov function in step i − 1 is given by

Vi−1 = V1 +
i−1

∑
k=2

∫ xk

σk

sig2−τk+1
(
sig1/τk (s)− sig1/τk (σk)

)
ds +

1
2

i−1

∑
k=2

θ̃T
k θ̃k +

1
2

i−1

∑
k=2

Ψ̃2
k (34)
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Assume that, at this particular step, Vi−1 satisfies

V̇i−1 ≤− ψ
i−1

∑
k=1

ϑ2
k − 23β−2

i−1

∑
k=1

|ϑk|η + χ̃(ℓ
i−1

∑
k=1

ϑ2
k − ˙̂χ) + (i − 1)Γ1 +

i−1

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

i−1

∑
k=1

Ψ̃2
k +

ι

2p

i−1

∑
k=1

∥θ̃k∥2 + γk

i−1

∑
k=1

θ̃T
k θ̂k

(35)

Subsequently, we will demonstrate that Equation (35) is satisfied at step i. The Lya-
punov function is provided as

Vi = Vi−1 + πi +
1
2

θ̃T
i θ̃i +

1
2

Ψ̃2
i (36)

where πi =
∫ xi

σi
sig2−τi+1

(
sig1/τi (s)− sig1/τi (σi)

)
ds.

According to Equation (36), we obtain

V̇i = V̇i−1 + sig2−τi+1(ϑi)ẋi +
i−1

∑
k=1

∂πi
∂xk

ẋk +
i−1

∑
k=1

∂πi

∂sig1/τi (σi)

dsig1/τi (σi)

dt
− θ̃T

i
˙̂θi − Ψ̃i

˙̂Ψi (37)

Invoking Equation (35), it is shown that

V̇i ≤− ψ
i−1

∑
k=1

ϑ2
k − 23β−2

i−1

∑
k=1

|ϑk|η + χ̃(ℓ
i−1

∑
k=1

ϑ2
k − ˙̂χ) + (i − 1)Γ1 +

i−1

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

i−1

∑
k=1

Ψ̃2
k +

ι

2p

i−1

∑
k=1

∥θ̃k∥2 + γk

i−1

∑
k=1

θ̃T
k θ̂k + sig2−τi+1(ϑi)( fi(x̄i) + di(t))

+ sig2−τi+1(ϑi)(xi+1 − σi+1) + sig2−τi+1(ϑi)σi+1 +
i−1

∑
k=1

∂πi
∂xk

ẋk

+
i−1

∑
k=1

∂πi

∂sig1/τk (σk)

dsig1/τk (σk)

dt
− θ̃T

i
˙̂θi − Ψ̃i

˙̂Ψi

(38)

In addition, according to the definition of πi, one has

∂πi

∂sig1/τk (σk)

dsig1/τk (σk)

dt
≤(2 − τi+1)

∣∣∣∂sig1/τk (σk)

∂t

∣∣∣∣∣∣ ∫ xi

σi

sig1−τi+1
(
sig1/τi (s)− sig1/τi (σi)

)
ds
∣∣∣

≤(2 − τi+1)
∣∣∣∂σ

1/τk
k
∂t

∣∣∣|ϑi|1−τi+1 |xi − σi|

≤2(2 − τi+1)|ϑi|1−b
∣∣∣∂σ

1/τk
k
∂t

∣∣∣
(39)

Similar to Equation (39), we have

∂πi
∂xk

ẋk ≤2(2 − τi+1)|ϑi|1−b
∣∣∣∂σ

1/τk
k

∂xk
ẋk

∣∣∣ (40)

Substituting Equations (39) and (40) into Equation (38) yields

V̇i ≤− ψ
i−1

∑
k=1

ϑ2
k − 23β−2

i−1

∑
k=1

|ϑk|η + χ̃(ℓ
i−1

∑
k=1

ϑ2
k − ˙̂χ) + (i − 1)Γ1 +

i−1

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

i−1

∑
k=1

Ψ̃2
k +

ι

2p

i−1

∑
k=1

∥θ̃k∥2 + γk

i−1

∑
k=1

θ̃T
k θ̂k + sig2−τi+1(ϑi)( fi(x̄i) + di(t))

+ ς|ϑi+1|2 + ϑ2
i + sig2−τi+1(ϑi)σi+1 + sig1−b(ϑi)Ωi(x̄i, σi)− θ̃T

i
˙̂θi − Ψ̃i

˙̂Ψi

(41)
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where Ωi(x̄i, σi+1) = 2sign(ϑi)(2−τi+1)
(

∑i−1
k=1

∣∣ ∂σ
1/τi
i
∂t

∣∣+∑i−1
k=1

∣∣ ∂σ
1/τi
i

∂xk
ẋk
∣∣)+ sigb−1(ϑi)ς|ϑi+1|2.

In a manner akin to Equation (27), one has

sig1−b(ϑi)Ωi ≤|ϑi|1−b h̄
1−b

2
i ≤ ℓiϑ

2
i χ∗ + Γ1 (42)

where h̄i = (
√

2∥θ̄Ωi∥)
2/(1−b).

The FLSs serve as an approximator to identify fi(x̄i), such that fi(x̄i) = θT
i φi + ϵi with

ϵ̄i ≥ |ϵi|. Defining Ψi = di(t) + ϵ̄i, the disturbance observer is formulated with δi as follows

Ψ̂i = δi(xi − ϕi)

ϕ̇i = xi+1 + θ̂T
i φi + Ψ̂i

(43)

We design the virtual controller and update laws as

σi+1 = −sigτi+1(ϑi)(ℓχ̂ + 1 + ψ)− 1
4

sig2−τi+1(ϑi)− θ̂T
i φi − Ψ̂i − 23β−2|ϑi|ηsigτi+1−2(ϑi) (44)

˙̂θi = sig2−τi+1(ϑi)φi − γi θ̂i (45)

where γi > 0 a is designed parameter.
Invoking Equation (42) to Equation (45), one obtains

V̇i ≤− ψ
i

∑
k=1

ϑ2
k − 23β−2

i

∑
k=1

|ϑk|η + χ̃(ℓ
i

∑
k=1

ϑ2
k − ˙̂χ) + iΓ1 +

i

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

i

∑
k=1

Ψ̃2
k +

ι

2p

i

∑
k=1

∥θ̃k∥2 + γk

i

∑
k=1

θ̃T
k θ̂k

(46)

Step n: The Lyapunov function is defined as

Vn = Vn−1 + πn +
1
2

θ̃T
n θ̃n +

1
2

Ψ̃2
n (47)

According to Equation (47), we obtain

V̇n =V̇n−1 + sig2−τn+1(ϑn)ẋn +
n

∑
k=1

∂πn

∂xk
ẋk +

n

∑
k=1

∂πn

∂sig1/τk (σk)

dsig1/τk (σk)

dt
− θ̃T

n
˙̂θn − Ψ̃n

˙̂Ψn

=V̇n−1 + sig2−τn+1(ϑn)(u(t) + dn(t) + fn(x̄n)) +
n

∑
k=1

∂πn

∂xk
ẋk

+
n

∑
k=1

∂πn

∂sig1/τk (σk)

dsig1/τk (σk)

dt
− θ̃T

n
˙̂θn − Ψ̃n

˙̂Ψn

(48)

Based on Equation (46), we have
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V̇n ≤− ψ
n−1

∑
k=1

ϑ2
k − 23β−2

n−1

∑
k=1

|ϑk|η + χ̃(ℓ
n−1

∑
k=1

ϑ2
k − ˙̂χ) + (n − 1)Γ1 +

n−1

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

n−1

∑
k=1

Ψ̃2
k +

ι

2p

n−1

∑
k=1

∥θ̃k∥2 + γk

n−1

∑
k=1

θ̃T
k θ̂k + sig2−τn+1(ϑn)

(
u(t) + dn(t)

+ fn(x̄n)
)
+

n

∑
k=1

∂πn

∂xk
ẋk +

n

∑
k=1

∂πn

∂sig1/τk (σk)

dsig1/τk (σk)

dt
− θ̃T

n
˙̂θn − Ψ̃n

˙̂Ψn

≤− ψ
n−1

∑
k=1

ϑ2
k − 23β−2

n−1

∑
k=1

|ϑk|η + χ̃(ℓ
n−1

∑
k=1

ϑ2
k − ˙̂χ) + (n − 1)Γ1 +

n−1

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

n−1

∑
k=1

Ψ̃2
k +

ι

2p

n−1

∑
k=1

∥θ̃k∥2 + γk

n−1

∑
k=1

θ̃T
k θ̂k + sig2−τn+1(ϑn)

(
u(t) + dn(t)

+ fn(x̄n)
)
+ sig1−b(ϑn)Ωn(x̄n, σn)− θ̃T

n
˙̂θn − Ψ̃n

˙̂Ψn

(49)

where Ωn(x̄n, σn) = 2sign(ϑn)(2 − τn+1)
(

∑n
k=1

∣∣ ∂σ
1/τk
k
∂t

∣∣+ ∑n
k=1

∣∣ ∂σ
1/τk
k

∂xk
ẋk
∣∣).

In a manner akin to Equation (27), we have

sig1−b(ϑn)Ωn ≤|ϑn|1−b h̄
1−b

2
n ≤ ℓnϑ2

nχ∗ + Γ1 (50)

where h̄n = (
√

2∥θ̄Ωn∥)2/(1−b).
The FLSs serve as an approximator to identify fn(x̄n), such that fn(x̄n) = θT

n φn + ϵn
with ϵ̄n ≥ |ϵn|. Defining Ψn = dn(t) + ϵ̄n, the disturbance observer is formulated with δn
as follows

Ψ̂n = δn(xn − ϕn)

ϕ̇n = θ̂T
n φn + Ψ̂i

(51)

The actual controller and update laws are defined as

u(t) = −sigτn+1(ϑn)(ℓχ̂ + ψ)− 1
4

sig2−τn+1(ϑn)− θ̂T
n φn − Ψ̂n − 23β−2|ϑn|ηsigτn+1−2(ϑn) (52)

˙̂θn = sig2−τn+1(ϑn)φn − γn θ̂n (53)

˙̂χ = ℓ
n

∑
i=1

ϑ2
i − µψχ̂ (54)

Invoking Equation (50) to Equation (54) yields

V̇n ≤− ψ
n

∑
k=1

ϑ2
k − 23β−2

n

∑
k=1

|ϑk|η + χ̃(ℓ
n

∑
k=1

ϑ2
k − ˙̂χ) + nΓ1 +

n

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

n

∑
k=1

Ψ̃2
k +

ι

2p

n

∑
k=1

∥θ̃k∥2 + γk

n

∑
k=1

θ̃T
k θ̂k

≤− ψ
n

∑
k=1

ϑ2
k − 23β−2

n

∑
k=1

|ϑk|η + µψχ̃χ̂ + nΓ1 +
n

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

n

∑
k=1

Ψ̃2
k +

ι

2p

n

∑
k=1

∥θ̃k∥2 + γk

n

∑
k=1

θ̃T
k θ̂k

(55)
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Based on Lemma 2, for any b1 > (1/2) and b2 > (1/2), we have

µψχ̃χ̂ = −µψχ̃(χ̃ − χ∗) ≤ − c1ψ

2
χ̃2 +

b1ψµ

2
χ∗2 (56)

γk θ̃T
k θ̂k ≤ −γk(2b2 − 1)

2b2
∥θ̃k∥2 +

b2γk
2

∥θk∥2 (57)

where c1 = 2 µ(b1−0.5)
b1

.
Substituting Equations (56) and (57) into Equation (55), we have

V̇n ≤− ψ
n

∑
k=1

ϑ2
k − 23β−2

n

∑
k=1

|ϑk|η −
c1ψ

2
χ̃2 +

b1ψµ

2
χ∗2 + nΓ1 +

n

∑
k=1

Ψ̃k(Ψ̇k − δkΨ̃k)

+ (1 +
p
2

δ2
k )

n

∑
k=1

Ψ̃2
k +

ι

2p

n

∑
k=1

∥θ̃k∥2 −
n

∑
k=1

γk(2b2 − 1)
2b2

∥θ̃k∥2 +
n

∑
k=1

b2γk
2

∥θk∥2

≤− ψ
n

∑
k=1

ϑ2
k − 23β−2

n

∑
k=1

|ϑk|η −
c1ψ

2
χ̃2 +

b1ψµ

2
χ∗2 + nΓ1 − ϱ1,k

n

∑
k=1

Ψ̃2
k

− ϱ2,k

n

∑
k=1

∥θ̃k∥2 +
n

∑
k=1

b2γk
2

∥θk∥2

(58)

where ϱ1,k = δk − 1 − p
2 δ2

k and ϱ2,k =
γk(2b2−1)

2b2
− ι

2p .

3.2. Stability Analysis

From the analysis above, the primary theorem of this paper will be articulated as follows.

Theorem 1. Consider the nonlinear systems in Equation (1), the actual fixed-time adaptive fuzzy control
strategy in Equation (52) is proposed with the virtual control laws in Equations (20), (30), and (44), the
adaptation laws of Equations (21), (31), (45), (53), and (54), and the disturbances observers of Equations
(22), (32), (43), and (51). The derived control scheme can ensure that the resulting system is practically fixed-

time stable, and the states xi converge in the region |xi| ≤ ∆x = min
{

ϖ
− 1

α
1

( Υ
1−η0

) 1
α , ϖ̄

− 1
α

2
( Υ

1−η0

) 1
β
}

in

fixed time T ≤ 1
ϖ1η0(1−α)

+ 1
ϖ̄2η0(β−1) , where ϖ1 = min{ψ/2, c1ψ/2n1−β, ϱ1,k, ϱ2,k}, c1 = 2µ(b1−0.5)

b1
,

b1 > (1/2), b2 > (1/2), 1 > η0 > 0, Υ = ωℑ + nΓ1 + ωθ + ωΨ + ∑n
k=1

b2γk
2 ∥θk∥2 + ωℑ +

b1ψµ
2 χ∗2, ϖ2 = min{2β−1, cβ

1ψβ/2βn1−β, ϱ
β
1,k/nβ−1, ϱ

β
2,knβ−1}.

Proof. From Equation (47), Vn can be rewritten as

Vn =
n

∑
k=1

πk +
1
2

χ̃2 +
1
2

n

∑
k=1

θ̃T
k θ̃k +

1
2

n

∑
k=1

Ψ̃2
k (59)

where

n

∑
k=1

πk =
n

∑
k=1

∫ xk

σj

sig2−τk+1
(
sig1/τk (s)− sig1/τk (σk)

)
ds ≤ 2

n

∑
k=1

|ϑk|2−b (60)

Furthermore, we have

(
n

∑
k=1

πk)
α ≤ (2

n

∑
k=1

|ϑk|2−b)α ≤ 2
n

∑
k=1

ϑ2
k (61)
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(
n

∑
k=1

πk)
β ≤ (2

n

∑
k=1

|ϑk|2−b)β ≤ 2β−1
n

∑
k=1

(2|ϑk|2−b)β ≤ 22β−1

n1−β

n

∑
k=1

|ϑk|η (62)

where 0 < α = 2
2−b < 1, η > 2 − b, β = η

2−b > 1.
Based on [43], it is known that, for a bounded function χ̃ with constant ∆χ as the

boundary, 0 < α < 1 and β > 1, such that

− c1ψ

2
χ̃2 ≤ −

( c1ψ

4
χ̃2)α −

( c1ψ

4
χ̃2)β

+ ωℑ (63)

where ωℑ = (1 − α)αα/1−α + ( c1ψ
4 ∆2

χ)
β.

Similar to

−ϱ2,k

n

∑
k=1

∥θ̃k∥2 ≤ −
(ϱ2,k

2

n

∑
k=1

∥θ̃k∥2)α − 1
nβ−1

(ϱ2,k

2

n

∑
k=1

∥θ̃k∥2)β
+ ωθ (64)

where ωθ = (1 − α)αα/1−α + ∑n
k=1(

ϱ2,k
2 ∆2

θ,k)
β.

−ϱ1,k

n

∑
k=1

Ψ̃2
k ≤ −

(ϱ2,k

2

n

∑
k=1

Ψ̃2
k
)α − 1

nβ−1

(ϱ1,k

2

n

∑
k=1

Ψ̃2
k
)β

+ ωΨ (65)

where ωΨ = (1 − α)αα/1−α + ∑n
k=1(

ϱ1,k
2 ∆2

Ψ,k)
β.

Then, combining Equation (58) and Equations (63)–(65), we have

V̇n ≤− ψ
n

∑
k=1

ϑ2
k − 23β−2

n

∑
k=1

|ϑk|η −
( c1ψ

4
χ̃2)α −

( c1ψ

4
χ̃2)β

+ ωℑ +
b1ψµ

2
χ∗2

+ nΓ1 −
(ϱ2,k

2

n

∑
k=1

∥θ̃k∥2)α − 1
nβ−1

(ϱ2,k

2

n

∑
k=1

∥θ̃k∥2)β
+ ωθ

−
(ϱ2,k

2

n

∑
k=1

Ψ̃2
k
)α − 1

nβ−1

(ϱ1,k

2

n

∑
k=1

Ψ̃2
k
)β

+ ωΨ +
n

∑
k=1

b2γk
2

∥θk∥2

≤− ϖ1

{
(

n

∑
k=1

ϖk)
α +

(1
2

χ̃2)α
+

(1
2

n

∑
k=1

Ψ̃2
k
)α

+
(1

2

n

∑
k=1

∥θ̃k∥2)α
}

− ϖ2

{
(

n

∑
k=1

ϖk)
β +

(1
2

χ̃2)β
+

(1
2

n

∑
k=1

Ψ̃2
k
)β

+
(1

2

n

∑
k=1

∥θ̃k∥2)β
}
+ Υ

(66)

where ϖ1 = min{ψ/2, c1ψ/2n1−β, ϱ1,k, ϱ2,k}, ϖ2 = min{2β−1, cβ
1 ψβ/2βn1−β, ϱ

β
1,k/nβ−1,

ϱ
β
2,knβ−1}, Υ = ωℑ + nΓ1 + ωθ + ωΨ + ∑n

k=1
b2γk

2 ∥θk∥2 + ωℑ + b1ψµ
2 χ∗2.

Furthermore, based on Lemma 1, we have

V̇n ≤− ϖ1

[ n

∑
k=1

ϖk +
1
2

χ̃2 +
1
2

n

∑
k=1

Ψ̃2
k +

1
2

n

∑
k=1

∥θ̃k∥2
]α

− ϖ̄2

[ n

∑
k=1

ϖk +
1
2

χ̃2 +
1
2

n

∑
k=1

Ψ̃2
k +

1
2

n

∑
k=1

∥θ̃k∥2
]β

+ Υ

≤− ϖ1Vα
n − ϖ̄2Vβ

n + Υ

(67)

where ϖ̄2 = n1−βϖ2.
In accordance with Lemma 4, Equation (1) demonstrates practical fixed-time stability.

Moreover, xi will converge in the region

B =
{

lim
t→Ts

xi|Vn ≤ min
{

ϖ
− 1

α
1

( Υ
1 − η0

) 1
α , ϖ̄

− 1
α

2
( Υ

1 − η0

) 1
β
}}

(68)
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in T ≤ 1
ϖ1η0(1−α)

+ 1
ϖ̄2η0(β−1) .

The block diagram of the proposed adaptive fixed-time controller is shown in Figure 1.

Figure 1. Block diagram of the fixed-time control scheme.

Remark 2. In this article, we present a fixed-time adaptive fuzzy control protocol for uncertain
nonlinear systems. It is crucial to highlight that our proposed controller, in contrast to finite-time
controllers, ensures the practical fixed-time stability of controlled systems. Furthermore, we employ
the backstepping technique and adding one power integrator for developing the fixed-time controller,
avoiding noncontinuous and singular issues.

Remark 3. This paper presents a fixed-time fuzzy adaptive controller designed for uncertain
nonlinear systems with mismatched disturbances. Distinguishing itself from finite-time con-
trollers [20,21,33], our proposed controller guarantees practical fixed-time stability of closed-loop
systems, with the convergence time unaffected by the initial conditions. Thus, compared to finite-time
control, fixed-time control is more applicable to practical engineering. In contrast to the fixed-time
controllers in [34,36,37], our method considers mismatched disturbances. Additionally, we have
developed a dedicated disturbance observer to address these mismatches, thereby improving the
system’s robustness and control precision. Leveraging property 0 < φT φ ≤ 1, our proposed control
scheme relies on only one adaptive parameter χ related to the maximum norm of the fuzzy weight
parameters, eliminating the need for directly incorporating multiple fuzzy weight parameters. This
approach significantly reduces the computational load. In upcoming research, we will further reduce
the computational load of the system by introducing an event-triggered mechanism.

The design algorithm of the proposed adaptive fixed-time controller is shown in
Algorithm 1.

Remark 4. In contrast to the event-triggered control protocols designed in [44,45], which necessitate
the determination of upper bounds for system uncertainties, our control protocol is derived using
an adaptive technique that does not have such a requirement. Additionally, refs. [44,45] do not
address mismatched disturbances, whereas our proposed controller is capable of handling the more
challenging task involving mismatched disturbances.

Remark 5. In this paper, a fixed-time fuzzy adaptive controller is proposed for uncertain nonlinear
systems with mismatched disturbances. In order to mitigate the impact of mismatched disturbances,
the disturbance observers (23), (33), (44), and (52) are designed. In both virtual controllers (21), (31),
and (45) and actual controllers (53), we can observe the presence of the term Ψ̂i. This term is obtained
through a disturbance observer and is utilized to mitigate the impact of disturbances on the system.
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Algorithm 1 Algorithm to design fixed-time fuzzy controller

Input: The parameters τ1, τi, and b in intermediate variables (16); the parameters
ℓ > 0, ψ > 0, and β > 1 in virtual control laws (21), (31), and (45) and actual controller
(53); the parameters γi > 0, ℓ > 0, µ > 0, and ψ > 0 in adaptive laws (22), (32), (46), (54),
and
(55); the parameter δi in disturbance observers (23), (33), (44), and (52).
Output: The fixed-time controller (53).
Begin:
1: Step 1: Establish a system model.
2: Step 2: Design the intermediate variables.
3: Step 3: Design the disturbance observers.
4: Step 4: Chose appropriate design parameters and design adaptive laws

and virtual controllers.
5: Step 5: Select appropriate design parameters and design actual control law (53).
6: Step 6: Calculate the convergence time of the resulting closed-loop system.
end

4. Illustrative Examples

In this section, we conduct an illustrative example on the dynamics of a one-line arm
to validate the effectiveness of the proposed controller, the system is described as

Nq̈ + Mq̇ + Rsin(q) = F (69)

where q represents the arm’s position, F denotes the control input signal. N = 1 kg ·m2 refers
to the mechanical inertia, R = mgL with L = 1 m refers to the link length, M = 1 kg ·m2

denotes the mechanical inertia, g = 10 N/kg refers to the gravitational acceleration, and
m = 1 kg represents the load mass.

Let x1 = q and x2 = q̇, d1 = 0.1cos(x1)sin(x2), and d2 = sin(0.01t) into consideration;
then, Equation (69) can be described by

ẋ1 = x2 + d1

ẋ2 = −x2 − 10sin(x1) + u + d2
(70)

Case 1. The parameters are designed as ψ = 1
16 , ℓ = 0.5, µ = 16, δ1 = 2, Ψ1(0) = 0,

Ψ2(0) = 0, γ2 = 1, δ2 = 2, b = − 2
7 , τ1 = 1, τ2 = 5

7 , τ3 = 3
7 , β = 1.1, x(0) = [0.5,−1.5]T ,

χ̂(0) = 0.04.
Case 2. The parameters are designed as ψ = 1

16 , ℓ = 0.4, µ = 16, δ1 = 2, χ̂(0) = 0.02,
Ψ1(0) = 0, Ψ2(0) = 0, γ2 = 1, δ2 = 2, b = − 2

5 , τ1 = 1, τ2 = 3
5 , τ3 = 1

5 , x(0) = [−0.5, 1.5]T ,
and β = 1.1.

The simulation results for two cases are given by Figures 2–9. The trajectory of state
x1 for case 1 is given in Figure 2. The trajectory of state x2 for case 1 is given in Figure 3.
The trajectory of χ̂ for case 1 is provided in Figure 4. From Figures 2 and 3, it can be
observed that, with the proposed fixed-time controller, the system states x1 and x2 for case 1
converge to near-zero within 4 s. The trajectory of state x1 for case 2 is given in Figure 6.
The trajectory of state x2 for case 2 is given in Figure 7. From Figures 6 and 7, it can be
observed that, with the proposed fixed-time controller, the system states x1 and x2 for case 2
converge to near-zero within 4 s. The trajectory of χ̂ for case 2 is provided in Figure 8. The
trajectory of the control signal for the two cases are given in Figures 5 and 9, respectively.

In order to further investigate the performance of the designed controller, a set of com-
parative simulation validations was conducted employing a finite-time control approach.
A finite-time controller without disturbance observed based on the classical back-stepping
method is also applied to Equation (70). The finite-time controller is designed as

u(t) = −sigτn+1(ϑn)(ℓχ̂ + ψ)− 1
4

sig2−τn+1(ϑn)− θ̂T
n φn
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where the adaptive laws are defined as

˙̂θn = sig2−τn+1(ϑn)φn − γn θ̂n

˙̂χ = ℓ
n

∑
i=1

ϑ2
i − µψχ̂
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Figure 2. The trajectory of state x1 for case 1.
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Figure 3. The trajectory of state x2 for case 1.
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Figure 4. The trajectory of χ̂ for case 1.
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Figure 5. The trajectory of control signal for case 1.
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Figure 7. The trajectory of state x2 for case 2.
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Figure 9. The trajectory of state x2 for case 2.

To make a more equal comparison, the same parameters were designed for the finite-
time controller and our proposed fixed-time controller. The simulation results using a
finite-time controller and our proposed fixed-time controller are given in Figures 10 and 11.
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Figure 11. The trajectory of state x2 for case 1.

From Figure 10, it can be observed that, with the finite-time controller and fixed-time
controller, system state x1 converges to near-zero within 4 s and 10 s, respectively. By
20 s, the control precision is approximately 8 × 10−3 for the finite-time controller and
5.8 × 10−3 for the fixed-time controller. From Figure 11, it can be observed that, with
the finite-time controller and fixed-time controller, system state x2 converges to near-
zero within 4 s and 10 s, respectively. By 20 s, the control precision is approximately
3.2 × 10−3 for the finite-time controller and 1.5 × 10−3 for the fixed-time controller. From
the comparative simulation results, it is evident that, in the absence of a disturbance
observer, the perturbations in the trajectories of states x1 and x2 are significantly enhanced,
and their control precision is also lower compared to the scenario where a disturbance
observer is present. Additionally, it can be observed that the convergence speed of the
fixed-time controller is faster than that of the finite-time controller. Based on the simulation
results, we can deduce that our derived control protocol guarantees rapid convergence
performance for the closed-loop system. Moreover, the two cases’ simulation results
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confirm that the derived adaptive fixed-time fuzzy controller in this work can effectively
mitigate the impact of mismatched disturbances.

5. Conclusions

This paper addressed the fixed-time fuzzy control issue for uncertain nonlinear sys-
tems with mismatched disturbances. The systems encompass mismatched disturbances
and unknown nonlinear functions. Through the utilization of the adaptive method and
disturbance observers, a range of issues stemming from uncertain nonlinear functions and
mismatched disturbances have been effectively addressed. By applying the backstepping
technique and incorporating the concept of integrating one power integrator, we have
developed a fixed-time fuzzy adaptive control protocol for uncertain nonlinear systems.
This controller design guarantees the fixed-time stability of the controlled systems. A
practical example has been showcased to illustrate the efficacy of the derived controller.
Future investigations will involve extending our proposed control approach to uncertain
systems featuring full-state constraints.
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