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Abstract: Non-negative integer-valued time series are usually encountered in practice, and a variety
of integer-valued autoregressive processes based on various thinning operators are commonly used
to model these count data with temporal dependence. In this paper, we consider a first-order
integer-valued autoregressive process constructed by the negative binomial thinning operator with
random coefficients, to address the problem of constant thinning parameters which might not always
accurately represent real-world settings because of numerous external and internal causes. We
estimate the model parameters of interest by the two-step conditional least squares method, obtain
the asymptotic behaviors of the estimators, and furthermore devise a technique to test the constancy
of the thinning parameters, which is essential for determining whether or not the proposed model
should consider the parameters’ randomness. The effectiveness and dependability of the suggested
approach are illustrated by a series of thorough simulation studies. Finally, two real-world data
analysis examples reveal that the suggested approach is very useful and flexible for applications.

Keywords: NBRCINAR(1) process; thinning parameters; randomness test; two-step conditional
least squares
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1. Introduction

Integer-valued time series are very widely present in various fields such as economics,
sociology, clinical medicine, genetics, finance and meteorology, among others, in both
production and practical aspects of life. These types of data often exhibit certain dependen-
cies and structural characteristics. When the values of integer-valued data are sufficiently
large, traditional continuous time series models can provide good approximations for them.
However, if the values of integer-valued data are small, it is necessary to develop more
effective integer-valued time series models for fitting and forecasting. Therefore, since the
1970s, an increasing number of scholars have started to focus on the statistical analysis and
application of integer-valued time series, resulting in a large body of research findings.

The Markov chain is one of the earliest methods used to model integer-valued time
series. Cox and Miller [1] provides a detailed introduction to this approach. However,
Markov chains often suffer from over-parameterization problems and have inherent limita-
tions in characterizing the dependency structures of data. Jacobs and Lewis [2] constructs
a class of discrete autoregressive moving average (ARMA) time series with dependency
structures similar to the continuous ARMA models. However, it is challenging to find real
data that conforms to the corresponding characteristics of the sample trajectory of such
models in practice. To overcome these challenges, Al-Osh and Alzaid [3] proposes the
first-order integer-valued autoregressive (INAR(1)) process that is expressed as

Xt = ϕ ◦ Xt−1 + ϵt, t = 1, 2, · · · , (1)
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in which the so-called binomial thinning operator “◦” is put forward by Steutel and van
Harn [4] and represent

ϕ ◦ X =
X

∑
i=1

Bi, (2)

where the thinning parameter ϕ ∈ [0, 1), X is a non-negative integer-valued random
variable (count random variable), and {Bi, i = 1, 2, · · · }, independent of X, is a sequence
consisting of independent and identically distributed (i.i.d.) Bernoulli random variables
with mean ϕ.

As one of the primary methods for analyzing integer-valued time series, the INAR(1)
process based on the binomial thinning operator has been widely investigated because
of its favorable statistical properties and extensive applications. People can refer to [5–8]
and the references therein for detailed and exhaustive surveys about these models. Based
on the definition (2), it is known that ϕ ◦ X will not exceed X, such that it is appropriate
for modelling the number of random events, which may only survive or vanish during
an observation period, i.e., the observed units can contribute to the overall sum with 0 or
1. However, the observed units could also be more correlated and dependent, and some
of them can generate new units. For example, one criminal act in a certain district of a
town may provoke one or more other crimes; one COVID-19 patient could infect other
people (it was reported that one COVID-19 patient infected 44 people, and there was even
a “super spreader” who caused 141 confirmed cases). To address this issue, Ristić et al. [9]
introduces the negative binomial thinning operator which is defined from a counting series
of i.i.d. Geometric distributed random variable. Furthermore, the INAR(1) processes
with the negative binomial thinning operator are also proposed. See also [10–14] for the
relevant study.

On the other hand, due to the influences of various external and internal causes, the
thinning parameter ϕ is often not a constant but varies over time. For example, the number
of patients after a while may be affected by the environmental conditions, the medical sup-
ply, the policies and the past observations. With this concern in mind, Zheng et al. [15,16]
propose the first-order and pth-order random coefficient integer-valued autoregressive (RCI-
NAR) process by means of binomial thinning operator, respectively, in which a sequences
of i.i.d. random variables takes the place of the fixed thinning parameter. Zhang et al. [17]
considers the empirical likelihood method for the estimation of such a model. Recently,
Ref. [18–21] generalize the threshold autoregressive process, the process with dependent
counting series and the binomial autoregressive process to the cases with random coef-
ficients correspondingly. Yu and Tao [22] gives a effectively consistent model selection
procedure for the RCINAR process, by using the estimation equation for conditional least
squares method.

However, to our knowledge, there are few papers concerning RCINAR process based
on the negative binomial thinning operator, among which, Yu et al. [23] introduces the
observation-driven RCINAR process based on negative binomial thinning operator, where
the thinning parameters depend on the previous observations, and conditional least squares
method and empirical likelihood method are used to estimate the unknown parameters.
As a continuation of the related investigation, when analyzing real data in practice, a very
crucial question is to test whether the thinning parameters are random variables, so that we
can choose appropriate models. For this important topic, Zhao and Hu [24] discusses the
problem for testing the randomness of the thinning parameters in the INAR(1) process built
through a binomial thinning operator by the two-step conditional least squares method
and [25] improves their results by developing a so-called locally most powerful-type test
method based on the likelihood function of samples. In addition, Lu and Wang [26]
proposes a new test approach based on the empirical likelihood method, noting that the
methods suggested by Ref. [25,26] heavily rely on the distribution of the innovation term
ϵt, which is usually difficult to determine in practical application. The goal of this paper is
to examine the randomness test of thinning parameters in the RCINAR(1) process based on
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negative binomial thinning operator, using the two-step conditional least squares method
similar with that in [24].

The rest of this paper is organized as follows. In Section 2, we introduce the considered
model, as well as some basic probabilistic and statistical properties. In Section 3, we
estimate the parameters of interest by the two-step conditional least squares method
proposed by Nicholls and Quinn [27] and obtain the asymptotic results of the estimators.
In Section 4, we test the constancy of the thinning parameters of the concerned model.
In Section 5, a series of numerical simulations are conducted to assess the performance
of the suggested method. In Section 6, our suggested method is applied to two sets of
real-world data. In Section 7, we discuss some possibility for expansions of this paper,
mainly including the limitations of the suggested method and several potential future
research. Section 8 summarizes this paper.

2. The Model and Some Properties

In this paper, we consider the first-order random coefficient integer-valued autoregres-
sive process constructed through a negative binomial thinning operator, which is called
NBRCINAR(1) for short. This process is defined by the recursive equation as follows:

Xt = ϕt ∗ Xt−1 + ϵt, t = 1, 2, · · · , (3)

in which the negative binomial thinning operator ∗ represents

ϕt ∗ Xt−1 =
Xt−1

∑
i=1

W(t)
i , (4)

where {W(t)
i , i = 1, 2, . . .} is a sequence of i.i.d. Geometric random variables conditional on

ϕt with the common probability mass function

P(W(t)
i = k|ϕt) =

ϕk
t

(1 + ϕt)k+1 , k = 0, 1, · · · .

In addition, it is also assumed that

• (A1) {ϕt, t = 1, 2, · · · } is an i.i.d. non-negative sequence with finite mean denoted by
ϕ = E(ϕt) and finite variance deneoted by σ2

1 = Var(ϕt), respectively.
• (A2) {ϵt, t = 1, 2, · · · } is an i.i.d. non-negative integer-valued sequence, and denote

the common mean and variance by λ = E(ϵt) and σ2
2 = Var(ϵt), respectively.

• (A3) X0, {ϕt, t = 1, 2, · · · } and {ϵt, t = 1, 2, · · · } are independent.

• (A4) for any fixed t and s (t ̸= s), the innovation ϵt and the counting series {W(t−l)
i ,

i = 1, 2, · · · } (l ≥ 0) are independent. Moreover, {W(t)
i , i = 1, 2, · · · } and {W(s)

j ,
j = 1, 2, · · · } are independent.

Remark 1. When ϕt = ϕ, t = 1, 2, · · · , model (3) will reduce to the first-order integer-valued au-
toregressive process built by negative binomial thinning operator with constant thinning parameter,
which is firstly proposed by Ristić et al. [9]. The authors abbreviate their model as NGINAR process.
However, it should be noted that the innovation ϵt in their model is supposed to follow a mixed
geometric distribution, so that the process {Xt, t = 0, 1, · · · } itself is stationary and has geometric
marginals. Afterward this restriction has been relaxed, and the model has been extended to more
general cases. We refer to Gomes and Canto [28] for a first-order generalized random coefficient
integer-valued autoregressive (GRCINAR(1)) process, which is constructed using a generalized
thinning operator that includes the binomial thinning operator and the negative binomial thinning
operator, as well as some other thinning operators. Actually, our model can be taken as a special case
of GRCINAR(1) process. However, Gomes and Canto [28] mainly considers the estimation of the
model parameters, while we further focus on the randomness test of the thinning parameter and also
discuss the forecasting problem for model (3) in this paper.
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According to Gomes and Canto [28], it is easy to know the following important
distributional properties of the NBRCINAR(1) process.

Proposition 1. The NBRCINAR(1) process {Xt, t = 0, 1, · · · } defined by (3) is a Markov chain
with state space {0, 1, 2, . . .} and the transition probabilities are given by

Pij = P(Xt = j|Xt−1 = i)

= I(i = 0) fϵ(j) + (1 − p)I(i ̸= 0)
j

∑
k=0

fϵ(j − k)
(

i + k − 1
k

)
E[ϕk

1/(1 + ϕ1)
k+i], (5)

where fϵ denotes the probability mass function of ϵt.

Proposition 2. For any t = 1, 2, · · · , it holds that
(1) E(Xt|Xt−1) = ϕXt−1 + λ.
(2) Var(Xt|Xt−1) = σ2

1 X2
t−1 +

[
ϕ(1 + ϕ) + σ2

1
]
Xt−1 + σ2

2 .

Proposition 3. If we have 0 < E(ϕt)2 = ϕ2 + σ2
1 < 1, then there exists a unique weakly

stationary non-negative integer-valued process {Xt, t = 0, 1, · · · } satisfying (3).

Remark 2. At the end of this section, it is worth noting that the process stated in Proposition 3 can
also be proved to be strict stationary and ergodic, by the same methods used in [29,30]. The details
are omitted here for brevity.

3. Parameter Estimation and Asymptotic Properties of the Estimators

In this section, we discuss the estimation of parameters in the NBRCINAR(1) pro-
cess by the two-step conditional least squares method. For convenience, suppose that
(X0, X1, · · · , Xn) is a series of observations satisfying (3). The unknown parameters we
are interested in include η = (ϕ, λ)T and θ = (σ2

1 , σ2
2 )

T and denote their true values by
η0 = (ϕ0, λ0)

T and θ0 = (σ2
1,0, σ2

2,0)
T, respectively.

Throughout the rest of the paper, we assume that the following two conditions holds
(C1) {Xt, t = 0, 1, · · · } is a strictly stationary and ergodic process.
(C2) E(Xt)8 < +∞, t = 0, 1, · · · .
In the first step, we focus on η = (ϕ, λ)T. Let

S(η) =
n

∑
t=1

[Xt − E(Xt|Xt−1)]
2 =

n

∑
t=1

(Xt − ϕXt−1 − λ)2 (6)

be the conditional least squares (CLS) criterion function. Then, the CLS estimator of the
parameter η is given by

η̂ = arg min
η

S(η).

Setting
∂S(η)

∂η
= 0, we obtain

η̂ =

(
1
n

n

∑
t=1

YtYT
t

)−1(
1
n

n

∑
t=1

XtYt

)
. (7)

Noting that Yt = (Xt−1, 1)T, the above equation can be simplified to

ϕ̂ =

n
n
∑

t=1
XtXt−1 −

n
∑

t=1
Xt

n
∑

t=1
Xt−1

n
n
∑

t=1
X2

t−1 −
(

n
∑

t=1
Xt−1

)2 , λ̂ =
1
n

(
n

∑
t=1

Xt − ϕ̂
n

∑
t=1

Xt−1

)
. (8)
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To conduct the randomness test for the thinning parameter ϕt, we also need to estimate
the parameter θ = (σ2

1 , σ2
2 )

T and establish the asymptotic behaviors of the estimators in
the second step. For this purpose, we refer to Nicholls and Quinn [27] and Hwang and
Basaea [31], as well as Zhu and Wang [32], and adopt the two-step least squares method
that has been widely used for time series models with random coefficients. Denote

Vt = [Xt − E(Xt|Xt−1)]
2 = [Xt − ϕXt−1 − λ]2,

then it is easy to verify from Proposition 2 that

E(Vt|Xt−1) = Var(Xt|Xt−1) = σ2
1 X2

t−1 + [ϕ(1 + ϕ) + σ2
1 ]Xt−1 + σ2

2 .

Define δ = (σ2
1 , ϕ(1 + ϕ) + σ2

1 , σ2
2 )

T, then the CLS estimator of the parameter δ can be
realized through minimizing the sum

Q(δ) =
n

∑
t=1

[Vt − E(Vt|Xt−1)]
2

=
n

∑
t=1

{Vt − σ2
1 X2

t−1 + [ϕ(1 + ϕ) + σ2
1 ]Xt−1 + σ2

2}2

=
n

∑
t=1

{Vt − ZT
t δ}2, (9)

in which Zt = (X2
t−1, Xt−1, 1)T. Thus, we obtain

δ̂ =

(
1
n

n

∑
t=1

ZtZT
t

)−1(
1
n

n

∑
t=1

VtZt

)
. (10)

Noting that δ̂ is a function of η, we rewrite it as δ̂(η). Substituting δ̂ into the expression
yields δ̂(η̂), then we can obtain the estimator of the parameter θ as follows:

θ̂1 = σ̂2
1 = δ̂1(η̂), θ̂2 = σ̂2

2 = δ̂3(η̂),

in which θ̂1 and θ̂2 composes θ̂, while δ̂1(η̂) and δ̂3(η̂) are the first element and third element
of δ̂(η̂), respectively.

The following theorem establishes the limit asymptotic normality of the estimators.

Theorem 1. If the assumptions (C1) and (C2) hold, then we have

(
√

n(η̂− η0)
T,
√

n(δ̂(η̂)− δ0)
T)T L−→ N(0, Ω), n → +∞, (11)

in which the covariance matrix is

Ω = (ωij)5×5 =

(
V−1ΦV−1 V−1ΠU−1

U−1ΠTV−1 U−1∆U−1

)
,

η0 = (ϕ0, λ0)
T and δ0 = (σ2

1,0, ϕ0(1+ϕ0)+ σ2
1,0, σ2

2,0)
T represent the true values of the parameters

η and δ, respectively, and

V = E(YtYT
t ), Φ = E[(Xt − YT

t η0)
2YtYT

t ], U = E(ZtZT
t ),

∆ = E[(Vt − ZT
t δ0)

2ZtZT
t ], Π = E[(Vt − ZT

t δ0)(Xt − YT
t η0)ZtYT

t ].
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Proof. Noting that

η̂ =

(
1
n

n

∑
t=1

YtYT
t

)−1(
1
n

n

∑
t=1

XtYt

)
,

we can obtain

√
n(η̂− η0) =

(
1
n

n

∑
t=1

YtYT
t

)−1(
1√
n

n

∑
t=1

Yt(Xt − YT
t η0)

)
.

Denote Ft = σ(Xt, Xt−1, · · · , X0), then it is easy to check that

E[Yt(Xt − YT
t η0)|Ft−1] = 0,

hence, for any c = (c1, c2)
T ̸= (0, 0)T, it follows that

E[cTYt(Xt − YT
t η0)|Ft−1] = 0.

Meanwhile, by the assumptions (C1) and (C2), we have

E[cTYt(Xt − YT
t η0)]

2 = cTΦc = E[(c1Xt−1 + c2)
2(Xt − ϕ0Xt−1 + λ0)

2] < +∞,

in which
Φ = E[(Xt − YT

t η0)
2YtYT

t ].

Therefore, applying the central limit theorem for martingales (see Billingsley [33] for
example) leads to

1√
n

n

∑
t=1

cTYt(Xt − YT
t η0)

L−→ N(0, cTΦc), n → +∞.

Thus, according to the Cramér–Wold device, it holds that

1√
n

n

∑
t=1

Yt(Xt − YT
t η0)

L−→ N(0, Φ), n → +∞.

Moreover, from the strict stationarity and ergodicity of the {Xt, t = 0, 1, . . .}, we have

1
n

n

∑
t=1

YtYT
t

a.s.−→ E(YtYT
t ) = V , n → +∞.

Hence, it follows that √
n(η̂− η0)

L−→ N(0, V−1ΦV−1). (12)

Similarly, we can prove

(
√

n(η̂− η0)
T,
√

n(δ̂(η0)− δ0)
T)T L−→ N(0, Ω), n → +∞. (13)

On the other hand, because

E[ZtXt−1(Xt − ϕ0Xt−1 − λ0)] = 0,

then we have
1
n

n

∑
t=1

ZtXt−1(Xt − ϕ0Xt−1 − λ0)
a.s.−→ 0, n → +∞,
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which together with (12) lead to

1√
n

n

∑
t=1

ZtXt−1(Xt − ϕ0Xt−1 − λ0)(ϕ0 − ϕ̂) =
√

n(ϕ0 − ϕ̂)
1
n

n

∑
t=1

ZtXt−1(Xt − ϕ0Xt−1 − λ0)

= op(1), n → +∞. (14)

Similarly, it can be proven that

1√
n

n

∑
t=1

ZtXt−1(Xt − ϕ0Xt−1 − λ0)(λ0 − λ̂) = op(1), n → +∞. (15)

Meanwhile, it is easy to know from (12) that

√
n(ϕ0 − ϕ̂)2 =

√
n(ϕ0 − ϕ̂)

√
n(ϕ0 − ϕ̂)√

n
= op(1), n → +∞,

which together with
1
n

n

∑
t=1

ZtX2
t−1

a.s.−→ E(ZtX2
t−1), n → +∞,

yield

1√
n

n

∑
t=1

ZtX2
t−1(ϕ0 − ϕ̂)2 =

√
n(ϕ0 − ϕ̂)2 1

n

n

∑
t=1

ZtX2
t−1 = op(1), n → +∞. (16)

By the same method, we have

1√
n

n

∑
t=1

ZtX2
t−1(ϕ0 − ϕ̂)(λ0 − λ̂) = op(1), n → +∞ (17)

and
1√
n

n

∑
t=1

ZtX2
t−1(λ0 − λ̂)2 = op(1), n → +∞. (18)

Noting
1
n

n

∑
t=1

ZtZT
t

a.s.−→ E(ZtZT
t ), n → +∞,

and combining (14)–(18), it follows that

√
n(δ̂(η̂)− δ̂(η0)) =

(
1
n

n

∑
t=1

ZtZT
t

)−1(
1√
n

n

∑
t=1

Zt(Vt(η̂)− Vt(η0))

)

=

(
1
n

n

∑
t=1

ZtZT
t

)−1(
1√
n

n

∑
t=1

Zt[(Xt − ϕ̂Xt−1 − λ̂)2 − (Xt − ϕ0Xt−1 − λ0)
2]

)

=

(
1
n

n

∑
t=1

ZtZT
t

)−1(
2√
n

n

∑
t=1

ZtXt−1(Xt − ϕ0Xt−1 − λ0)(ϕ0 − ϕ̂)

+
2√
n

n

∑
t=1

ZtXt−1(Xt − ϕ0Xt−1 − λ0)(λ0 − λ̂) +
1√
n

n

∑
t=1

ZtX2
t−1(ϕ0 − ϕ̂)2

+
2√
n

n

∑
t=1

ZtX2
t−1(ϕ0 − ϕ̂)(λ0 − λ̂)+

1√
n

n

∑
t=1

ZtX2
t−1(λ0 − λ̂)2

)
= op(1), n → +∞.
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Finally, we conclude that (11) holds and consequently the theorem follows from
√

n(δ̂(η̂)− δ0) =
√

n(δ̂(η̂)− δ̂(η0)) +
√

n(δ̂(η0)− δ0),

Equation (13) and the Slutsky theorem.

Furthermore, by Proposition 6.4.3 in Brockwell and Davis [34], we can derive the
following result smoothly.

Theorem 2. If the assumptions (C1) and (C2) hold, then we have

(
√

n(η̂− η0)
T,
√

n(θ̂− θ0)
T)T L−→ N(0, ΓΩΓT), n → +∞, (19)

in which θ0 = (σ2
1,0, σ2

2,0)
T is the true value of θ = (σ2

1 , σ2
2 )

T, and

Γ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

.

4. Testing Problem

For the NBRCINAR(1) process, it is of great importance to test the hypothesis that
the thinning parameter is constant across the time, because no stochastic time variation
for the thinning parameter will make (3) become the INAR(1) process that is discussed in
Ristić et al. [9]. With this end in view, we need to consider the following testing problem:

H0 : σ2
1 = 0 vs. H1 : σ2

1 > 0. (20)

Let e = (0, 0, 1, 0, 0)T, based on Theorem 1 or Theorem 2, we have

√
n(σ̂2

1 − σ2
1,0)

L−→ N(0, eTΩe), n → +∞. (21)

So, we need estimate Ω consistently to obtain the test statistic. In what follows, we consider

V̂ =
1
n

n

∑
t=1

YtYT
t , Û =

1
n

n

∑
t=1

ZtZT
t ,

Φ̂ =
1
n

n

∑
t=1

(Xt − YT
t η̂)2YtYT

t ,

∆̂ =
1
n

n

∑
t=1

(Vt(η̂)− ZT
t δ̂(η̂))2ZtZT

t ,

Π̂ =
1
n

n

∑
t=1

(Vt(η̂)− ZT
t δ̂(η̂))(Xt − YT

t η̂)ZtYT
t .

By the strict stationarity and ergodicity of {Xt, t = 0, 1, · · · }, it is easy to verify that

V̂ a.s.−→ V , Û a.s.−→ U, n → +∞. (22)

As for Φ̂, ∆̂ and Π̂, the asymptotic properties are given by the following theorem.

Theorem 3. If the assumptions (C1) and (C2), then we have

Φ̂
P−→ Φ, ∆̂

P−→ ∆, Π̂
P−→ Π, n → +∞. (23)
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Proof. First, it is easy to calculate that

Φ̂ − Φ =
1
n

n

∑
t=1

[(Xt − YT
t η̂)2 − (Xt − YT

t η0)
2]YtYT

t

=
1
n

n

∑
t=1

[(YT
t η̂)2 − (YT

t η0)
2]YtYT

t +
1
n

n

∑
t=1

2(XtYT
t η0 − XtYT

t η̂)YtYT
t .

Because √
n(η̂− η0)

T L−→ N(0, V−1ΦV−1), n → +∞,

we have
η̂− η0 = op(1), η̂+ η0 = Op(1), n → +∞.

Furthermore, E(X8
t ) < +∞ and ergodic theorem imply that

1
n

n

∑
t=1

||Zt||4F = Op(1), n → +∞,

in which || · ||F stands for the Frobenius norm. Then, it can be concluded that∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

[(YT
t η̂)2 − (YT

t η0)
2]YtYT

t

∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

(η̂− η0)YtYtYT
t YT

t (η̂+ η0)

∣∣∣∣∣
∣∣∣∣∣
F

≤ ||η̂− η0||
1
n

n

∑
t=1

||Yt||4F||η̂+ η0||

P−→ 0, n → +∞.

Similarly, we can obtain∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

2(XtYT
t η0 − XtYT

t η̂)YtYT
t

∣∣∣∣∣
∣∣∣∣∣
F

P−→ 0, n → +∞.

Therefore, we obtain
Φ̂

P−→ Φ, n → +∞.

By the same arguments, we have

∆̂
P−→ ∆, Π̂

P−→ Π, n → +∞.

The proof is thus completed.

Finally, according to (21) and Theorem 3, it holds that

√
n(σ̂2

1 − σ2
1,0)√

eTΩ̂e
L−→ N(0, 1), n → +∞.

Based on this result, we construct the rejection region for significance level α of testing
problem (20) as

Wn,α =

{∣∣∣∣∣
√

nσ̂2
1√

eTΩ̂e

∣∣∣∣∣ ≥ uτ

}
,

where uα is the upper τ quantile of N(0, 1).
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5. Simulation Studies

In this section, we present some extensive simulation studies to demonstrate the
performances of the estimates and the test discussed in Sections 3 and 4. To achieve this
goal, we consider the following NBRCINAR(1) process:

Xt = ϕt ∗ Xt−1 + ϵt, t = 1, 2, · · · , (24)

in which {ϵt, t = 1, 2, · · · } is supposed to be an i.i.d. Poisson sequence with mean λ,
and {ϕt, t = 1, 2, · · · } is assumed to be an i.i.d. sequence of Beta random variables with
probability density function

f (x) =


Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, 0 < x < 1,

0, otherwise.

It is easy to calculate that

ϕ = E(ϕt) =
α

α + β
, σ2

1 = Var(ϕt) =
αβ

(α + β)2(α + β + 1)
,

then for any α > 0 and β > 0, it obviously holds that

0 < E(ϕt)
2 = ϕ2 + σ2

1 =
α(α + 1)

(α + β)(α + β + 1)
< 1,

which implies that the condition (C1) can be satisfied. On the other hand, define

X(n)
t =


0, n < 0,
ϵt, n = 0,

ϕt ∗ X(n−1)
t−1 + ϵt, n > 0,

where t ∈ Z = {0,±1,±2, . . . , }, and

ϕt ∗ X(n−1)
t−1 =

X(n−1)
t−1

∑
i=1

W(t)
i ,

then from the proof of Theorem 2.1 in Gomes and Canto [28], the unique strict stationary
and ergodic process {Xt, t = 0, 1, · · · } that satisfies (3) can be obtained as

X(n)
t

L2
−→ Xt, t = 0, 1, · · · ,

where L2
−→ represents convergence in the mean square. Because

E(X(n)
t ) = E(ϕt ∗ X(n−1)

t−1 ) + E(ϵt) = ϕE(X(n−1)
t−1 ) + λ

= · · ·

= ϕnE(X(0)
t−n) + ϕn−1λ + · · ·+ ϕλ + λ

= λ
1 − ϕn+1

1 − ϕ
→ λ

1 − ϕ
, n → +∞,

it follows that
E(Xt) =

λ

1 − ϕ
< +∞.
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Similarly, we can obtain

E(X(n)
t )2 = E[(ϕt ∗ X(n−1)

t−1 )2] + E(ϵ2
t ) + 2E[ϵt(ϕt ∗ X(n−1)

t−1 )]

= (ϕ2 + σ2
1 )E(X(n−1)

t−1 )2 + (σ2
1 + ϕ2 + ϕ + 2λϕ)E(X(n−1)

t−1 ) + λ2 + λ,

repeating this procedure n times, and noting the facts

E(X(0)
t−n)

2 = E(ϵt)
2 < +∞, E(X(0)

t−n) = E(ϵt) < +∞, 0 < ϕ2 + σ2
1 < 1,

it holds that
E(X(n)

t )2 < +∞,

which leads to
E(Xt)

2 < +∞.

By the same method with some tedious calculations, we can verify that the condition (C2)
is also satisfied, i.e.,

E(Xt)
8 < +∞, t = 0, 1, · · · .

For the simulations, we carry out all the calculations under the following 6 scenarios
with X0 = 1:

(1) α = 0.1, β = 0.1, λ = 1; (2) α = 0.1, β = 0.1, λ = 2;
(3) α = 0.1, β = 0.15, λ = 1; (4) α = 0.15, β = 0.1, λ = 2;
(5) α = 0.15, β = 0.1, λ = 1; (6) α = 0.1, β = 0.15, λ = 2.

5.1. Estimate

For the generated samples with n = 100, 300, 500, 1000, 2000 and 5000, the effectiveness
of two-step CLS estimators is evaluated by adopting the empirical bias (BIAS) and the
mean squared errors (MSE), which are defined for parameter ϑ by

BIAS =
1
m

m

∑
k=1

ϑ̂k − ϑ0, MSE =
1
m

m

∑
k=1

(ϑ̂k − ϑ0)
2,

respectively, where m is the replication times (m = 1000 in this paper), ϑ̂k represents the
estimator of the parameter ϑ at the kth replication, and ϑ0 denotes the true value of ϑ.

A summary of the simulation results is given in Tables 1–3. We can see that as the
sample size increases, the values of BIAS and MSE gradually decrease, implying that the
estimates are consistent for all the parameters. However, the estimates of ϕ and λ converge
to their true values vary fast, while for σ2

1 , considered in the second step of CLS method,
the convergence seems to be a little slow, and a large sample size is necessary to achieve
good estimation results. One of the main reasons for this problem is that values outside
the allowed range for σ2

1 might easily be obtained for small sample sizes, i.e., there could
emerge the cases that σ̂2

1 < 0. Therefore, following Karlsen and Tjøstheim [35], we adjust
the estimates in a somewhat ad hoc manner by taking into account the restrictions on σ2

1
as follows: if σ̂2

1 < 0, replace σ̂2
1 by 0. Moreover, it shall be noted that if more appropriate

adjustment methods are adopted, we may have better results.

5.2. Hypothesis Test

Now, we turn to the issue on testing the randomness of the thinning parameter in the
NBRCINAR(1) process. For the empirical sizes, we consider the following model

Xt = ϕ ∗ Xt−1 + ϵt, t = 1, 2, · · · . (25)

We assume ϵt ∼ P(λ), take ϕ = 0.5, 0.4, 0.6, λ = 1, 2 and generate samples from
the Poisson NBINAR(1) process (25) with various combinations of the parameters, then
compute the test statistic for n = 100, 500, 1000, 2000, 5000 and 10,000, and carry out
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1000 replications in each case to calculate the observed percentage of rejecting the null
hypothesis, at significance level τ = 0.10 and 0.05, respectively. Regarding the empirical
power, the process is assumed to be (24) with parameters in scenarios 1-6 under the
alternative hypothesis, and the rejection region is conducted based on the discussion in
Section 4.

Table 1. Simulation results for α = 0.1, β = 0.1, λ = 1 and α = 0.1, β = 0.1, λ = 2.

n Parameter
α = 0.1, β = 0.1, λ = 1

Parameter
α = 0.1, β = 0.1, λ = 2

Estimate BIAS MES Estimate BIAS MSE

ϕ = 0.5 0.4030 −0.0970 0.0324 ϕ = 0.5 0.4096 −0.0904 0.0286
100 σ2

1 = 0.2083 0.0380 −0.1703 0.0350 σ2
1 = 0.2083 0.0529 −0.1554 0.0338

λ = 1 1.1550 0.1550 0.0893 λ = 2 2.2974 0.2974 0.3045

ϕ = 0.5 0.4527 −0.0473 0.0139 ϕ = 0.5 0.4550 −0.0450 0.0127
300 σ2

1 = 0.2083 0.0680 −0.1403 0.0279 σ2
1 = 0.2083 0.0875 −0.1208 0.0235

λ = 1 1.0761 0.0761 0.0347 λ = 2 2.1435 0.1435 0.1260

ϕ = 0.5 0.4689 −0.0311 0.0102 ϕ = 0.5 0.4749 −0.0251 0.0086
500 σ2

1 = 0.2083 0.0864 −0.1219 0.0228 σ2
1 = 0.2083 0.1085 −0.0998 0.0179

λ = 1 1.0478 0.0478 0.0254 λ = 2 2.0895 0.0895 0.0942

ϕ = 0.5 0.4789 −0.0211 0.0059 ϕ = 0.5 0.4850 −0.0150 0.0047
1000 σ2

1 = 0.2083 0.1149 −0.0934 0.0157 σ2
1 = 0.2083 0.1401 −0.0682 0.0112

λ = 1 1.0387 0.0387 0.0159 λ = 2 2.0489 0.0489 0.0501

ϕ = 0.5 0.4861 −0.0139 0.0033 ϕ = 0.5 0.4928 −0.0072 0.0028
2000 σ2

1 = 0.2083 0.1332 −0.0751 0.0111 σ2
1 = 0.2083 0.1597 −0.0486 0.0068

λ = 1 1.0228 0.0228 0.0086 λ = 2 2.0265 0.0265 0.0308

ϕ = 0.5 0.4965 −0.0035 0.0015 ϕ = 0.5 0.4970 −0.0030 0.0012
5000 σ2

1 = 0.2083 0.1649 −0.0434 0.0054 σ2
1 = 0.2083 0.1800 −0.0283 0.0034

λ = 1 1.0044 0.0044 0.0044 λ = 2 2.0118 0.0118 0.0140

Table 2. Simulation results for α = 0.1, β = 0.15, λ = 1 and α = 0.1, β = 0.15, λ = 2.

n Parameter
α = 0.1, β = 0.15, λ = 1

Parameter
α = 0.1, β = 0.15, λ = 2

Estimate BIAS MES Estimate BIAS MSE

ϕ = 0.4 0.3179 −0.0821 0.0290 ϕ = 0.4 0.3238 −0.0762 0.0278
100 σ2

1 = 0.1920 0.0258 −0.1662 0.0314 σ2
1 = 0.1920 0.0318 −0.1602 0.0300

λ = 1 1.1072 0.1072 0.0566 λ = 2 2.2093 0.2093 0.2294

ϕ = 0.4 0.3622 −0.0378 0.0120 ϕ = 0.4 0.3694 −0.0306 0.0119
300 σ2

1 = 0.1920 0.0531 −0.1380 0.0249 σ2
1 = 0.1920 0.0629 −0.1291 0.0230

λ = 1 1.0480 0.0480 0.0219 λ = 2 2.0892 0.0892 0.0905

ϕ = 0.4 0.3712 −0.0288 0.0087 ϕ = 0.4 0.3778 −0.0222 0.0080
500 σ2

1 = 0.1920 0.0597 −0.1323 0.0227 σ2
1 = 0.1920 0.0760 −0.1160 0.0192

λ = 1 1.0421 0.0421 0.0174 λ = 2 2.0573 0.0573 0.0604

ϕ = 0.4 0.3830 −0.0170 0.0055 ϕ = 0.4 0.3859 −0.0141 0.0043
1000 σ2

1 = 0.1920 0.0836 −0.1084 0.0176 σ2
1 = 0.1920 0.1045 −0.0875 0.0129

λ = 1 1.0227 0.0227 0.0108 λ = 2 2.0386 0.0386 0.0353

ϕ = 0.4 0.3925 −0.0075 0.0029 ϕ = 0.4 0.3954 −0.0046 0.0025
2000 σ2

1 = 0.1920 0.1056 −0.0864 0.0121 σ2
1 = 0.1920 0.1271 −0.0649 0.0082

λ = 1 1.0105 0.0105 0.0061 λ = 2 2.0122 0.0122 0.0201

ϕ = 0.4 0.3970 −0.0030 0.0013 ϕ = 0.4 0.3978 −0.0022 0.0011
5000 σ2

1 = 0.1920 0.1387 −0.0533 0.0063 σ2
1 = 0.1920 0.1492 −0.0428 0.0044

λ = 1 1.0037 0.0037 0.0027 λ = 2 2.0059 0.0059 0.0091
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Tables 4 and 5 present the empirical power and size of the tests under different
parameter scenarios. It can be observed that as the sample size increases, the empirical
power gradually tends towards 1, which indicates that when the thinning parameters of
the true model are random variables, they can be effectively identified. On the other hand,
although the empirical size of the tests remains small, there is still some gap from the
desired significance level. One important reason for this phenomenon is that when the

thinning parameters are constant (i.e., σ2
1 = 0), the estimator σ̂2

1 and the test statistic
√

nσ̂2
1√

eTΩ̂e
may be a lit far from the property of asymptotic normality sometimes, since the true value
of σ2

1 falls on the boundary of the parameter space at this moment. In Figure 1, we provide
the QQ plot of the estimator σ̂2

1 under different parameter scenarios for n = 1000, which
also confirms this conclusion, indicating that it is very necessary to conduct further research
to address this issue and improve our method. Meanwhile, it should be noted that the
larger sample size can result in better performance.

Table 3. Simulation results for α = 0.15, β = 0.1, λ = 1 and α = 0.15, β = 0.1, λ = 2.

n Parameter
α = 0.15, β = 0.1, λ = 1

Parameter
α = 0.15, β = 0.1, λ = 2

Estimate BIAS MES Estimate BIAS MSE

ϕ = 0.6 0.4920 −0.1080 0.0343 ϕ = 0.6 0.5084 −0.0916 0.0291
100 σ2

1 = 0.1920 0.0532 −0.1388 0.0292 σ2
1 = 0.1920 0.0822 −0.1098 0.0275

λ = 1 1.2004 0.2004 0.1267 λ = 2 2.3671 0.3671 0.4273

ϕ = 0.6 0.5428 −0.0572 0.0140 ϕ = 0.6 0.5542 −0.0458 0.0108
300 σ2

1 = 0.1920 0.0921 −0.0999 0.0215 σ2
1 = 0.1920 0.1186 −0.0734 0.0184

λ = 1 1.1124 0.1124 0.0538 λ = 2 2.1917 0.1917 0.1665

ϕ = 0.6 0.5615 −0.0385 0.0096 ϕ = 0.6 0.5714 −0.0286 0.0075
500 σ2

1 = 0.1920 0.1046 −0.0874 0.0183 σ2
1 = 0.1920 0.1356 −0.0564 0.0146

λ = 1 1.0732 0.0732 0.0358 λ = 2 2.1285 0.1285 0.1184

ϕ = 0.6 0.5615 −0.0385 0.0096 ϕ = 0.6 0.5793 −0.0207 0.0044
1000 σ2

1 = 0.1920 0.1338 −0.0582 0.0136 σ2
1 = 0.1920 0.1532 −0.0388 0.0101

λ = 1 1.0446 0.0446 0.0222 λ = 2 2.0824 0.0824 0.0693

ϕ = 0.6 0.5851 −0.0149 0.0030 ϕ = 0.6 0.5924 −0.0076 0.0022
2000 σ2

1 = 0.1920 0.1496 −0.0424 0.0093 σ2
1 = 0.1920 0.1623 −0.0297 0.0073

λ = 1 1.0276 0.0276 0.0117 λ = 2 2.0362 0.0362 0.0390

ϕ = 0.6 0.5939 −0.0061 0.0014 ϕ = 0.6 0.5956 −0.0044 0.0009
5000 σ2

1 = 0.1920 0.1664 −0.0256 0.0056 σ2
1 = 0.1920 0.1739 −0.0181 0.0041

λ = 1 1.0130 0.0130 0.0060 λ = 2 2.0191 0.0191 0.0161

Table 4. Empirical power of the test at significance levels τ = 0.05 and 0.10.

Level Parameter n = 100 n = 500 n = 1000 n = 2000 n = 5000 n = 10,000

(α, β, λ)

0.10

(0.1, 0.1, 1) 0.248 0.302 0.462 0.652 0.902 0.973
(0.1, 0.1, 2) 0.256 0.432 0.639 0.812 0.962 0.990
(0.1, 0.15, 1) 0.233 0.271 0.302 0.475 0.812 0.943
(0.1, 0.15, 2) 0.208 0.258 0.440 0.748 0.923 0.983
(0.15, 0.1, 1) 0.284 0.374 0.484 0.633 0.858 0.968
(0.15, 0.1, 2) 0.303 0.459 0.599 0.745 0.948 0.999

0.05

(0.1, 0.1, 1) 0.158 0.234 0.393 0.577 0.844 0.945
(0.1, 0.1, 2) 0.172 0.357 0.552 0.738 0.923 0.975
(0.1, 0.15, 1) 0.130 0.150 0.200 0.370 0.699 0.890
(0.1, 0.15, 2) 0.122 0.178 0.314 0.520 0.857 0.967
(0.15, 0.1, 1) 0.210 0.309 0.410 0.536 0.767 0.943
(0.15, 0.1, 2) 0.237 0.398 0.500 0.638 0.893 0.975
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Table 5. Empirical size of the test at significance levels τ = 0.05 and 0.10.

Level Parameter n = 100 n = 500 n = 1000 n = 2000 n = 5000 n = 10,000 n = 20,000

(ϕ, λ)

0.10

(0.5, 1) 0.037 0.033 0.034 0.031 0.038 0.045 0.057
(0.5, 2) 0.037 0.029 0.033 0.048 0.049 0.058 0.065
(0.4, 1) 0.033 0.033 0.042 0.037 0.043 0.042 0.059
(0.4, 2) 0.037 0.028 0.033 0.048 0.049 0.058 0.063
(0.6, 1) 0.039 0.043 0.035 0.039 0.043 0.040 0.052
(0.6, 2) 0.036 0.032 0.027 0.032 0.043 0.048 0.065

0.05

(0.5, 1) 0.021 0.022 0.012 0.011 0.015 0.017 0.026
(0.5, 2) 0.020 0.014 0.016 0.025 0.019 0.027 0.031
(0.4, 1) 0.019 0.015 0.016 0.017 0.015 0.015 0.023
(0.4, 2) 0.022 0.014 0.016 0.025 0.019 0.027 0.034
(0.6, 1) 0.028 0.013 0.015 0.017 0.013 0.015 0.027
(0.6, 2) 0.017 0.017 0.012 0.005 0.014 0.016 0.023
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Figure 1. QQ plots of estimator σ̂2
1 .

6. Real Data Analysis

In this section, we would like to show how our suggested method can be used to the
real life situations. To this aim, we focus on two real-world count data sets.

6.1. The Asymptomatic COVID-19 Cases in China

This data consist of the daily numbers of new asymptomatic COVID-19 cases in China,
totally 534 observations (from 31 March to 15 September 2021) reported by the National
Health Commission of the PRC. Figure 2 gives the sample path, the ACF and PACF of
the series, from which it is reasonable for us to assume that these data come from an
INAR(1) process.

We mainly apply the following four models to fit and analyze the data, among which
the latter two models are considered here in order to show the superiority of the models
constructed by the negative binomial thinning operator.
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(1) NBRCINAR(1) process: the first-order random coefficient integer-valued autore-
gressive process constructed by the negative binomial thinning operator, i.e.,

Xt = ϕt ∗ Xt−1 + ϵt, t = 1, 2, · · · , (26)

in which ϕt ∼ Beta(α, β).
(2) NBINAR(1) process: the first-order integer-valued autoregressive process with

constant coefficient constructed by the negative binomial thinning operator, i.e.,

Xt = ϕ ∗ Xt−1 + ϵt, t = 1, 2, · · · . (27)

(3) BRCINAR(1) process: the first-order random coefficient integer-valued autoregres-
sive process based on the binomial thinning operator, i.e.,

Xt = ϕt ◦ Xt−1 + ϵt, t = 1, 2, · · · , (28)

in which ϕt ∼ Beta(α, β).
(4) BINAR(1) process: the first-order integer-valued autoregressive process with con-

stant coefficient based on the binomial thinning operator, i.e.,

Xt = ϕ ◦ Xt−1 + ϵt, t = 1, 2, · · · . (29)
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Figure 2. The sample path, ACF and PACF of the asymptomatic cases of COVID-19 in China.

By using the method described in Section 4 to test the randomness of the thinning
parameter, we obtain that the p-value is 0.0887, which suggests that we would reject the
null hypothesis σ2

1 = 0 in favor of the alternative hypothesis σ2
1 > 0 at the significance level

of 10%, and thus, we should apply the NBRCINAR(1) process to fit the data.
To make further comparisons between the aforementioned four models, we split the

data set into two parts: the first 529 observations from 31 March to 10 September are
considered as a training sample to estimate the parameters, retaining the last 5 observations
from 11 September to 15 September as a forecasting evaluation sample to perform an out-
of-sample experiment. When estimating the parameters, the two-step CLS method makes
it not necessary to specify the distribution of the innovation ϵt. Meanwhile, to improve
the estimation performance, we use the block bootstrap method for the dependent time
series proposed by Künsch [36] to derive the model parameters (1000 replications) and
then obtain the CLS estimates by averaging the sample bootstrap estimates. Moreover, the
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forecasting performance of the estimated INAR models is assessed by the forecast mean
absolute error (FMAE) statistics of h-step-ahead forecasts, which are defined by

FMAE =
1
H

H

∑
h=1

|X̂n+h − Xn+h|,

where H = 5, n = 529, and X̂n+h is the coherent prediction of Xn+h.
As for time series analysis, conditional expectation (CE for short) is the most common

technique to construct forecasts, since it can lead to minimum mean squared error. However,
for all the four models mentioned above, we have

E(Xt+h|Xt) = ϕhXt +
1 − ϕh

1 − ϕ
λ, t = 1, 2, · · · ,

which implies that we can not distinguish them because of the same CLS estimates of ϕ and
λ. On the other hand, conditional expectation usually fails to preserve the integer-valued
nature in making forecasts for count data time series. To cater these problems, Bisaglia
and Gerolimetto [37] proposes a new approach based on the autoregressive structure of
the INAR model by means of bootstrap techniques. We will also employ this method
for further analysis. Taking the NBRCINAR(1) process as an example, the corresponding
algorithm steps of this method are given as follows:

Step 1. Estimate the unknown model parameters of interest α and β by two-step CLS
method to obtain α̂ and β̂.

Step 2. Compute the residuals as

ϵ̂t = Xt − ϕt ∗ Xt−1, t = 2, · · · , n,

in which {ϕt, t = 1, · · · , n} is a sequence of i.i.d. random variables drawn from Beta(α̂,β̂).
Step 3. Define the modified residuals ϵ̃t as

ϵ̃t =

{
ϵ̂t, if ϵ̂t ≥ 0,
0, if ϵ̂t < 0, t = 2, · · · , n,

and then fit the empirical distribution F̂ϵ of ϵ̃t.
Step 4. Obtain the bootstrapped series Xb

t for b = 1, . . . , B by

Xb
t = ϕb

t ∗ Xt−1 + ϵb
t , t = 2, · · · , n,

where {ϕb
t , t = 1, · · · , n} and {ϵb

t , t = 1, · · · , n} are i.i.d. random samples from Beta(α̂,β̂)
and F̂ϵ, respectively.

Step 5. Based on the bootstrapped series {Xb
1, · · · , Xb

n}, derive the estimators α̂b and
β̂b of α and β as those in Step 1, respectively.

Step 6. Calculate the forecasts as

Xb
n+h = ϕb

n+h ∗ Xb
n+h−1 + ϵb

n+h, h = 1, · · · , H,

where H denotes the largest prediction horizon, Xb
n = Xn, while {ϕb

n+h, h = 1, · · · , H} and
{ϵb

n+h, h = 1, · · · , H} are i.i.d. random samples drawn from Beta(α̂b,β̂b) and F̂ϵ, respectively.
Step 7. Obtain X̂n+h, the point forecast of Xn+h by taking the median of the replicates

{X1
n+h, . . . , XB

n+h} for h = 1, . . . , H.
Table 6 presents the results of parameter estimation for the four different models we

consider in this paper, i.e., the NBRCINAR(1) process (26), the NBINAR(1) process (27),
the BRCINAR(1) process (28) and the BINAR(1) process (29). After applying the two-step
CLS method, it can be seen that ϕ and λ in all the four models have the same estimates. In
addition, the estimates of α and β in NBRCINAR(1) process and BRCINAR(1) process are



Axioms 2024, 13, 260 17 of 21

also equal, respectively, which makes us dedicate ourselves to developing other estimation
methods for these models. Furthermore, when using the model-based INAR bootstrap
(MBB for short) technique to construct the forecasts, we set B = 501 to achieve our goal for
model selection, i.e., predict Xn+h by MBB 501 times, choose the median of the obtained
results as the value of X̂n+h, and then calculate the FMAE. According to the report in
Table 7, it can be observed that the models with random coefficients outperform the models
with a constant coefficient, which is consistent with the hypothesis testing result we have
obtained. Additionally, under the same assumption for the thinning parameters, the models
based on the negative binomial thinning operator work better than the models based on
the binomial thinning operator, and the NBRCINAR(1) process has the best predictive
performance. Therefore, we can conclude that our suggested model and method can be
very helpful in some practical applications.

Table 6. Estimate of parameters in the models for the asymptomatic cases of COVID-19 in China.

Model
Parameters

ϕ α β λ

NBINAR(1) and BINAR(1) 0.5788 - - 9.3869
NBRCINAR(1) and BRCINAR(1) 0.5788 2.5027 1.8209 9.3869

Table 7. Forecasting performance results for the asymptomatic cases of COVID-19 in China.

Date 1 September 2 September 3 September 4 September 5 September FMAE

Observations 44 28 20 16 13 -

Forecast-CE 21.5425 21.8565 22.0382 22.1434 22.2043 9.1974

Forecast-MBB for NBRCINAR(1) 19 20 19 18 19 8.4000
Forecast-MBB for NBINAR(1) 18 19 19 19 20 9.2000
Forecast-MBB for BRCINAR(1) 19 19 19 19 19 8.8000
Forecast-MBB for BINAR(1) 17 17 18 18 18 9.4000

6.2. Poliomyelitis Data in USA

In this subsection, we turn to the data set that is comprised of the monthly num-
ber of poliomyelitis cases reported by the U.S. Centers for Disease Control. There are
totally 168 observations, collected from January 1970 to December 1983. Figure 3 presents
the sample path, the ACF and PACF of the time series. This data set has been used by
Awale et al. [25] previously to test the constancy of the thinning parameter in a geometric
INAR(1) models in which the distribution of the innovation ϵt is given. Now, we relax
this condition and apply the NBRCINAR(1) process (26), the NBINAR(1) process (27), the
BRCINAR(1) process (28) and the BINAR(1) process (29) without specifying ϵt to fit the
Poliomyelitis data. With the method discussed in Section 4, we carried out the test for
H0 : σ2

1 = 0 vs. H1 : σ2
1 > 0, and the p-value turns out to be 0.4960. Hence, the same

conclusion as Awale et al. [25] can be reached, i.e, we can not reject the null hypothesis
of the constant thinning parameter at the significance levels of 5% and 10%. In order to
verify this assertion, we estimate the parameters of interest and list the results in Table 8.
Moreover, the predicted values are shown in Table 9, from which it can be seen that the
models with the constant coefficient are more appropriate than the models with random
coefficients for this poliomyelitis data set.
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Table 8. Estimate of parameters in the models for the poliomyelitis data in USA.

Model
Parameters

ϕ α β λ

NBINAR(1) and BINAR(1) 0.2540 - - 0.9720
NBRCINAR(1) and BRCINAR(1) 0.2540 2.2654 6.6521 0.9720
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Figure 3. The sample path, ACF and PACF of the poliomyelitis data in USA.

Table 9. Forecasting performance results for the poliomyelitis dat in USA.

Time August 1983 September 1983 October 1983 November 1983 December 1983 FMAE

Observations 1 0 1 3 6 -

Forecast-CE 1.4767 1.3442 1.3106 1.3021 1.2999 1.7059

Forecast-MBB for NBRCINAR(1) 1 1 1 1 1 1.6000
Forecast-MBB for NBINAR(1) 2 1 1 2 2 1.4000
Forecast-MBB for BRCINAR(1) 1 2 1 1 1 1.8000
Forecast-MBB for BINAR(1) 1 1 1 1 1 1.6000

7. Possibility for Expansions

To handle the variability in thinning parameters that may arise owing to numerous
external or internal causes, this paper offers an integer-valued time series model based
on the negative binomial thinning operator (the NBRCINAR(1) process) to analyze such
count data and devises a technique to evaluate the thinning parameter’s constancy, which
is very important for us to determine whether or not we should apply the model with
random coefficients.

One of the advantages of the method discussed in this paper is that we need not
specify the distribution of the innovation ϵt, so it is worthwhile to apply this method
to other integer-valued time series models depending on the specific applications, to
account for different circumstances or data features. Some straightforward and interesting
generalizations for the NBRCINAR(1) process are as follows:
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(1) The first-order generalized random coefficient integer-valued autoregressive (GRCI-
NAR(1)) process proposed by Gomes and Canto [28], i.e.,

Xt = ϕt ◦G Xt−1 + ϵt, t = 1, 2, · · · ,

in which the generalized thinning operator is defined by

ϕt ◦G Xt−1|ϕt, Xt−1 ∼ G(ϕtXt−1, δtXt−1),

where G(ϕtXt−1, δtXt−1) represents a given discrete type distribution with mean ϕtXt−1
and variance δtXt−1, respectively. It is obvious that the generalized thinning operator
includes the binomial thinning operator, the negative binomial thinning operator, the
expectation thinning operator and the Poisson thinning operator as its special cases.

(2) The first-order random coefficient mixed-thinning integer-valued autoregressive
(RCMTINAR(1)) process was studied by Chang et al. [38], i.e.,

Xt = ϕt •p Xt−1 + ϵt, t = 1, 2, · · · ,

where the mixed thinning operator “•p” represents

ϕt •p Xt−1 =
Xt−1

∑
i=1

W(t)
i ,

in which {W(t)
i , t = 1, 2, · · · , i = 1, 2, · · · } is a counting series given as

W(t)
i =

{
B(t)

i , with probability p,

G(t)
i , with probability 1 − p,

p ∈ [0, 1],

with {B(t)
i , i = 1, 2, · · · } being a sequence of conditionally independent Bernoulli random

variables, and {G(t)
i , i = 1, 2, · · · }, independent of {B(t)

i , i = 1, 2, · · · } given ϕt, being a
sequence of conditionally independent Geometric random variables.

(3) The first-order random coefficients self-exciting integer-valued threshold autore-
gressive (RCTINAR(1)) process investigated by Yang et al. [18,21], i.e.,

Xt =

{
ϕ1,t ◦ Xt−1 + ϵt, Xt−1 ≤ r,
ϕ2,t ◦ Xt−1 + ϵt, Xt−1 > r,

t = 1, 2, · · · ,

in which “◦” is the binomial thinning operator, and r is the so-called threshold variable.
To test the randomness of the thinning parameters for these models, the attendant

problem is how to estimate the parameter Var(ϕt), or Var(ϕ1,t) and Var(ϕ2,t), as well as
establish the related asymptotic behaviors of the estimators. We will focus on these issues
in the future study.

On the other hand, our model and method considered in this paper have some
limitations and constraints, which also could provide many interesting future studies. Let
us discuss several topics as follows:

(1) Our results heavily rely on the assumptions (A1)–(A4), which may restrict the
usefulness and applicability of our method. Therefore, it needs more attention to extend
the proposed method to the models that relax the condition of independence for practice.
For example, we can introduce the Markov-switching mechanism for {ϕt, t = 1, 2, · · · } like
Lu and Wang [39] and explore the random coefficient models with dependent counting
series {W(t)

i , i = 1, 2, . . .} like Liu and Zhang [19], or with serially dependent innovations
{ϵt, t = 1, 2, · · · } like Shirozhan and Mohammadpour [40].

(2) As we can see from the simulation results in Section 5, the estimates of σ2
1 , obtained

in the second step of CLS method, converge to their true values at a slightly slow rate, and
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there is some gap between the empirical sizes and the designated significance levels for the
test problems. Therefore, large sample sizes are needed to obtain good results. However,
this requirement may be not met in practice. To improve the performance of statistical
inference, we can apply the so-called locally most powerful-type test method developed
by Awale et al. [25], but we have to fit the distribution of the innovation ϵt first. We can
also try the empirical likelihood test method to obtain the estimators of model parameters,
and then consider the constancy test of the thinning parameters, see Lu and Wang [26]
for example.

8. Conclusions

In this paper, we consider the first-order random coefficient integer-valued autoregres-
sive (NBRCINAR(1)) process based on the negative binomial thinning operator. We obtain
the estimators of model parameters by the two-step conditional least squares method, and
derive their asymptotic properties. We also consider the constancy test of thinning parame-
ters. The simulation study demonstrates the effectiveness of our suggested method. The
real data analysis reveals that our suggested method can be useful in practice. Finally, some
possible extensions of this paper are provided. We leave these issues as our future work.
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