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Abstract: Coal gangue, the primary solid waste generated during the coal mining process, is typically
disposed of on the surface, where it gradually accumulates to form gangue piles that significantly
contaminate the surrounding environment. Filling technology has been widely employed for the safe
and efficient disposal of coal gangue due to its sustainability, safety, and efficiency. However, there is
still a lack of theoretical research on the concentration of gangue slurry in long-distance filling pipeline
transportation. Therefore, a calculation model of the ultra-long-distance transportable concentration
of coal gangue slurry with different grades was constructed based on the static anti-segregation
performance and Bingham model. In addition, the relevant parameters of the calculation model of the
ultra-long-distance transportable concentration of coal gangue slurry in this mine were determined
using the 8 km pipeline transport of coal gangue slurry in one mine as the technical background.
It was subsequently demonstrated that the yield stress, plastic viscosity, and mass concentration
of the various grades of gangue slurry in this mine exhibit an increasing exponential function,
while the slurry density and mass concentration exhibit an increasing linear function, and the mass
concentration and actual flow rate correspond to a quadratic polynomial increment. Finally, the
minimum and maximum concentrations for different grades of gangue slurry that can be transported
over long distances in this mine were determined. This work provides theoretical and practical
guidance on how to select the concentration of gangue slurry for long-distance pipeline transport.

Keywords: coal gangue slurry; grading; pipeline transportation; rheological properties; concentra-
tion gradient

1. Introduction

For a long time, coal has been the cornerstone of China’s strategic energy security
system and will still play a role in energy security in the future [1–3]. The large-scale,
high-intensity mining of coal resources will not only produce a large amount of coal gangue
but also induce damage to the geological conditions and ecological environment of the
mining area [4–8]. The state and the government have long been clearly required to improve
the comprehensive utilization rate of coal gangue, but at present, they still mainly rely
on the ground piling up or landfills. The problem of coal gangue disposal has gradually
become a constraint on China’s efficient development of mineral resources [9–11], and
an ecological environmental protection strategy is one of the obstacles [12–15]. How to
efficiently, greenly, scientifically, and safely dispose of solid wastes such as coal gangue will
inevitably become the key to the realization of an ecological environment and the economic
and social development of high quality in the field of coal [16–26].
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To date, the application of gangue in the field of filling has attracted considerable
attention, particularly in the context of ground filling reclamation. Scholars have conducted
comprehensive research to assess the effectiveness of this application. Ma et al. [27] and
Chen et al. [28] conducted analyses of the spatial and temporal changes in the nature
of reclaimed soil and the reclamation effect brought about using coal gangue as a filling
material. Jiao et al. [29] and Li et al. [30] revealed the changing patterns of bacterial diversity
and community structure in the coal gangue-filled reclaimed land, as well as the relationship
between these changes and soil physicochemical properties through high-throughput
sequencing technology. Furthermore, Qiu et al. [31] and Yang et al. [32] investigated
methods to enhance the quality of coal gangue-filled reclaimed land by incorporating fly ash
and modified soil materials, thereby achieving the remediation of cadmium-contaminated
soil. The studies of Xu et al. [33] and Chen et al. [34] elucidated the influence mechanism
of temperature change on coal gangue-filled reclaimed soil. Fang et al. [35] and Song
et al. [36] employed complex network theory to investigate the reconstruction mechanism
and heavy metal distribution characteristics of coal gangue reclamation mine soil. Their
findings provide a scientific basis for the safe utilization of coal gangue. Although ground
filling reclamation is an effective method of coal gangue disposal, it is constrained by the
complexity of land resources and manual intervention. Consequently, it is of paramount
importance to identify novel approaches to coal gangue disposal.

In recent years, the filling of underground mining airspace has emerged as a novel
approach to the disposal of coal gangue. In their respective works, Li [37] and Wang [38] pro-
vide comprehensive discussions on the efficient and harmless disposal and comprehensive
resource utilization of coal gangue. They also emphasize the crucial role of underground
filling technology in realizing the green mining of coal resources. Yang et al. [39] and
Huang et al. [40] proposed a novel slurry filling technology based on the principles of coal-
based solid waste underground filling and slurry pipeline transportation and developed a
corresponding transportation model. He et al. [41] and Ju et al. [42] employed numerical
simulation methods to investigate the damage characteristics and fracture evolution of coal
gangue particles under varying pressure conditions. Gu et al. [43] and Zhu et al. [44,45]
conducted comprehensive investigations into the flow characteristics and diffusion laws of
gangue paste in underground filling spaces through similar simulations and industrial tests.
Sun et al. [46] and Wu et al. [47] analyzed the mechanical properties and damage evolution
mechanisms of coal gangue paste with high water content and viscosity using the acoustic
emission, hydrodynamics, and discrete element coupling method (DEM-CFD). The studies
provide theoretical support and practical guidance for the application of gangue under-
ground filling technology. However, theoretical studies on the concentration of coal gangue
paste filling pipeline transportation are still insufficient and require further exploration.

In view of this, based on the engineering background of coal gangue filling pipeline
transportation (8 km) in a mine, based on the static anti-segregation performance and
Bingham model, this paper determined the minimum concentration Cwl and the maximum
concentration Cwh of coal gangue grout over the long distance, respectively, and constructed
the calculation model of the ultra-long-distance concentration of coal gangue grout of
different levels. At the same time, the functional relationship between the yield stress,
plastic viscosity, and mass concentration of the coal gangue slurry of different grades is
determined. In addition, the actual flow rate is modified by taking the maximum value
function max, and the functional relationship between the actual flow rate and the mass
concentration of coal gangue of different grades is obtained. The gradient range of the
minimum concentration Cwli, the maximum concentration Cwhi, and the concentration Cwi
of coal gangue of different grades are calculated.



Minerals 2024, 14, 487 3 of 16

2. Methodology/Materials Used
2.1. Determine the Concentration Range of Different Grades of Gangue Slurry
Ultra-Long-Distance Transportable Concentration Range

Reasonable gangue slurry quality concentration interval selection for the safety and
stability of pipeline transportation is crucial. In ultra-long-distance transportation, the
slurry must not only have good fluidity performance or not precipitate segregation but
it must also ensure that the transport resistance meets the requirements of the existing
equipment parameters of the mine and there is no pipeline clogging. Additionally, different
grades of gangue slurry require different concentration intervals for transportation. There-
fore, this paper, based on the static anti-dissociation performance, Bingham model, and the
relationship between the mass concentrations, respectively, determines the gangue slurry
ultra-long-distance transportable minimum concentration Cwl and gangue slurry ultra-long-
distance transportable maximum concentration Cwh; it also proposes to establish different
grades of gangue slurry ultra-long-distance transportable concentration calculation model
Cwl ≤Cw ≤ Cwh.

2.2. Ultra-Long-Distance Transportable Minimum Concentration of Gangue Slurry Based on
Static Anti-Segregation Properties

The fine particles in the gangue slurry generally exhibit a “self-flocculation” effect,
revealing the yield stress. Under static conditions, the coarse particles in the gangue slurry
will not only bear the gravity G and buoyancy F1 but also the slurry shear resistance F2 [48–51].
To facilitate the analysis of the force state of the coarse particles in the gangue slurry, it is
assumed to be an ideal and homogeneous solid spherical particle, radius r, as shown in the
force analysis in Figure 1.
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Figure 1. Static force analysis of coarse gangue particles.

Because gangue slurry contains a relatively large proportion of coarse particles, it
settles easily and segregates when it encounters a minor shear resistance. Therefore, to
prevent the settlement movement of coarse particles, the slurry’s greatest shear resistance
must satisfy the following requirements:

F2 ≥ π

6
d3(ρs − ρm)g (1)

where ρs is the bulk density of the coarse particles, in kg/m3; ρm is the density of the gangue
slurry, in kg/m3; g is the acceleration of gravity, in m/s2; and F2 is the gangue slurry yield
stress τy acting on the surface of the coarse particles caused by the shear resistance, in N.

If the differential area of the coarse particles at an angle θ with the horizontal is dA,
then the differential area dA of the shear resistance F2 in the vertical direction is

dF2 = τy cos θdA = 2πr2 cos2 θτydθ (2)
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Integrating Equation (2) gives the shear resistance of coarse particles in the gangue slurry:

F2 = 4πr2τy

∫ π
2

0
cos2 θdθ =

1
4
π2d2τy (3)

Combining Equation (1) with Equation (3), we obtain the condition equation that the
gangue slurry has anti-segregation performance under static conditions:

3πCτs

2(ρs − ρm)gd
≥ 1 (4)

where τs is the static yield stress of gangue slurry, in MPa; C is the shear resistance
coefficient, for the ideal smooth spherical particles, the value of 1.0, and for non-spherical
particles, take 1.2–2.0; and d is the diameter of coarse particles; non-spherical particles
should be used in the equivalent diameter de = (6V/π)1/3, m.

Therefore, a model for calculating the minimum concentration of ultra-long-distance
transportable gangue slurry based on the static anti-dissociation performance of different
grades can be obtained:

f (Cwli) = Mmaxi =
3πCiτsi

2(ρs − ρmi)gdmaxi
(5)

where i = (0, 1, 2, 3, 4, 5), i = 0 indicates that the amount of coarse particles in the gangue
slurry is 0%, i = 1 indicates that the amount of coarse particles in the gangue slurry is 10%,
and i = 5 indicates that the amount of coarse particles in the gangue slurry is 50%; Ci is
the shear resistance coefficient of the i type gangue slurry; ρmi is the density of the i type
gangue slurry, in kg/m3; dmaxi is the i type of gangue slurry in the largest coarse particles in
diameter, in m; Cwli is the i type of gangue slurry static segregation assessment value Mmaxi
corresponding to the mass concentration, so that f (Cwli) = 1 calculated Cwli, that is, the type
of gangue slurry ultra-long-distance can be transported to the minimum concentration.

2.3. The Maximum Transportable Concentration of Coal Gangue Slurry in Ultra-Long Distance
Based on Bingham Model

To ensure smooth transportation during gangue slurry filling, the flow rate must
exceed the critical flow rate. Otherwise, solid particles will precipitate at the bottom of the
pipe, leading to pipeline blockage. It is important to use subject-specific vocabulary when
it conveys the meaning more precisely than a similar non-technical term. Fei Xiangjun’s
formula can estimate the critical flow rate vc [52–54]:

vc =

[
2gDCv ·

(
γm − γj

)
ω

es f γj

]1/3

(6)

where g is the acceleration of gravity, in m/s2; D is the inner diameter of the pipe, in
m; Cv is the volume concentration of the gangue slurry; γm is the density of the gangue
mixture, in t/m3; γj is the density of the gangue slurry, in t/m3; ω is the average free
settling velocity of the particles, in m/s; es is the suspension efficiency coefficient; and f is
the Darcy resistance coefficient.

The following formula can be used to estimate a reasonable theoretical flow rate vs,
which should be the flow rate with a high conveying capacity, small water–sand ratio, and
stable operation:

vs =
4Qs

3600πD2 (7)

where Qs is the slurry flow rate, in m3/h and D is the standard pipe diameter, in m.
To ensure smooth gangue slurry transport, the theoretical flow rate is usually more

than 1.2 times the critical flow rate [55,56]. If the calculated theoretical flow rate of gangue
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slurry is less than 1.2 times the critical flow rate, then the actual flow rate of gangue slurry
v is set to 1.2 times the critical flow rate, as follows:

v = max(1.2vc, vs) (8)

For the rheological nature of structural flow gangue filling slurry, combined with
the theoretical calculation formula of hydraulic gradient of the Bingham body [57,58], the
Bingham model was used, and the calculation formula of hydraulic gradient was derived
according to the Buckingham equation:

I =
16
3D

· τ +
32v
D2 · µ (9)

where I is the hydraulic gradient (resistance loss along the pipeline), in Pa/m; τ is the yield
stress of the gangue slurry, in Pa; D is the inside diameter of the pipeline, in m; v is the
actual flow rate of the pipeline, in m/s; and µ is the plastic viscosity of the slurry, in Pa·s.

For ease of calculation, the local resistance of the pipe is estimated as 8% of the
resistance loss along the pipe to obtain the local resistance along all pipes:

Ij = 8%I (10)

where Ij is the local resistance loss of the pipeline, in Pa/m.
The total resistance of the gangue slurry transport pipeline can be derived as follows:

Hz = Hs + Hj + Hk (11)

where Hz is the total resistance of the transportation of gangue slurry, that is, the working
resistance of the pump body, in MPa; Hs is the total resistance of the horizontal straight
section, in MPa; Hj is the local resistance of the slurry, in MPa; and Hk is the magnitude of
resistance loss or drag reduction due to the elevation difference in slurry transportation,
in MPa.

Substituting Equation (10) into Equation (11) can be derived from the gangue slurry
for pipeline transportation resistance equation:

Hz = 1.08Hs + Hk (12)

where the size of Hk depends on whether the filling pipeline slurry transport is downward
or upward transport, that is, the filling station and filling location of the cavity relative
relationship. When the elevation of the filling and mining area is greater than the elevation
of the filling station, Hk is positive; when the elevation of the filling and mining area is less
than the elevation of the filling station, Hk is negative.

By substituting Equation (9) into Equation (12), we can obtain the calculation model
of the maximum concentration of coal gangue slurry that can be transported over a long
distance based on the Bingham model:

f (Cwhi) = Hzi = 1.08 ·
(

16
3D

· τi +
32vi
D2 · µi

)
· l ± ρmigh (13)

where i = (0, 1, 2, 3, 4, 5), i = 0 when the mixing of coarse particles in the gangue slurry is
0%, i = 1 when the mixing of coarse particles in the gangue slurry is 10%, and i = 5 when
the mixing of coarse particles in the gangue slurry is 50%; Cwhi indicates that the i type of
gangue slurry is the total resistance to the mass concentration of the corresponding Hzi; l is
the pipeline conveying distance; Hzi must be less than or equal to the maximum discharge
pressure of the filling industrial pump and the difference between the starting pressure; and
Hzi takes the maximum value of the corresponding Cwhi, that is to say, the gangue slurry
can be transported over long distances for the maximum concentration of gangue slurry.
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2.4. Engineering Background for Transportable Concentration Modeling Parameters

The calculation of the ultra-long-distance transportable concentration of coal gangue
slurry in this test is based on the engineering background of coal gangue filling pipeline
transportation in a mine. The coal gangue slurry used in the filling of the mine is prepared
by ball-milled coal gangue powder and roller-milled coal gangue powder (<3 mm), ac-
cording to different water–cement ratios and different coarse particle content (i.e., different
roller-milled coal gangue powder content; the content is 0, 10%, 20%, 30%, 40%, and 50%,
respectively).

To elucidate the rationale behind varying the proportion of roller-milled gangue
powder from 0% to 50%, a comprehensive analysis was conducted to consider both practical
and technical considerations. At 0% roller-milled gangue powder, the objective was to
understand the baseline properties and performance of the slurry system. Gradually
increasing the proportion up to 50% allowed for the investigation of the impact of fine
particle content on slurry viscosity, stability, and overall pipeline transportability. This
range was selected because it allows for the observation of trends and the identification
of optimal operating conditions while remaining within the practical limits of the roller
milling process.

The pipeline transportation distance is 8 km, the height difference between the surface
filling station and the underground goaf is 330 m, the inner diameter of the pipeline is 0.179
m, the maximum outlet pressure of the filling industrial pump is 18 MPa, the density of
coal gangue is 2.63 t/m3, and the annual processing capacity is 2 million tons. In order to
determine the parameters of the calculation model of the ultra-long-distance transportable
concentration of coal gangue slurry in the mine, the physical parameters and particle size
range of two kinds of coal gangue powder were tested, and the rheological properties
of coal gangue slurry with different grades were measured using the MCR72 rheometer
from the Anton Paar Company, Austria. Table 1 displays the test scheme and related
parameter results.

Table 1. Test scheme and related parameter results of different gradation coal gangue slurry.

No.

Coarse
Particle
Content

/%

Water–
Cement

Ratio

Mass Con-
centration

/%

Slurry
Density

ρmi/(t·m−3)

Static
Yield
Stress
τsi/Pa

1.2 Times
Critical

Flow Rate
1.2vci/(m·s−1)

Theoretical
Flow Rate
vsi/(m·s−1)

Actual
Flow Rate
vi/(m·s−1)

Plastic
Viscosity
µi/(Pa·s)

C0-1

0

1:01 50 1.458 2.05 1.40 2.3 2.3 0.1079
C0-2 0.8:1 55.56 1.54 9.63 1.40 1.92 1.92 0.1969
C0-3 0.7:1 58.82 1.592 80.05 1.39 1.79 1.79 0.3758
C0-4 0.6:1 62.5 1.657 158.89 1.39 1.61 1.61 1.2063

C1-1

10

0.7:1 58.82 1.578 44.91 1.52 1.8 1.8 0.3169
C1-2 0.6:1 62.5 1.64 90.77 1.51 1.63 1.63 0.5616
C1-3 0.5:1 66.67 1.717 221.09 1.50 1.46 1.5 1.9284
C1-4 0.45:1 68.97 1.763 431.64 1.50 1.38 1.5 2.3311

C2-1

20

0.6:1 62.5 1.624 70.63 1.61 1.64 1.64 0.4437
C2-2 0.5:1 66.67 1.71 177.66 1.60 1.47 1.6 1.3423
C2-3 0.45:1 68.97 1.76 300.4 1.58 1.38 1.58 2.1113
C2-4 0.4:1 71.43 1.816 640.62 1.57 1.29 1.57 2.9661

C3-1

30

0.6:1 62.5 1.662 23.73 1.67 1.61 1.67 0.1053
C3-2 0.5:1 66.67 1.742 134.93 1.66 1.43 1.66 0.625
C3-3 0.4:1 71.43 1.838 443.16 1.63 1.27 1.63 2.3269
C3-4 0.35:1 74.07 1.893 1085.1 1.62 1.19 1.62 3.0143

C4-1

40

0.5:1 66.67 1.696 84.73 1.72 1.48 1.72 0.4044
C4-2 0.4:1 71.43 1.807 290.68 1.69 1.29 1.69 0.9209
C4-3 0.35:1 74.07 1.872 619.71 1.68 1.20 1.68 2.1673
C4-4 0.3:1 76.9 1.944 1640.4 1.66 1.11 1.66 2.9887

C5-1

50

0.5:1 66.67 1.758 62.06 1.75 1.42 1.75 0.1945
C5-2 0.4:1 71.43 1.854 208.78 1.73 1.26 1.73 0.6793
C5-3 0.35:1 74.07 1.909 460.98 1.72 1.18 1.72 1.2478
C5-4 0.3:1 76.9 1.97 1010.9 1.69 1.10 1.69 1.9734
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2.5. Model Parameter Determination for the Minimum Transportable Concentration Calculation

The apparent density ρs of coal gangue particles is 2.63 t/m3. Because the coal gangue
particles belong to non-spherical particles, the shear resistance coefficients C0, C1, C2, C3, C4,
and C5 of coal gangue slurry with different gradations are 1.5; the maximum particle size
dmax0 of coarse particles in coal gangue slurry with a coarse particle content of 0 is 2 mm; and
the maximum particle sizes dmax1, dmax2, dmax3, dmax4, and dmax5 of coarse particles in coal
gangue slurry with a coarse particle content of 10%, 20%, 30%, 40%, and 50% are 2.36 mm.

The functional relationship between the static yield stress τsi, density ρmi, and mass
concentration Cwi of coal gangue slurry with different grades is shown in Figures 2 and 3,
respectively.
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Figure 2. Relationship between static yield stress τsi and mass concentration Cwi of coal gangue
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2.6. Model Parameter Determination for Maximum Transportable Concentration Calculation 
In order to facilitate the analysis so that τi = τsi, then the yield stress τi of different 

grades of gangue slurry and the mass concentration Cwi function of the relationship be-
tween the same Figure 2 are considered. 

To determine the actual flow rate vi of different grades of gangue slurry, the point-
line diagrams of 1.2 times the critical flow rate 1.2 vci, theoretical flow rate vsi, and mass 
concentration Cwi of different grades of gangue slurry are plotted as shown in Figure 4. 

Figure 3. Relationship between density ρmi and mass concentration Cwi of coal gangue slurry with
different gradations.
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By organizing the above data and substituting them into Equation (5), the minimum
transportable concentration calculation model can be simplified as follows:

f (Cwl0) =
3πC0τs0

2(ρs−ρm0)gdmax0
=

4.5π×(1.99171×10−5e0.25459Cw0)
39.2×(1.96726−0.01585Cw0)

f (Cwl1) =
3πC1τs1

2(ρs−ρm1)gdmax1
=

4.5π×(1.03918×10−5e0.25413Cw1)
39.2×(2.12553−0.01821Cw1)

f (Cwl2) =
3πC2τs2

2(ρs−ρm2)gdmax2
=

4.5π×(1.48813×10−6e0.27819Cw2)
39.2×(2.34795−0.02145Cw2)

f (Cwl3) =
3πC3τs3

2(ρs−ρm3)gdmax3
=

4.5π×(5.30951×10−8e0.32045Cw3)
39.2×(2.21738−0.01997Cw3)

f (Cwl4) =
3πC4τs4

2(ρs−ρm4)gdmax4
=

4.5π×(1.71779×10−8e0.32872Cw4)
39.2×(2.54908−0.02420Cw4)

f (Cwl5) =
3πC5τs5

2(ρs−ρm5)gdmax5
=

4.5π×(5.01826×10−9e0.33886Cw5)
39.2×(2.25229−0.02069Cw5)

(14)

2.6. Model Parameter Determination for Maximum Transportable Concentration Calculation

In order to facilitate the analysis so that τi = τsi, then the yield stress τi of different
grades of gangue slurry and the mass concentration Cwi function of the relationship between
the same Figure 2 are considered.

To determine the actual flow rate vi of different grades of gangue slurry, the point-
line diagrams of 1.2 times the critical flow rate 1.2 vci, theoretical flow rate vsi, and mass
concentration Cwi of different grades of gangue slurry are plotted as shown in Figure 4.
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Figure 4. Relationship between 1.2 times the critical flow rate 1.2 vci, theoretical flow rate vsi, and
mass concentration Cwi of coal gangue slurry with different gradations.

By taking the value function vi = max(1.2 vci,vsi), the actual flow rate vi of different
grades of gangue slurry was obtained, and the functional relationship between the actual
flow rate vi and the mass concentration Cwi was fitted, as shown in Figure 5.

The plastic viscosity µi of the gangue slurries of different grades as a function of mass
concentration Cwi is shown in Figure 6.
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By organizing the above data and substituting them into Equation (13), the maximum 
transportable concentration calculation model can be simplified as follows: 
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3. Results and Discussion 
3.1. Prediction Results and Analysis of Minimum Transportable Concentration 

As can be seen from Figure 2, the static yield stress τs of the gangue slurry of different 
grades and mass concentration Cwi data show an exponentially increasing trend. Under 
the same mass concentration, the more coarse particles are mixed, the lower the static 
yield stress is of the gangue slurry, thereby indicating that the more coarse particles are in 
gangue slurry, the more prone it is to sedimentation and segregation. Therefore, different 
levels of the gangue slurry ultra-long-distance transportable minimum concentration will 
increase with the increase in the content of coarse particles in the slurry, that is, the trans-
portable minimum concentration should meet the Cwl0 < Cwl1 < Cwl2 < Cwl3 < Cwl4 < Cwl5. 

Figure 6. Relationship between plastic viscosity µi and mass concentration Cwi of coal gangue slurry
with different gradations.

By organizing the above data and substituting them into Equation (13), the maximum
transportable concentration calculation model can be simplified as follows:
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

f (Cwh0) =
144l
25D2 · (D · τ0 + 6v0 · µ0)− ρm0gh = 1438157.361 ×

[
0.179 ×

(
1.99171 × 10−5e0.25459Cw0

)
+

6 ×
(
9.60642 − 0.21967Cw0 + 0.00147C2

w0
)(

2.19087 × 10−8e0.28507Cw0
)]

− 3234 × (0.66274 + 0.01585Cw0)

f (Cwh1) =
144l
25D2 · (D · τ1 + 6v1 · µ1)− ρm1gh = 1438157.361 ×

[
0.179 ×

(
1.03918 × 10−5e0.25413Cw1

)
+

6 ×
(
15.46473 − 0.40442Cw1 + 0.00293C2

w1
)(

7.52854 × 10−6e0.18414Cw1
)]

− 3234 × (0.50447 + 0.01872Cw1)

f (Cwh2) =
144l
25D2 · (D · τ2 + 6v2 · µ2)− ρm2gh = 1438157.361 ×

[
0.179 ×

(
1.48813 × 10−6e0.27819Cw2

)
+

6 ×
(
4.09095 − 0.06657Cw2 + 4.37693 × 10−4C2

w2
)(

8.90350 × 10−6e0.17839Cw2
)]

− 3234 × (0.28205 + 0.02145Cw2)

f (Cwh3) =
144l
25D2 · (D · τ3 + 6v3 · µ3)− ρm3gh = 1438157.361 ×

[
0.179 ×

(
5.30951 × 10−8e0.32045Cw3

)
+

6 ×
(
1.20184 + 0.01771Cw3 − 1.63203 × 10−4C2

w3
)(

2.71310 × 10−6e0.18868Cw3
)]

− 3234 × (0.41262 + 0.01997Cw3)

f (Cwh4) =
144l
25D2 · (D · τ4 + 6v4 · µ4)− ρm4gh = 1438157.361 ×

[
0.179 ×

(
1.71779 × 10−8e0.32872Cw4

)
+

6 ×
(
2.10758 − 0.0059Cw4 + 1.22141 × 10−6C2

w4
)(

2.41317 × 10−6e0.18288Cw4
)]

− 3234 × (0.08092 + 0.02420Cw4)

f (Cwh5) =
144l
25D2 · (D · τ5 + 6v5 · µ5)− ρm5gh = 1438157.361 ×

[
0.179 ×

(
5.01826 × 10−9e0.33886Cw5

)
+

6 ×
(
0.00913 + 0.05365Cw5 − 4.132 × 10−4C2

w5
)(

6.67855 × 10−7e0.19397Cw5
)]

− 3234 × (0.37771 + 0.02069Cw5)

(15)

3. Results and Discussion
3.1. Prediction Results and Analysis of Minimum Transportable Concentration

As can be seen from Figure 2, the static yield stress τs of the gangue slurry of different
grades and mass concentration Cwi data show an exponentially increasing trend. Under
the same mass concentration, the more coarse particles are mixed, the lower the static yield
stress is of the gangue slurry, thereby indicating that the more coarse particles are in gangue
slurry, the more prone it is to sedimentation and segregation. Therefore, different levels of
the gangue slurry ultra-long-distance transportable minimum concentration will increase
with the increase in the content of coarse particles in the slurry, that is, the transportable
minimum concentration should meet the Cwl0 < Cwl1 < Cwl2 < Cwl3 < Cwl4 < Cwl5.

As can be seen from Figure 3, the density ρmi of different gangue slurry and the mass
concentration Cwi data show a linear positive correlation. Through the linear function to fit
the above data, the compound correlation coefficient of the fitted curve is greater than 0.99,
which has a high fitting accuracy. Therefore, the density ρmi of the different gangue slurries
will increase linearly with the increase in their mass concentration Cwi.

By taking the Cwli calculated with the parameters determined above, the minimum
concentration of Cwl0, Cwl1, Cwl2, Cwl3, Cwl4, and Cwl5 can be obtained from the ultra-long-
distance transportable minimum concentration of the different graded gangue slurries in a
mine, which are 47.30%, 50.56%, 53.18%, 56.26%, 58.39%, and 59.94%, respectively.

3.2. Prediction Results and Analysis of Maximum Transportable Concentration

As can be seen from Figure 4, when the amount of coarse particles in the gangue slurry
is unchanged, the 1.2 times critical flow rate of the slurry will show a slightly decreasing
trend as the mass concentration increases; at the same time, the more coarse particles are
doped, the 1.2 times critical flow rate of the gangue slurry with different grades will show
a gradient increase; in addition, the theoretical flow rate of different grades of the gangue
slurry will be gradually reduced with the increase in the mass concentration. In the same
mass concentration (in addition to group 1 and group 2 gangue slurry 1.2 times the critical
flow rate of 1.2vc1, 1.2vc2, and the theoretical flow rate of vs1, vs2 data), there is a crossover
phenomenon; the rest of the group 1.2 times the critical flow rate of 1.2vci and the theoretical
flow rate of vsi appear to be the phenomenon.

As can be seen from Figure 5, the actual flow rate vi of gangue slurry with different
grades and mass concentration Cwi shows a quadratic polynomial function relationship,
and through the quadratic polynomial fitting of the data, it is found that except for the
gangue slurry of the 3rd group, when the amount of coarse particles doped is 30%, the
actual flow rate v3 of gangue slurry and the slurry mass concentration Cw3 fitted curve
of the compound correlation coefficient is less than 0.95, and the rest of the groups of the
compound correlation coefficient are more than 0.95.

As can be seen from Figure 6, the plastic viscosity µi of the gangue slurry of different
grades is all increasing with the increase in mass concentration Cwi. Under the same mass
concentration, the more coarse particles are doped, the smaller the plastic viscosity of
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gangue slurry is, which indicates that the increase in coarse particle content in gangue
slurry will reduce the viscosity of the slurry to a certain extent.

Through the parameters determined above, taking the Cwhi calculated then, it can be
concluded that the maximum concentrations of Cwh0, Cwh1, Cwh2, Cwh3, Cwh4, and Cwh5
of the different grades of gangue slurry ultra-long-distance transportable in a mine are
57.90%, 59.91%, 61.57%, 64.02%, 66.00%, and 67.90%, respectively.

3.3. Prediction Results and Analysis of Transportable Concentration Gradients

From Sections 3.1 and 3.2, it can be seen that when the dosage of coarse particles i is
0 ≤ i ≤ 5 (i.e., the dosage of roller-mill gangue powder is 0–50%), the ultra-long-distance
transportable minimum concentration Cwli and the transportable maximum concentration
Cwhi of different types of gangue slurry increase with the increase of the dosage of coarse
particles i. Therefore, a scatter plot of the ultra-long-distance transportable minimum con-
centration Cwli and the transportable maximum concentration Cwhi versus coarse particles
I is plotted, and the above data are linearly fitted with the help of color filling to label
the ultra-long-distance transportable concentration Cwli of the gangue slurry of different
grades of coal slurry. Therefore, the scatter plots of Cwhi and the dose of coarse particles i
were plotted, and the linear fitting of the above data was performed. The gradient range
of Cwli, the ultra-long-distance transportable concentration of different grades of gangue
slurry, was marked with the help of color filling, as shown in Figure 7.
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Figure 7. Relationship between the minimum transportable concentration Cwli, the maximum
transportable concentration Cwhi, and the coarse particle content i.

From Figure 7, it can be seen that when the coarse particle content i in the coal gangue
slurry gradually increases, the minimum concentration Cwli and the maximum concentra-
tion Cwhi of the ultra-long-distance transportable coal gangue slurry of different gradations
show a linear increasing trend; after linear fitting, the multiple correlation coefficients are
all greater than 0.98 and the slope of the fitting line of the minimum concentration Cwli is
2.56 greater than the slope of the fitting line of the maximum concentration Cwhi, which is
2.02; that is, the rising rate of the minimum concentration Cwli is greater than the rising rate
of the maximum concentration Cwhi. It can be seen that with the increase of coarse particle
content i, the Cwi gradient range of the ultra-long-distance transportable concentration of
coal gangue slurry with different gradations gradually shrinks.

The transportable minimum concentration (Cwli) and maximum concentration (Cwhi)
of the coal gangue slurry can be calculated by fitting a straight line with the following
values: when the coarse particle doping amount (i.e., the doping amount of the roller-
mill gangue powder is 0, 10%, 20%, 30%, 40%, and 50%, respectively), the ultra-long-
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distance transportable minimum concentration (Cwl0, Cwl1, Cwl2, Cwl3, Cwl4, and Cwl5) of
the coal gangue slurry is 47.86%, 50.42%, 52.99%, 55.55%, 58.12%, and 60.68%, respectively;
compared to the value of the minimum transportable concentration (Cwli) calculated in
Section 2.5, the difference is only 0.56%, −0.14%, −0.19%,−0.27% and −0.74%, respectively.
The ultra-long-distance transportable maximum concentration (Cwh0, Cwh1, Cwh2, Cwh3,
Cwh4, and Cwh5) of the coal gangue slurry is 57.83%, 59.85%, 61.87%, 63.89%, 65.91%, and
67.93%, respectively; compared to the value of the maximum transportable concentration
(Cwhi) calculated in Section 2.6, the difference is only −0.07%, −0.06%, 0.30%, −0.13%,
−0.09% and 0.03%, respectively.

It can be seen that the fitting accuracy in the above calculation model is good, which
can provide theoretical support for the selection of the slurry quality concentration of the
8 km long-distance filling pipeline transportation of coal gangue slurry in this mine, and
ensure that the slurry in the ultra-long-distance pipeline transportation does not occur
under the settlement of segregation, siltation, and clogging.

Further, we can obtain the Cwi gradient of the ultra-long-distance transportation
concentration of gangue slurry with different gradations in this mine as 47.86% ≤ Cw0 ≤
57.83%, 50.42% ≤ Cw1 ≤ 59.85%, 52.99% ≤ Cw2 ≤ 61.87%, 55.55% ≤ Cw3 ≤ 63.89%, 58.12%
≤ Cw4 ≤ 65.91%, and 60.68% ≤ Cw5 ≤ 67.93%.

4. Conclusions

(1) In order to investigate the range of transportable concentrations of different grades of
gangue slurry under ultra-long-distance transportation, based on the static anti-segregation
performance and the Bingham model, respectively, the gangue slurry ultra-long-distance
transportable minimum concentration of Cwl and the gangue slurry ultra-long-distance trans-
portable maximum concentration of Cwh were determined, and the ultra-long-distance trans-
portable concentration of different grades of gangue slurry was constructed as a model for
calculating the concentration of different grades of gangue slurry.

(2) With a mine as the engineering background, different water–cement ratios and
coarse particle content of the gangue slurry and rheological tests found that the yield stress
of different grades of gangue slurry, plastic viscosity, and mass concentration follows the
exponential function of the increasing law, and the density and slurry concentration of the
mass of the linear function of the increasing law.

(3) With the help of taking the large value function max, comparing the size of 1.2 times
the critical flow rate and the theoretical flow rate, taking the large value as the actual flow
rate, and correcting the actual flow rate of pipeline transport via curve fitting, it was
found that the actual flow rate of different grades of gangue slurry and the quality of the
concentration were in accordance with the quadratic polynomial law of increase.

(4) According to the established transportable concentration calculation model, the
minimum and maximum concentrations of gangue slurry with different coarse particle
contents can be transported over a long distance, and the range of concentration of gangue
slurry with different coarse particle contents can be transported over a long distance, which
provides a method and theoretical support for the selection of concentration of filling slurry
in long-distance pipeline transportation.
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Appendix A

In this article, we use various symbols and nomenclature to denote different concepts
and data. For the convenience and understanding of the readers, we have listed the
explanations of all symbols and nomenclature in detail in Table A1 in Appendix A at the
end of the paper. Readers can refer to this table for a clear understanding of the symbols
and nomenclature used in the text.

Table A1. Explanation of all symbols and nomenclature.

Symbols and Nomenclature Explanation

Cwl Ultra-long-distance transportable minimum concentration
Cwh Ultra-long-distance transportable maximum concentration
Cw Ultra-long-distance transportable concentration
G Gravity
F1 Buoyancy
F2 Slurry shear resistance
ρs Bulk density of the coarse particles
ρm Density of the gangue slurry
g Acceleration of gravity

τy Gangue slurry yield stress
τs Static yield stress of gangue slurry
C Shear resistance coefficient
d Diameter of coarse particles
i Amount of coarse particles in the gangue slurry

Ci Shear resistance coefficient of the i type gangue slurry
ρmi Density of the i type gangue slurry

dmaxi i type of gangue slurry in the largest coarse particles in diameter
Mmaxi i type of gangue slurry static segregation assessment value

Cwli
i type of gangue slurry static segregation assessment value Mmaxi

corresponding to the mass concentration
vc Critical flow rate
g Acceleration of gravity
D Inner diameter of the pipe
Cv Volume concentration of the gangue slurry
γm Density of the gangue mixture
γj Density of the gangue slurry
ω Average free settling velocity of the particles
es Suspension efficiency coefficients
f Darcy resistance coefficient
vs Theoretical flow rate
Qs Slurry flow rate
v Actual flow rate of gangue slurry
I Hydraulic gradient (resistance loss along the pipeline)
τ Yield stress of the gangue slurry
µ Plastic viscosity of the slurry
Ij Local resistance loss of the pipeline

Hz Total resistance of the transportation of gangue slurry
Hs Total resistance of the horizontal straight section
Hj Local resistance of the slurry
Hk Magnitude of resistance loss or drag reduction
Hzi i type of total resistance of the transportation of gangue slurry

Cwhi
i type of total resistance of the transportation of gangue slurry Hzi

corresponding to the mass concentration
Cwi i type of gangue slurry mass concentration
τi i type of gangue slurry yield stress
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