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Abstract: This paper aims to unify q-derivative/q-integrals and h-derivative/h-integrals into a single
definition, called q − h-derivative/q − h-integral. These notions are further extended on the finite
interval [a, b] in the form of left and right q − h-derivatives and q − h-integrals. Some inequalities for
q − h-integrals are studied and directly connected with well known results in diverse fields of science
and engineering. The theory based on q-derivatives/q-integrals and h-derivatives/h-integrals can be
unified using the q − h-derivative/q − h-integral concept.
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1. Introduction

The subject of q-calculus is based on the quotient f (qx)− f (x)
(q−1)x involved in the derivative

of a function. This motivates researchers to consider whether the results and theory that
hold for usual derivatives can be further developed by analyzing this quotient. Euler
(1707–1783) was the first to work in this direction, introducing the number q in the infi-
nite series defined by Newton. Jackson [1,2] continued the work of Euler and defined
q-derivatives and q-integrals. Roughly speaking, q-calculus analyzes q-analogues of math-
ematical concepts and formulas that can be recaptured by the limit q → 1. The concepts
of q-calculus are extensively applied in various subjects of physics and mathematics, in-
cluding combinatorics, number theory, orthogonal polynomials, geometric function theory,
quantum theory and mechanics, and the theory of relativity; see [3–9].

Nowadays, many authors are applying quantum calculus theory in their fields of
research. Consequently, they have contributed plenty of articles in this active field. For
instance, theory of fractional calculus, optimal control problems, q-difference, and q-integral
equations are studied in q-analysis; see [10–13] and references therein. In [14,15], Tariboon
et al. defined quantum calculus on finite intervals and extended some important integral
inequalities using this concept.

Here, our goal is to unify quantum calculus (q-calculus) and plank calculus (h-calculus).
For this purpose, the notion of q − h-derivatives is introduced and basic calculus formulas
are presented. Moreover, a q − h-binomial is constructed and the q − h-integral is defined
on a finite interval. Using the q − h-integral, Hermite–Hadamard type inequalities can
be constructed which combine the inequalities for q- and h-integrals in implicit form. By
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imposing the symmetric condition, a correct proof of an already published inequality (the
first inequality in Equation (12)) is provided. Next, we begin to lay out well known initial
concepts which are useful for the reader in understanding the findings of this paper.

The h-derivative and the q-derivative of a function ν are defined by the quotients

ν(γ + h)− ν(γ)

h
and

ν(qγ)− ν(γ)

(q − 1)γ
,

respectively. The h-derivative is usually denoted by Dhν(γ) = dhν(γ)
dhγ and the q-derivative

is denoted by Dqν(γ) =
dqν(γ)

dqγ , where dhν(γ) = ν(γ + h)− ν(γ) is called the h-differential
and dqν(γ) = ν(qγ)− ν(γ) is called the q-differential for the function ν. As an example,

the h-derivative and the q-derivative of γn can be computed in the forms (γ+h)n−γn

h =

nγn−1 + n(n−1)
2 γn−2h + ... + hn−1 and qn−1

q−1 γn−1 = (qn−1 + ... + 1)γn−1, respectively. For

the sake of simplicity, the notation [n]q is used instead of qn−1
q−1 ; thus, Dqγn = [n]qγn−1.

Because lim
q→1

Dqν(γ) = lim
h→0

Dhν(γ) = dν(γ)
dγ , the h-derivative and the q-derivative are

generalizations of ordinary derivative. The q-derivative leads to the subject of q-calculus;
see [16] for details.

The sum and product formula of q-derivatives for functions ν1 and ν2 are provided by

Dq{ν1(γ) + ν2(γ)} = Dqν1(γ) +Dqν2(γ) (1)

and
Dq{ν1(γ)ν2(γ)} = ν1(qγ)Dqν2(γ) + ν2(γ)Dqν1(γ), (2)

respectively. Because ν1(γ)ν2(γ) = ν2(γ)ν1(γ), Equation (2) is equivalent to the formula

Dq{ν1(γ)ν2(γ)} = ν1(γ)Dqν2(γ) + ν2(qγ)Dqν1(γ). (3)

In view of Equation (2), the quotient formula of q-derivatives is provided by

Dq

(
ν1(γ)

ν2(γ)

)
=

ν2(γ)Dqν1(γ)− ν1(γ)Dqν2(γ)

ν2(γ)ν2(qγ)
. (4)

In view of Equation (3), the quotient formula of q-derivatives is provided by

Dq

(
ν1(γ)

ν2(γ)

)
=

ν2(qγ)Dqν1(γ)− ν1(qγ)Dqν2(γ)

ν2(γ)ν2(qγ)
. (5)

The formulae for the h-derivatives are as follows:

Dh{ν1(γ) + ν2(γ)} = Dhν1(γ) +Dhν2(γ), (6)

Dh{ν1(γ)ν2(γ)} = ν1(γ)Dhν2(γ) + ν2(γ + h)Dhν1(γ), (7)

and

Dh

(
ν1(γ)

ν2(γ)

)
=

ν2(γ)Dhν1(γ)− ν1(γ)Dhν2(γ)

ν2(γ)ν2(γ + h)
. (8)

Next, we provide the definition of a q-derivative on a finite interval.

Definition 1 ([15]). Let µ : I = [a, b] → R be a continuous function. For 0 < q < 1, the
q-derivative aDqµ on I is provided by

aDqµ(ξ) :=
µ(qξ + (1 − q)a)− µ(ξ)

(q − 1)(ξ − a)
, ξ ̸= a, aDqµ(a) = lim

ξ→a
aDqµ(ξ). (9)
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Function µ is called q-differentiable on [a, b] if aDqµ(ξ) exists for all ξ ∈ [a, b]. For
a = 0, we have 0Dqµ(ξ) = Dqµ(ξ); moreover, Dqµ(ξ) is the q-derivative of µ at ξ ∈ [a, b],
defined as follows:

Dqµ(ξ) :=
µ(qξ)− µ(ξ)

(q − 1)ξ
, ξ ̸= 0. (10)

The q-integral of the function µ on interval [a, b] is defined below.

Definition 2 ([15]). Let µ : I = [a, b] → R be a function. For 0 < q < 1, the q-definite integral
on I is provided by

∫ ξ

a
µ(γ) adqγ = (1 − q)(ξ − a)

∞

∑
n=0

qnµ(qnξ + (1 − qn)a), ξ ∈ [a, b]. (11)

In the following we provide a q-integral inequality published in [15].

Theorem 1 ([15]). Let µ : [a, b] → R be a convex continuous function on [a, b] and let 0 < q < 1;
then, we have

µ

(
a + b

2

)
≤ 1

b − a

∫ b

a
µ(γ) adqγ ≤ qµ(a) + µ(b)

q + 1
. (12)

In (11), setting a = 0, the Jackson q-definite integral in [16] is deduced as follows:

∫ ξ

0
µ(γ) 0dqγ =

∫ ξ

0
µ(γ)dqγ = (1 − q)ξ

∞

∑
n=0

qnµ(qnξ), ξ ∈ [a, b]. (13)

If c ∈ (a, ξ), then the q-definite integral on [c, ξ] is calculated as follows:∫ ξ

c
µ(γ) adqγ =

∫ ξ

a
µ(γ) adqγ −

∫ c

a
µ(γ) adqγ. (14)

We intend to unify the q-derivative and h-derivative into a single notion, which we
name the q − h-derivative. We provide sum/difference, product, and quotient formulas
for q − h-derivatives, along with the definition of the q − h-integral. Further, we define
the q − h-derivative and q − h-integral on a finite interval. The composite derivatives
and integrals provide the opportunity to simultaneously study theoretical and practical
concepts and problems from different fields related to q-derivatives and h-derivatives.
For instance, in Theorem 3 we prove the generalization of the inequality in (12) via the
q − h-integral.

2. Generalization of q- and h-Derivatives

We define the (q − h)-differential of a real valued function µ as follows:

hdqµ(ξ) = µ(q(ξ + h))− µ(ξ). (15)

Then, for h = 0 and q → 1 in (15), we have

0dqµ(ξ) = µ(qξ)− µ(ξ) = dqµ(ξ)

and
hd1µ(ξ) = µ(ξ + h)− µ(ξ) = hdµ(ξ).

In particular,
hdq(ξ) = qξ + qh − ξ = (q − 1)ξ + qh. (16)
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Then, for h = 0 and q → 1 in (16), we have

0dq(ξ) = (q − 1)ξ = dq(ξ) and hd1(ξ) = h = dh(ξ). (17)

For u(ξ) = µ(ξ) + ν(ξ), the (q − h)-differential of u is provided by

hdq(u(ξ)) = hdq(µ(ξ) + ν(ξ)) = (µ + ν)(q(ξ + h))− (µ + ν)(ξ) = hdqµ(ξ) + hdqν(ξ). (18)

For α ∈ R, the (q − h)-differential of αµ is provided by

hdq(αµ)(ξ) = hdq(αµ)(ξ) = (αµ)(q(ξ + h))− (αµ)(ξ) = α hdqµ(ξ). (19)

From (18) and (19), it can be seen that the (q − h)-differential is linear. If p(ξ) =
µ(ξ)ν(ξ), then the (q − h)-differential is calculated as follows:

hdq(p(ξ)) = hdq(µ(ξ)ν(ξ)) = µ(q(ξ + h))ν(q(ξ + h))− µ(ξ)ν(ξ)

= µ(q(ξ + h))ν(q(ξ + h)) + µ(q(ξ + h))ν(ξ)

− µ(q(ξ + h))ν(ξ)− µ(ξ)ν(ξ)

= µ(q(ξ + h))[ν(q(ξ + h))− ν(ξ)]

+ ν(ξ)[µ(q(ξ + h))− µ(ξ)].

Hence, we obtain

hdq(µ(ξ)ν(ξ)) = µ(q(ξ + h))hdqν(ξ) + ν(ξ)hdqµ(ξ). (20)

For h = 0 and q → 1 in (20), we have

0dq(µ(ξ)ν(ξ)) = dq(µ(ξ)ν(ξ)) = µ(qξ)0dqν(ξ) + ν(ξ) 0dqµ(ξ)

= µ(qξ)dqν(ξ) + ν(ξ)dqµ(ξ)

and

hd1(µ(ξ)ν(ξ)) = dh(µ(ξ)ν(ξ)) = µ(ξ + h)hd1ν(ξ) + ν(ξ)hd1µ(ξ)

= µ(ξ + h)dhν(ξ) + ν(ξ)dhµ(ξ),

respectively. Next, we define the q − h-derivative as follows:

Definition 3. Let 0 < q < 1 and h ∈ R, and let µ : I → R be a continuous function. Then, the
q − h-derivative of µ is defined by

ChDqµ(ξ) =
hdqµ(ξ)

hdqξ
=

µ(q(ξ + h))− µ(ξ)

(q − 1)ξ + qh
, ξ ̸= qh

1 − q
:= ξ◦ (21)

ChDqµ(ξ◦) = lim
ξ→ξ◦

ChDqµ(ξ)

provided that q(ξ + h) ∈ I.

For h = 0 and q → 1 in (21), we have

C0Dqµ(ξ) = Dqµ(ξ) =
dqµ(ξ)

dqξ
=

µ(qξ)− µ(ξ)

(q − 1)ξ
(22)

and

ChD1µ(ξ) = Dhµ(ξ) =
dhµ(ξ)

dhξ
=

µ(ξ + h)− µ(ξ)

h
. (23)
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By setting h = 0, q → 1 in (21), we obtain the ordinary derivative of µ, provided that
the limit exists.

Example 1. Consider P(x) = ξn, n ∈ N; then,

ChDq(P(x)) =
qn(ξ + h)n − ξn

(q − 1)ξ + qh
=

(qn − 1)ξn

(q − 1)ξ + qh
+

qn(nξn−1h + ... + hn)

(q − 1)ξ + qh
. (24)

For h = 0 and q → 1 in (24), we have

C0Dq(ξ
n) =

qnξn − ξn

(q − 1)ξ
=

qn − 1
q − 1

ξn−1 = [n]qξn−1 = Dq(ξ
n) (25)

and

ChD1(ξ
n) =

(ξ + h)n − ξn

h
= nξn−1 +

n(n − 1)
2

ξn−2h + ...... + hn−1. (26)

In particular, we have lim
h→0

ChD1(ξ
n) = nξn−1.

2.1. Linearity

The q − h-derivative is linear, i.e., for α, β ∈ R and using the linearity of
(q − h)-differentials, we have

ChDq(αµ(ξ) + βν(ξ)) = α ChDqµ(ξ) + β ChDqν(ξ).

2.2. Product Formula

The following formula for a product of functions can be obtained using (20):

ChDq(µ(ξ)ν(ξ)) =
hdq(µ(ξ)ν(ξ))

hdqξ
=

µ(q(ξ + h))hdqν(ξ) +h dqµ(ξ)ν(ξ)

hdqξ
(27)

= µ(q(ξ + h))ChDqν(ξ) + ν(ξ)ChDqµ(ξ).

The product formula for q-derivatives and h-derivatives can be obtained as follows.
By setting h = 0 in (27), the following q-derivative formula for products of functions

is yielded:

C0Dq(µ(ξ)ν(ξ)) =
dq(µ(ξ)ν(ξ))

dqξ
= Dq(µ(ξ)ν(ξ)) (28)

= µ(qξ)C0Dqν(ξ) + ν(ξ)C0Dqµ(ξ)

= µ(qξ)Dqν(ξ) + ν(ξ)Dqµ(ξ).

By taking q → 1 in (27), the following h-derivative formula for products of functions
is yielded:

ChD1(µ(ξ)ν(ξ)) =
dh(µ(ξ)ν(ξ))

dhξ
= Dh(µ(ξ)ν(ξ)) (29)

= µ(ξ + h)ChD1ν(ξ) + ν(ξ)ChD1µ(ξ)

= µ(ξ + h)Dhν(ξ) + ν(ξ)Dhµ(ξ).

Using symmetry, from (27) we have the following:

ChDq(ν(ξ)µ(ξ)) = ν(q(ξ + h))ChDqµ(ξ) + µ(ξ)ChDqν(ξ). (30)

Both (27) and (30) are equivalent.
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2.3. Quotient Formula

Using (27) and (30), the quotient formula of q − h-derivatives is calculated as follows.
For ν(ξ) ̸= 0, we have

ν(ξ)
µ(ξ)

ν(ξ)
= µ(ξ). (31)

Using definition of q − h-derivatives and (27), we have

ChDq

(
ν(ξ)

µ(ξ)

ν(ξ)

)
= ChDq(µ(ξ)), (32)

ν(q(ξ + h))ChDq

(
µ(ξ)

ν(ξ)

)
+

µ(ξ)

ν(ξ)
ChDqν(ξ) = ChDq(µ(ξ)). (33)

Now,

ChDq

(
µ(ξ)

ν(ξ)

)
=

ChDq(µ(ξ))− µ(ξ)
ν(ξ)

ChDq(ν(ξ))

ν(q(ξ + h))
(34)

=
ν(ξ)ChDq(µ(ξ))− µ(ξ)ChDq(ν(ξ))

ν(q(ξ + h))ν(ξ)
.

Using (30), we can obtain

µ(q(ξ + h))
ν(q(ξ + h))

ChDq

(
ν(ξ)

)
+ ν(ξ)ChDq

(
µ(ξ)

ν(ξ)

)
= ChDq

(
µ(ξ)

)
,

that is,

ChDq

(
µ(ξ)

ν(ξ)

)
=

ChDq(µ(ξ))ν(q(ξ + h))− µ(q(ξ + h))ChDq(ν(ξ))

ν(q(ξ + h))ν(ξ)
. (35)

Remark 1. By putting h = ω
q for ω > 0, Equation (27) produces product formulas and

Equation (34) produces quotient formulas for the (q, ω)-derivatives in [17].

Next, let us define the q − h−binomial (ξ − a)n
h,q analogue to (ξ − a)n as follows:

(ξ − a)n
h,q =

{
1, n = 0,
(ξ − a)(ξ − q(a + h))(ξ − q2(a + 2h))...(ξ − qn−1(a + (n − 1)h), n ≥ 1.

(36)

Then, it is clear that for h = 0 we have (ξ − a)n
0,q = (ξ − a)n

q , i.e., the q-analogue of
(ξ − a)n is obtained, which is defined in ([16], Page 8, Definition) as follows:

(ξ − a)n
q =

{
1, n = 0,
(ξ − a)(ξ − qa)...(ξ − qn−1a), n ≥ 1.

(37)

In addition, from (36) we have (ξ − a)n
h,1 = (ξ − a)n

h for q → 1, i.e., the h-analogue of
(ξ − a)n is obtained, which is defined in ([16], Page 80, Definition) as follows:

(ξ − a)n
h =

{
1, n = 0,
(ξ − a)(ξ − a − h)...(ξ − a − (n − 1)h), n ≥ 1.

(38)

Next, we find the q − h−derivative of the q − h−binomial (ξ − a)n
h,q as follows.

For n = 1, we have

hDq((ξ − a)1
h,q) = hDq(ξ − a) = 1.
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For n = 2, we have

hDq((ξ − a)2
h,q) = hDq((ξ − a)(ξ − q(a + h))) = (q(ξ + h)− q(a + h)).1 + (ξ − a)

= (ξ − a)(1 + q) = [2]q(ξ − a)1
h,q.

As h → 0, we have 0Dq((ξ − a)2
0,q) = Dq((ξ − a)2

q) = [2]q(ξ − a)1
q, while because

q → 1 we have hD1((ξ − a)2
h,1) = Dh((ξ − a)2

h) = 2(ξ − a)1
h.

For n = 3, we have

hDq((ξ − a)3
h,q) = hDq((ξ − a)2

h,q(ξ − q2(a + 2h)))

= (q(ξ + h)− q2(a + 2h)){(q + 1)(ξ − a)}+ (ξ − a)2
h,q.1

= q(q + 1)(ξ − a)(ξ − q(a + h)) + q(1 − q2)(ξ − a)h + (ξ − a)2
h,q

= q(q + 1)(ξ − a)2
h,q + (ξ − a)2

h,q + q(1 − q2)(ξ − a)h

= (q2 + q + 1)(ξ − a)2
h,q + q(1 − q2)(ξ − a)h = [3]q(ξ − a)2

h,q + q(1 − q2)h(ξ − a)1
h,q.

As h → 0, we have 0Dq((ξ − a)3
0,q) = Dq((ξ − a)3

q) = [3]q(ξ − a)2
q, while because

q → 1 we have hD1((ξ − a)3
h,1) = Dh((ξ − a)3

h) = 3(ξ − a)2
h.

For n = 4, we have

hDq((ξ − a)4
h,q) = hDq((ξ − a)3

h,q(ξ − q3(a + 3h)))

= (q(ξ + h)− q3(a + 3h))
{
[3]q(ξ − a)2

h,q + q(1 − q2)h(ξ − a)1
h,q

}
+ (ξ − a)3

h,q.1

= [3]qq(ξ − a)2
h,q(ξ − q2(a + 2h)) + hq2(1 − q2)(ξ − a)(ξ − q2(a + 2h))

+ [3]qqh(1 − q2)(ξ − a)2
h,q + q2(1 − q2)2h2(ξ − a) + (ξ − a)3

h,q

= (1 + [3]qq)(ξ − a)3
h,q + [3]qq(1 − q2)h(ξ − a)2

h,q + hq2(1 − q2)(ξ − a)

{x − q2(a + 3h) + h}
= [4]q(ξ − a)3

h,q + [3]qqh(1 − q2)(ξ − a2)h,q + hq2(1 − q2)(ξ − a)(ξ − q(a + h))

+ hq2(1 − q2)(q(a + h)− q2(a + 3h) + h)(ξ − a)

= [4]q(ξ − a)3
h,q + q(1 + q)2(1 − q2)h(ξ − a)2

h,q

+ hq2(1 − q2)(q(a + h)− q2(a + 3h) + h)(ξ − a).

As h → 0, we have 0Dq((ξ − a)4
0,q) = Dq((ξ − a)4

q) = [4]q(ξ − a)3
q, while because

q → 1 we have hD1((ξ − a)4
h,1) = Dh((ξ − a)4

h) = 4(ξ − a)3
h.

Inductively, it can be seen that this leads to the following results.
As h → 0, we have 0Dq((ξ − a)n

0,q) = Dq((ξ − a)n
q ) = [n]q(ξ − a)n−1

q .

As q → 1, we have hD1((ξ − a)n
h,1) = Dh((ξ − a)n

h) = n(ξ − a)n−1
h .

If µ is the q − h-derivative of µ, i.e., µ(ξ) = ChDqµ(ξ), then µ is called the q − h-
antiderivative of µ. The q − h-antiderivative is denoted by

∫
µ(ξ) hdqx.

3. q − h-Derivative on a Finite Interval

Throughout this section, I := [a, b] for a, b ∈ R. The q − h−derivative on I is provided
in the upcoming definition.

Definition 4. Let 0 < q < 1, h ∈ R, and ξ ∈ I, and let µ : I → R be a continuous function.
Then, the left q − h−derivative ChDa+

q µ and right q − h−derivative ChD
b−
q µ on I are defined by
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ChDa+
q µ(ξ) :=

µ((1 − q)a + q(ξ + h))− µ(ξ)

(1 − q)(a − ξ) + qh
; ξ ̸= qh + (1 − q)a

1 − q
:= u, (39)

ChD
b−
q µ(ξ) :=

µ((1 − q)ξ + q(b + h))− µ(b)
(1 − q)(ξ − b) + qh

; ξ ̸= −qh + (1 − q)b
1 − q

:= v, (40)

provided that (1− q)a + q(ξ + h) ∈ [a, ξ] and (1− q)ξ + q(b + h) ∈ [ξ, b]. Also, ChDa+
q µ(u) =

lim
ξ→u

ChDa+
q µ(ξ) and ChD

b−
q µ(v) = lim

ξ→v
ChD

b−
q µ(ξ).

We say that µ is left q − h-differentiable on (a, x + h) if ChDa+
q µ(ξ) exists for each of

its points, and we say that µ is right q − h-differentiable on (ξ + h, b) if ChD
b−
q µ(ξ) exists

at each of its points. It can be seen that ChDa+
q µ(b) = ChD

b−
q µ(a). In (39), by setting h = 0,

it is possible to obtain the q-derivative defined in Definition 1, i.e., C0Da+
q µ(ξ) = aDqµ(ξ).

Similarly, for a = 0 we can have ChD0+
q µ(ξ) = ChDqµ(ξ), i.e., the q − h-derivative in (21)

is deduced; for h = 0 = a, we can have C0D0+
q µ(ξ) = Dqµ(ξ), i.e., the q-derivative is

deduced; for a = 0, q = 1, we can have ChD0+
1 µ(ξ) = Dhµ(ξ), i.e., the h-derivative is

deduced; and for h = 0 = a, taking the limit q → 1, we can obtain the usual derivative
for a differentiable function µ, i.e., lim

q→1
C0D0+

q µ(ξ) = d
dξ µ(ξ). It is possible to obtain similar

results from Equation (40). The definition of left and right q−derivatives defined on I can
be obtained from (40) by setting h = 0, as follows.

Definition 5. Let 0 < q < 1, h ∈ R, and ξ ∈ I, and let µ : I → R be a continuous function.
Then, the left q−derivative Da+

q µ and right q−derivative Db−
q µ on I are defined as follows:

Da+
q µ(ξ) :=

µ(qξ + (1 − q)a)− µ(ξ)

(1 − q)(a − ξ)
; ξ > a, (41)

Db−
q µ(ξ) :=

µ(qb + (1 − q)ξ)− µ(b)
(1 − q)(ξ − b)

; ξ < b. (42)

It is notable that from (41) we have D0+
q µ(ξ) = Dqµ(ξ), i.e., the left q−derivative

coincides with the q−derivative defined in Definition 1.

Definition 6. Let 0 < q < 1 and µ : I = [a, b] → R be a continuous function. Then, the left
q − h-integral Ia+

q,h µ and right q − h-integral Ib
q−hµ on I are defined as follows:

Ia+
q,h µ(ξ) :=

∫ ξ

a
µ(γ) hdqγ (43)

= ((1 − q)(ξ − a) + qh)
∞

∑
n=0

qnµ(qna + (1 − qn)ξ + nqnh), ξ > a,

Ib−
q,h µ(ξ) :=

∫ b

ξ
µ(γ) hdqγ (44)

= ((1 − q)(b − ξ) + qh)
∞

∑
n=0

qnµ(qnξ + (1 − qn)b + nqnh), ξ < b.

Example 2. Consider µ(γ) = γ − a and ν(γ) = b − γ. The left and right q − h-integrals are
calculated as follows:

Ia+
q,h µ(ξ) =

∫ ξ

a
(γ − a) hdqγ =

(1 − q)(ξ − a) + qh
1 − q

(
q(ξ − a)

1 + q
+ (1 − q)h

∞

∑
n=0

nq2n

)
(45)
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and

Ib−
q,h ν(ξ) =

∫ b

ξ
(b − γ) hdqγ =

(1 − q)(b − ξ) + qh
1 − q

(
b − ξ

1 + q
+ (1 − q)h

∞

∑
n=0

nq2n

)
, (46)

where 1 is the radius of convergence of the series involved in the above integrals.

Example 3. Let µ(γ) = ξ − γ and ν(γ) = γ − ξ; then, we have

Ia+
q,h µ(ξ) =

∫ ξ

a
(ξ − γ) hdqγ =

(1 − q)(ξ − a) + qh
1 − q

(
ξ − a
1 + q

− (1 − q)h
∞

∑
n=0

nq2n

)
(47)

and

Ib−
q,h ν(ξ) =

∫ b

ξ
(γ − ξ) hdqγ =

(1 − q)(b − ξ) + qh
1 − q

(
q(b − ξ)

1 + q
+ (1 − q)h

∞

∑
n=0

nq2n

)
, (48)

where 1 is the radius of convergence of the series involved in the above integrals.

By setting h = 0, the left and right q-integrals can be obtained and defined as follows.

Definition 7. Let 0 < q < 1 and µ : I = [a, b] → R be a continuous function. Then, the left
q-integral Ia+

q µ and right q-integral Ib
q µ on I are provided by

Ia+
q−0µ(ξ) = Ia+

q µ(ξ) =
∫ ξ

a
µ(γ)dqγ = (1 − q)(ξ − a)

∞

∑
n=0

qnµ(qna + (1 − qn)ξ), ξ > a, (49)

Ib−
q−0µ(ξ) = Ib−

q µ(ξ) =
∫ b

ξ
µ(γ)dqγ = (1 − q)(b − ξ)

∞

∑
n=0

qnµ(qnξ + (1 − qn)b), ξ < b. (50)

The left q-integral is the same as the qa-definite integral defined in [15], while the right
q-integral is the same as the qb-definite integral defined in [18].

Example 4. Consider µ(γ) = γ − a and ν(γ) = b − γ. By setting h = 0 in Example 2, we have

Ia+
q−0µ(ξ) = Ia+

q µ(ξ) =
∫ ξ

a (γ − a)dqγ = q(ξ−a)2

1+q and Ib−
q−0ν(ξ) = Ib−

q µ(ξ) =
∫ b

ξ (b − γ)dqγ =

(b−ξ)2

1+q .

By considering q → 1, we can include the left and right h-integrals in the upcom-
ing definition.

Definition 8. Let µ : I = [a, b] → R be a continuous function; then, the left h-integral Ia+
h µ and

right h-integral Ib
hµ on I are defined as follows:

Ia+
h µ(ξ) = lim

q→1
Ia+
q,h µ(ξ), ξ > a, (51)

Ib−
h µ(ξ) = lim

q→1
Ib−
q,h µ(ξ), ξ < b. (52)

Note that from Definition 6 we have Ia+
q,h µ(b) = Ib−

q,h µ(a) =
∫ b

a µ(γ) hdqt.

4. Some q − h-Integral Inequalities for Convex Functions

In this section, we provide inequalities for q − h-integrals of convex functions. A
function µ : [a, b] → R is called convex if the following inequality holds for all u, v ∈ [a, b]
and λ ∈ [0, 1]:

µ(λu + (1 − λ)v) ≤ λµ(u) + (1 − λ)µ(v). (53)
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Theorem 2. Let µ : J → R be a convex function and let a, b ∈ J◦ (the interior of J). The left and
right q − h-integrals satisfy the following inequalities:

Ia+
q,h µ(ξ) ≤ (1 − q)(ξ − a) + qh

(1 − q)(ξ − a)

{
µ(a)

(
ξ − a
1 + q

− (1 − q)hS
)

(54)

+ µ(ξ)

(
q(ξ − a)

1 + q
+ (1 − q)hS

)}

and

Ib−
q,h µ(ξ) ≤ (1 − q)(b − ξ) + qh

(1 − q)(b − ξ)

{
µ(ξ)

(
b − ξ

1 + q
+ (1 − q)hS

)
(55)

+ µ(b)
(

q(b − ξ)

1 + q
+ (1 − q)hS

)}
,

where S =
∞
∑

n=0
nq2n.

Proof. For γ ∈ [a, ξ], we have ξ−γ
ξ−a ∈ [0, 1]. By selecting λ = ξ−γ

ξ−a , u = a, v = ξ in (53), we
obtain the following inequality:

µ(γ) ≤ ξ − γ

ξ − a
µ(a) +

γ − a
ξ − a

µ(ξ).

By taking the q − h-integral over [a, ξ], we have∫ ξ

a
µ(γ) hdqγ ≤ µ(a)

ξ − a

∫ ξ

a
(ξ − γ) hdqγ +

µ(ξ)

ξ − a
µ
∫ ξ

a
(γ − a) hdqγ.

Using the values of the integrals involved in the above inequality from (45) and (47),
we can obtain the required inequality (54). On the other hand, for γ ∈ [ξ, b] we have
b−γ
b−ξ ∈ [0, 1]; by selecting λ = b−γ

b−ξ , u = ξ, v = b in (53), we obtain the following inequality:

µ(γ) ≤ b − γ

b − ξ
µ(ξ) +

γ − ξ

b − ξ
µ(b).

By taking the q − h-integral over [ξ, b], we have

∫ b

ξ
µ(γ) hdqγ ≤ µ(ξ)

b − ξ

∫ b

ξ
(b − γ) hdqγ +

µ(b)
b − ξ

∫ b

ξ
(γ − ξ) hdqγ.

Using the values of the integrals involved in the above inequality from (46) and (48),
we can obtain the required inequality (55).

Corollary 1. As an application of the above theorem, the following inequalities for left and right
q-integrals hold:

Ia+
q µ(ξ) ≤ µ(a)

(
ξ − a
1 + q

)
+ µ(ξ)

(
q(ξ − a)

1 + q

)
(56)

and

Ib−
q µ(ξ) ≤ µ(ξ)

(
b − ξ

1 + q

)
+ µ(b)

(
q(b − ξ)

1 + q

)
. (57)
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Remark 2. By taking ξ = b in (56) or ξ = a in (57), we can obtain the following inequality:

1
b − a

∫ b

a
µ(γ) adqγ ≤ µ(a) + qµ(b)

1 + q
. (58)

The above inequality (58) is independently proved in ([15], Theorem 12).

The following lemma is required to prove the next result.

Lemma 1 ([19]). Let µ : [a, b] → R be a convex function. If µ is symmetric about a+b
2 , then the

inequality

µ

(
a + b

2

)
≤ µ(ξ), (59)

holds for all ξ ∈ [a, b].

Theorem 3. If µ is symmetric about a+b
2 and the assumptions of Theorem 2 are satisfied, then the

following inequality holds:

µ

(
a + b

2

)
≤ 1 − q

(1 − q)(ξ − a) + qh

∫ ξ

a
µ(γ) hdqγ +

1 − q
(1 − q)(b − ξ) + qh

∫ b

ξ
µ(γ) hdqγ, (60)

ξ ∈ [a, b].

Proof. A convex function that is symmetric about a+b
2 satisfies the inequality in (59);

therefore, by taking q − h-integration of (59) over [a, ξ] we have

µ

(
a + b

2

)
(1 − q)(ξ − a) + qh

1 − q
≤
∫ ξ

a
µ(γ) hdqγ. (61)

On the other hand, by taking the q − h-integration of (59) over [ξ, b], we have

µ

(
a + b

2

)
(1 − q)(b − ξ) + qh

1 − q
≤
∫ b

ξ
µ(γ) hdqγ. (62)

By adding (61) and (62), we obtain the inequality in (60).

Remark 3. By taking x = b in (61) or x = a along with h = 0 in (62), we can obtain the
following inequality:

µ

(
a + b

2

)
≤ 1

b − a

∫ b

a
µ(γ) dqγ. (63)

The above inequality (63) is independently proved in ([15] Theorem 3.2). Unfortunately, the proof is
not correct; see ([20] Example 5). Here, we have imposed an additional symmetric function condition
to ensure the result. Hence, if we impose a condition of symmetry in addition to the assumptions
in ([15] Theorem 3.2), we obtain the correct result.

5. Conclusions

This article provides a base for unifying the theory of q− and h-derivatives provided
in [16] by Kac and Cheung. The notion of a q − h-derivative that generates the q-derivative
and h-derivative is introduced. The q − h−binomial (ξ − a)n

h,q analogue to (ξ − a)n is
defined, which generates the q−binomial (ξ − a)n

q and h−binomial (ξ − a)n
h in particular.

The q − h-derivatives of the q − h−binomial (ξ − a)n
h,q are found, which generate the q-

derivative of the q−binomial (ξ − a)n
q and h-derivative of the h−binomial (ξ − a)n

h in
particular. The rest of the theory in [16] needs further attention from researchers, as it may
be unified in a similar way to the q− h-derivative and q− h−binomial. In addition, the q− h-
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derivatives and integrals are defined on an interval [a, b], which is used to establish some
inequalities linked to recent research and provide a corrected proof of the inequality in [15].
“The composite derivatives and integrals create the opportunity to study theoretical and
practical concepts and problems of different fields related to q-derivative and h-derivative
simultaneously”.
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