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Abstract: To address the problem of problematic spray design inside mining anchor-digging equip-
ment, a switching seal using a permanent magnet eddy current drive is initially presented here. The
layer model of the permanent magnet eddy current structure is established, the subdomain analysis
model is introduced, the permanent magnet eddy current structure is divided into six regions along
the axial direction, and the boundary equations are established at the interfaces of each region. The
vector magnetic potential equations in each region are deduced, along with the electromagnetic
torque and axial force equations. The computational results are compared and analyzed with the
results of finite element simulation, verifying the accuracy of the theoretical model. The design of
experiments is used to verify the feasibility of the switching seal using the permanent magnet eddy
current structure.

Keywords: switch seal; permanent magnet drive; electromagnetic field design; split-variable method

1. Introduction

The internal spraying system of mining anchor-digging equipment is a technical
device used for adsorbing and settling dust on the underground mining face, reducing
the temperature of the cutting teeth, and eliminating sparks, with the effect of improving
the visibility of the working face, improving the working environment, and increasing the
service life of the equipment. Because of its need to cut coal rock, its working speed is
generally around 20–50 rpm. It has a rotating water seal diameter, problems with short
service life, and the transverse axis of the retractable drum-digging anchor-integrated
machine is due to the structural design of the outer rotor, where the retractable cylinder
needs to provide a hydraulic oil pipeline. This special mechanical structure design causes
difficulties with the outer rotor drum as well as the internal runners into the water [1].
The structure of the transverse telescopic cut-off drum and the internal piping is shown
in Figure 1. Inside the speed reducer, there are two hydraulic channels: the extension
channel (13) and the retraction channel (14), which make it impossible for the internal spray
system, which is located under the cut-off drum teeth, to feed water from the outer drum.

Failure or non-functioning of the internal spray system may not only lead to premature
failure of the cutting pick, affecting the mining progress of the working face, but also
lead to major safety accidents caused by sparking of the cutting pick. For this reason, the
authors have designed a switching mechanical seal using permanent magnetic eddy current
transmission under the premise of replacing the telescopic cylinder with a water-medium
cylinder, where under the shutdown condition the pressurized water will be directed to
the water-medium telescopic cylinder, which can carry out telescopic action to direct the
pressurized water to the internal spraying nozzle on the drum during the rotation of the
cut-off drum. This structure is characterized by changing the compensation element of
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the traditional mechanical seal [2] from a spring to a permanent magnet drive structure.
In order to regulate the axial force of the permanent magnet eddy current structure, a
backplane is set behind the copper disc, and the distance between the backplane and
the copper disc needs to be designed according to the sealing requirements. Due to this
disc-type permanent magnet structure of the conductor disc assembly, there is no concise,
ready-made formula available for the axial force on the magnet disc assembly, while the
design of the axial force is the key to the success or failure of this mechanical seal.

Machines 2024, 12, x FOR PEER REVIEW  2  of  27 
 

 

   

Figure 1. Dual‐drive telescopic drum cut‐off mechanism  for  integrated anchor‐digging machines 

and the oil channel in the reducer of the drum. The dotted line shows the installation position of the 

telescopic hydraulic cylinder with the structure of the telescopic cutting drum. 

Failure or non‐functioning of the internal spray system may not only lead to prem‐

ature failure of the cutting pick, affecting the mining progress of the working face, but 

also lead to major safety accidents caused by sparking of the cutting pick. For this reason, 

the authors have designed a switching mechanical seal using permanent magnetic eddy 

current  transmission under the premise of replacing  the telescopic cylinder with a wa‐

ter‐medium cylinder, where under the shutdown condition the pressurized water will be 

directed to the water‐medium telescopic cylinder, which can carry out telescopic action to 

direct the pressurized water to the internal spraying nozzle on the drum during the ro‐

tation of the cut‐off drum. This structure is characterized by changing the compensation 

element of the traditional mechanical seal [2] from a spring to a permanent magnet drive 

structure.  In  order  to  regulate  the  axial  force  of  the permanent magnet  eddy  current 

structure, a backplane is set behind the copper disc, and the distance between the back‐

plane and  the copper disc needs to be designed according to the sealing requirements. 

Due to this disc‐type permanent magnet structure of the conductor disc assembly, there 

is no  concise,  ready‐made  formula available  for  the axial  force on  the magnet disc as‐

sembly, while the design of the axial force is the key to the success or failure of this me‐

chanical seal.   

Existing studies at home and abroad mainly focus on solid disc PM coupler [3] and 

disc PM  coupler  [4]  structures with  slotted  conductor discs, where  the  conductor disc 

backplanes of  these PM  eddy  current  structures  are  tightly  attached  to  the  conductor 

discs. The electromagnetic field modeling and analysis methods for this type of PM cou‐

pler usually  include analytical and numerical methods. The commonly used analytical 

methods  for  solving  the  electromagnetic field  include  the  equivalent magnetic  circuit 

method  [5],  the equivalent magnetic charge method [6], the equivalent current method 

[7],  the  separated variables method  [8], and  the  conformal  transformation method  [9]. 

Although the equivalent magnetic circuit method can solve complex models, the results 

tend to have large errors due to its oversimplification of the complex model in the calcu‐

lations [5]. A.C. Smith [10] used the layer model approach to model the magnetic field of 

a permanent magnet coupler with axial flux and used the separated variable method to 

solve  the field control equations  for each  layer  in  the magnetic field. This method can 

transform  the  model  from  a  three‐dimensional  disc  structure  to  a  form  in  a 

two‐dimensional Cartesian  coordinate  system, which has  the  characteristics of  simple 

solution and more accurate results. Wang and Lin et al. of Southeast University estab‐

lished a  two‐dimensional general analytical model of  the  layer model of a permanent 

Commented [M1]: Please check if the numbers in 

the figure need explanation. If so, please add ones 

to the figure’s caption. 

Commented [逸武5R3]: This is the explanation for 

that non‐English term. 

Commented [逸武4R3]: The dotted line shows the 

installation position of the telescopic hydraulic 

cylinder with the structure of the telescopic 

cutting drum. 

Commented [M3]: Please provide an explanation 

for non‐English terms   

 

Commented [逸武2R1]: The structures involved 

have already been described in the highlighted 

section above, and the remaining structures do 

not need to be extraordinarily described. 

Figure 1. Dual-drive telescopic drum cut-off mechanism for integrated anchor-digging machines
and the oil channel in the reducer of the drum. The dotted line shows the installation position of the
telescopic hydraulic cylinder with the structure of the telescopic cutting drum.

Existing studies at home and abroad mainly focus on solid disc PM coupler [3] and
disc PM coupler [4] structures with slotted conductor discs, where the conductor disc
backplanes of these PM eddy current structures are tightly attached to the conductor
discs. The electromagnetic field modeling and analysis methods for this type of PM
coupler usually include analytical and numerical methods. The commonly used analytical
methods for solving the electromagnetic field include the equivalent magnetic circuit
method [5], the equivalent magnetic charge method [6], the equivalent current method [7],
the separated variables method [8], and the conformal transformation method [9]. Although
the equivalent magnetic circuit method can solve complex models, the results tend to have
large errors due to its oversimplification of the complex model in the calculations [5]. A.C.
Smith [10] used the layer model approach to model the magnetic field of a permanent
magnet coupler with axial flux and used the separated variable method to solve the field
control equations for each layer in the magnetic field. This method can transform the
model from a three-dimensional disc structure to a form in a two-dimensional Cartesian
coordinate system, which has the characteristics of simple solution and more accurate
results. Wang and Lin et al. of Southeast University established a two-dimensional general
analytical model of the layer model of a permanent magnet coupler with axial flux and then
derived the expression of torque by the separated variable method, taking into account the
saturation effect of the yoke iron [11]. In order to improve the transmission characteristics
of the disc coupler, the structure of the disc coupler was optimized. Halbach arrays, stepped
arrays, and curved pole structures have been developed for the magnetization direction,
with the conductor disc structure slotted into the core or air. The results of Razavi’s [12]
study show that slotted copper conductor discs can increase the torque density by more
than 50%. However, at this point, the layer modeling method with continuity assumptions
does not satisfy the discontinuous eddy current fields or the magnetic field quantities. In
this case, the subdomain analytical method is more effective in dealing with discontinuous
magnetic field problems [13]. In addition, the finite element method based on 3D models
can take into account the nonlinearity of the material as well as the complex magnetic field
model. However, it needs to be remodeled and solved every time it is analyzed [14], and
although the results are accurate, they are time-consuming and affected by the mesh and
other related settings, and they are usually used as a validation method for the analytical
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model. Therefore, in the early stage of design, the analytical results of the modeling are
mainly used for electromagnetic field calculation and design.

It can be seen that the disc-type permanent magnet coupler structure with an adjustable
air gap between the conducting copper disc and its back iron has not yet been studied in the
relevant literature. In this paper, firstly, the layer model of this type of disc-type permanent
magnet coupler structure is established, and then the equations of the torque characteristics
and axial force characteristics are solved by the method of separating variables for this
model. Finally, the axial force, torque, and slip characteristics of this permanent magnet
coupler structure are investigated by using the three-dimensional finite element method in
comparison with the analytical method.

2. Structure and Operation Principles of Permanent Magnet Eddy Current
Switching Seal

A switching seal based on permanent magnet drive technology is shown in Figure 2,
including an outer rotor structure, an axial force permanent magnet drive structure, and
two mechanical seal structures. The left flange (2) and the right flange (8) of the outer rotor
structure are bolted together; the axial force permanent magnet drive structure includes a
conductor disc assembly and a magnet disc assembly; the conductor disc assembly includes
a copper disc (7) and a conductor disc backplane (6), which are fixed to the right flange to
achieve the function of rotating together with it, and the magnet disc assembly includes a
magnet disc backplane (3), a permanent magnet array (5), and a magnetic holding disc (4),
which are achieved by the profile shaft structure, restriction of rotational freedom, and the
ability to move axially under axial force.
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Figure 2. Permanent magnet eddy current drive-switching seal structure (1. water inlet, 2. left flange,
3. magnetic disc backplane, 4. magnetic holding disc, 5. permanent magnet array, 6. conductor disc
backplane, 7. copper disc, 8. right flange, 9. right dynamic ring, 10. right stationary ring, 11. left
stationary ring, 12. left dynamic ring).

First of all, the two working conditions of the switching seal are defined: when the right
seal is closed and the left seal is open, the pressure medium is led to the expansion cylinder
of the transverse retractable cutting drum by the inlet port, which is called the cylinder
working condition; when the left seal is closed and the right seal is open, the pressure
medium is led to the inner spray water distribution seal of the transverse retractable cutting
drum by the water inlet, which is called the inner-spraying condition.

The operation of the switching seal is realized by the axial force between the conductor
disc assembly and the magnet disc assembly; it consists of two parts: the axial attraction
of the conductor disc backplane on the permanent magnet, and the axial repulsion of the
permanent magnet by the induced magnetic field generated when the copper disc was
cutting. At low slip, the axial attraction of the conductor disc backplane to the permanent
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magnet array plays a dominant role, and this attraction keeps the switching seal in the
cylinder working condition. When the slip increases, the axial repulsion of the copper disc
to the permanent magnet array plays a dominant role, and the repulsion overcomes the
medium pressure and attraction, switching the seal to the inner-spraying condition. When
the slip decreases, the axial attraction once again plays a dominant role, and the attraction
overcomes the medium pressure in the internal spray condition, restoring the cylinder
working condition. The working process of the reversing seal is reflected in the hysteresis
characteristic. The material and structural parameters are detailed in Table 1.

Table 1. Switching seal material and structural parameters.

Structure Name Material Outer Diameter
(mm)

Inner Diameter
(mm)

Thickness
(mm)

Water inlet 022Cr17Ni12Mo2 20 12 -
Left flange 06Cr19Ni10 360 22 70

Magnetic disc backplane 45# 280 110 6
Magnetic holding disc 06Cr19Ni10 280 50.6 12

Permanent magnet array NdFeB35 240 160 12
Conductor disc backplane 45# 240 160 5

Copper conductor TU2 280 50 15
Right flange 06Cr19Ni10 360 20 65

Right dynamic ring Nitrile rubber 28 22 5
Right stationary ring Filled with PTFE resin 30 20.5 5.5

Left dynamic ring Silicon carbide 26 22 4
Left stationary ring M106 K 28 21 5.5

In order to study this type of switching mechanical seal with a permanent magnet
eddy current transmission structure, the drive characteristics of the permanent magnet
eddy current structure should be studied first. The 3D model of this permanent magnet
eddy current structure is shown in Figure 3.
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Figure 3. Three-dimensional (3D) permanent magnet eddy current structure for switching mechanical seal.

Figure 4 shows the 2D model of the permanent magnet drive structure. The 2D model
can better reflect the geometric parameters of the permanent magnet drive structure. The
geometric parameters of the model include the inner diameter of the permanent magnet,
dpi; the outer diameter of the permanent magnet, dpo; the diameter of the distribution circle
of the permanent magnet, davg; and the inner diameter of the copper disc, dri; the outer
diameter of the copper disc, dro; a is the thickness of the magnet disc backing iron, b-a is
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the axial thickness of the permanent magnet array, δ1 is the thickness of the working air
gap and has the value c-b, d-c is the axial thickness of the copper disc, δ2 is the thickness of
the backplane air gap and has the value e-d, and f-e is the thickness of the backplane of the
conductor disc.
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The structural parameters and performance parameters of the permanent magnet
eddy current structure are shown in Tables 2 and 3.

Table 2. Structural parameters of permanent magnet coupling device.

Structural Parameters Symbolic Value

Permanent magnet inner diameter dpi 160 mm
Permanent magnet outer diameter dpo 240 mm

Permanent magnet distribution circle diameter davg 200 mm
Permanent magnet pole pair number p 12

Permanent magnet duty ratio α 0.5
Copper disc inner diameter dci 150 mm
Copper disc outer diameter dco 250 mm

Working air gap δ1 2 mm~10 mm
Backplane air gap δ2 0 mm~10 mm

Difference in rotational speed n 0~1500 rpm

Table 3. Permanent magnet coupling device material properties.

Definition Symbolic Value

Vacuum permeability µ0 4π × 10−7 H/m
Relative permeability of magnet disc backplane

and conductor backplane µ1µ6 2000

Relative permeability of copper µ4 0.999991
Relative permeability of air µ3µ5 1

Relative permeability of permanent magnet µ2 1.0997785406
Permanent magnet remanence Br 1.22 T

Relative coercivity of permanent magnet Hc −8.9 × 105 A/m
Conductivity of copper σ4 5.7 × 107 S/m

Conductivity of magnet disc backplane and
conductor backplane σ1σ6 2.0 × 107 S/m
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3. Modeling and Analysis of Permanent Magnet Eddy Current Structures
3.1. Model and Assumptions

The structure of the permanent magnet drive of the switching seal is shown in
Figures 2 and 3. The magnet disc assembly consists of permanent magnets, a stainless steel
frame, and the backplane of the magnet disc, with axial movement. Permanent magnets
with north–south pole alternation are axially magnetized in a fan-shaped distribution
along the circumference. The conductor disc assembly consists of the copper disc and
the conductor disc backplane. There is a second air gap between the copper disc and
its backplane, which is called the backplane air gap. The holding discs of the conductor
disc assembly and magnet disc assembly consist of austenitic stainless steel that is not
magnetically conductive and is intended to minimize the influence of other metal parts
that may be ferromagnetic on the permanent magnet drive structure.

The structure model of the permanent magnet drive of the switching seal was unfolded
along the circumferential direction into a linear model, and the model was truncated axially,
resulting in a two-dimensional linear model in Cartesian coordinates (Figure 5). The
transformed 2D linear model can be divided into six different layers:

Layer 1: Magnet disc backplane layer;
Layer 2: Permanent magnet array layer;
Layer 3: Working air gap layer;
Layer 4: Copper layer;
Layer 5: Backplane air gap layer;
Layer 6: Conductor disc backplane layer.
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a right-angle coordinate system.

To simplify the calculation process and facilitate research, the following assumptions
are made:

Only consider the z-component of the eddy current and assume that the z-component
of the eddy current is correlated with the x- and y-directions. This is because only the
z-component of the eddy current contributes to the drive device.

Each layer is homogeneous, with consistent material properties, and the electromag-
netic field in the air regions outside the magnet disc backplane layer and the conductor
disc backplane layer is not considered.

Neglect curvature errors caused by coordinate system transformations.
The model has natural periodic boundary conditions along the x-direction, with the

period determined by the distance between the poles of the permanent magnet.
The backplane on the conductor disc assembly has finite permeability and non-zero

conductivity. Eddy current effects of this layer should be considered in the layer model.
The displacement current in the conductor is ignored.
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Analysis is conducted based on the relative velocity between the conductor disc
assembly and the magnet disc assembly; v can be represented as follows:

v =
πndavg

60
(1)

where n represents the relative velocity between the conductor disc and the magnet disc
(rpm), while davg represents the average diameter of the permanent magnet (mm).

The subsequent establishment of the mathematical model for the electromagnetic field
will be based on the above assumptions.

3.2. Model Analysis and Control Equations

The basic magnetic field equation of the permanent magnet eddy current structure
is expressed in terms of the magnetic vector [15] as Poisson Equation (2). Its derivation is
shown in Appendix A:

∇2Ak =
∂2 Ak
∂x2 +

∂2 Ak
∂y2 = −µ0µkJk (2)

where Ak represents the magneticmvector of Layer k. µ0 represents the vacuum permeabil-
ity, with a value of 4π × 10−7 H/m. µk represents the relative magnetic permeability of
Layer k. Jk represents the current density in Layer k.

Layer 2 has a magnetic field source but no current, and the magnetization intensity
M2 = Mr. The magnetic field intensity in the x-direction and y-direction is

B2 =

[
B2,x
B2,y

]
= µ0µ2

[
H2,x
H2,y

]
+ µ0

[
0

Mr

]
(3)

When a specific type of permanent magnet material is selected, the relationship
between the magnetization intensity of the permanent magnet can be expressed as follows:

Mr =
Br

µ0
(4)

where Br is the remanence of the permanent magnet, as shown in Figure 6, where Br along
the x-direction in a rectangular wave distribution in the permanent magnet and outside
the permanent magnet is equal to Br(−Br) and 0, respectively, and Br expands the Fourier
series as follows:

Br(x) = ∑
n

Br,neimx (n = 1, 3, 5 . . .) (5)

m =
π

τpn
(6)

where τp is the pole distance, τp =
πdavg

2p
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Thus,
∇× B2 = ∇× (H2 + Mr) = µ0∇× Mr (7)

The field control equation satisfied by Layer 2 is

∇2A2 = −µ0∇× Mr = −∇× B2 (8)

Layers 1, 3, and 5 have no magnetic field sources and no current.{
∇× Hk = Jk = 0

Bk = µ0Hk
(9)

Layer 1 is the backplane of the magnet disc assembly, which has a velocity of zero
with respect to the permanent magnet; Layer 3 and Layer 5 are the air gap regions, with a
conductivity of zero and no current. Thus, the equations that regulate the electromagnetic
field within these regions are as follows:

∇2A1 =
∂2 A1

∂x2 +
∂2 A1

∂y2 = 0 (10)

∇2A3 =
∂2 A3

∂x2 +
∂2 A3

∂y2 = 0 (11)

∇2A5 =
∂2 A5

∂x2 +
∂2 A5

∂y2 = 0 (12)

Layer 4 and Layer 6 have no magnetic field sources but have current flowing through
them. 

∇× H4 = J4
J4 = σ4E4

∇× E4 = − ∂B4
∂t = −dB4

dx
dx
dt = −dB4

dx v
B4 = µ0µ4H4

(13)


∇× H6 = J6

J6 = σ6E6

∇× E6 = − ∂B6
∂t = −dB6

dx
dx
dt = −dB6

dx v
B6 = µ0µ6H6

(14)

Solving the relative velocity with Equation (1), the field control equations satisfied by
Layer 4 and Layer 6 are

∇2A4 =
∂2 A4

∂x2 +
∂2 A4

∂y2 =
nπµ0µ4σ4davg

60
dA4

dx
(15)

∇2A6 =
∂2 A6

∂x2 +
∂2 A6

∂y2 =
nπµ0µ6σ6davg

60
dA6

dx
(16)

At this point, the general solution for the magnetic field of this type of disc-shaped
permanent magnet coupling device is Equation (17) [16]. The detailed calculation process
is presented in Appendix B

A1(x, y) = (C1emy + D1e−my)eimx

A2(x, y) =
(

C2emy + D2e−my − jBr
m

)
eimx

A3(x, y) = (C3emy + D3e−my)eimx

A4(x, y) =
(
C4eλ1y + D4e−λ1y)eimx

A5(x, y) = (C5emy + D5e−my)eimx

A6(x, y) =
(
C6eλ2y + D6e−λ2y)eimx

(17)
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where Ci and Di depend on the boundary conditions. The definitions of λ1 and λ2 are as
follows [17]:

λ1 =
4
√

m4 + (mµ0µ4σ4v)2ej 1
2 arctan( µ0µ4σ4v

m ) (18)

λ2 =
4
√

m4 + (mµ0µ6σ6v)2ej 1
2 arctan( µ0µ6σ6v

m ) (19)

3.3. The Boundary Conditions

According to Assumption 2, neglecting the air regions outside the two backplane
layers, the boundary conditions are as follows:

∂A1n
∂x

∣∣∣
y=0

= 0

∂A6n
∂x

∣∣∣
y= f

= 0
(20)

According to the basic theory of electromagnetic fields, at different interfaces be-
tween media, the magnetic field satisfies the continuity of the tangential component of the
magnetic field intensity and the normal component of the magnetic induction intensity
(satisfying the Dirichlet–Neumann interface conditions).

dAkn
dx

=
dA(k+1)n

dx

∣∣∣∣
k=1,2,3,4,5

(21)

1
µk

dAkn
dy

=
1

µk+1

dA(k+1)n

dy

∣∣∣∣
k=1,2,3,4,5

(22)

Detailed boundary conditions are shown in Appendix C.

3.4. Torque Equation

From the relationship between eddy current density and magnetic flux density, the
expression for the eddy current density in the copper conductor disc of the fourth layer of
the conductor disc assembly and its backplane of the sixth layer can be obtained as follows:

J4z = −σ4v
∂A4

∂x
= −imσ4v

(
C4eλ1y + D4e−λ1y

)
eimx (23)

J6z = −σ6v
∂A6

∂x
= −imσ6v

(
C6eλ1y + D6e−λ1y

)
eimx (24)

Therefore, the average eddy current density in the copper conductor disc and the
backplane of the conductor disc assembly can be expressed as follows:

J4avg =

´ d
c
´ τp

2
−τp

2

J4zdxdy

τp(d − c)
(25)

J6avg =

´ f
e
´ τp

2
−τp

2

J6zdxdy

τp( f − e)
(26)

The eddy current losses in the copper conductor disc and the backplane of the conduc-
tor disc assembly can be calculated from the eddy current density as follows:

P4ω =
L4

σ4

¨

Layer4

∣∣∣J4avg
2
∣∣∣dxdy (27)
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P6ω =
L6

σ6

¨

Layer6

∣∣∣J6avg
2
∣∣∣dxdy (28)

Therefore, the analytical expression for the output torque of the entire conductor disc
assembly is

T =
P4ω + P6ω

ω
(29)

In the conductive layer of the conductor disc assembly, the induced eddy currents exist
in a closed-loop form within the conductive layer. However, only the eddy currents flowing
radially will affect the torque of the permanent magnet eddy current structure. Therefore,
Equation (30) neglects the circumferential flow of eddy currents outside the region directly
facing the permanent magnet and the conductor disc. The actual eddy current direction of
the conductor disk is shown in Figure 7. As a result, the calculated torque deviates from
the actual situation. Correcting for the three-dimensional end effects can make the model’s
calculation results more consistent with reality. The R-N correction factor provides a
correction factor for considering the three-dimensional end effects, improving the accuracy
of torque calculation in the model [18].

ks = 1 −
tanh

(
πLp
2τp

)
πLp
2τp

{
1 + tanh

(
πLp
2τp

)
tanh

(
π(Lc−Lp)

2τp

)} (30)

where Lp is the radial length of the permanent magnet, Lp =
(
dpo − dpi

)
/2; Lc is the radial

width of the copper disc, Lc = (dco − dci)/2.
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Therefore, the corrected output torque of the entire conductor disc assembly is

To = ksT (31)

3.5. Axial Force Equation

From the relationship between magnetic flux density and magnetic field intensity, the
expression for the magnetic flux density in the copper conductor disc and the backplane of
the conductor disc assembly can be obtained as follows:{

B4x = ∂A4
∂y = λ1eimx(C4eλ1y − D4eλ1y)

B4y = − ∂A4
∂x = −imeimx(C4eλ1y + D4e−λ1y) (32)

{
B6x = ∂A6

∂y = λ2eimx(C6eλ2y − D6eλ2y)
B6y = − ∂A6

∂x = −imeimx(C6eλ2y + D6e−λ2y) (33)

At this point, the axial force acting on the magnet disc can be expressed using the
Maxwell stress tensor method. The axial force can be represented as follows:

F =

‹
S4

↔
T4·ds+

‹
S6

↔
T6·ds (34)
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where S4 represents the surface surrounding the copper disc, S6 representsnthe surface

surrounding the yoke iron of the conductor disc, and
↔
T represents the Maxwell stress

tensor at any point on this surface. However, in the electromagnetic field model of the
permanent magnet eddy current structure, the current density vector on the surface of the
conductor disc has no axial component. Therefore, the expression for the Maxwell stress
tensor, after omitting the electric field intensity term, is given by Equation (35) as follows:

↔
T =

1
µ0

B2
x − 1

2 |B|
2 BxBy 0

ByBx B2
y − 1

2 |B|
2 0

0 0 − 1
2 |B|

2

 (35)

According to the tensor operator identity
‚

s ds =
˝

V ∇dV, the axial force acting on
the magnet disc can be expanded as follows:

F =

˚
V1

∇
↔
T4·dV+

˚
V2

∇
↔
T6·dV (36)

The axial force in the y-direction can be expressed as follows:

Fy = Fy4 + Fy6 (37)

Fy4 =

ˆ d

c

ˆ πdavg

0

 1
µ0

∂
(

B4yB4x
)

∂y
+

1
µ0

∂
(

B2
4y −

1
2 |B4|2

)
∂y

dxdy (38)

Fy6 =

ˆ f

e

ˆ πdavg

0

 1
µ0

∂
(

B6yB6x
)

∂y
+

1
µ0

∂
(

B2
6y −

1
2 |B6|2

)
∂y

dxdy (39)

4. Finite Element Analysis of the Electromagnetic Field in Permanent Magnet Eddy
Current Structures

In order to compare the accuracy of analytical results, and in accordance with the
design requirements of mechanical seal compensation mechanisms, considering the space
constraints inside the truncated roller, the structural design was first completed based on
the principle of coordination between the permanent magnet structure and the size of the
water inlet shaft seal. Secondly, referring to the research results of Mengyao Wang [19], it is
known that the torque and axial force affecting the transmission of the permanent magnet
drive mainly include the axial air gap length and slip. Magnetization strength is related to
the thickness of the permanent magnet and the thickness of the copper plane. Based on
this, the following assumptions and simplifications are made for the establishment and
analysis of the finite element model:

1. The permanent magnet material is neodymium iron boron, uniformly magnetized
along the axial direction, and the demagnetization caused by thermal conduction due
to eddy current effects is not considered.

2. The magnetic conductor is an isotropic material.
3. Only components related to electromagnetic effects in the model are considered,

namely, the permanent magnet, copper conductor disc, conductor disc backplane, and
the magnetic shielding effect of the conductor disc yoke iron. The electromagnetic
effects of other metal components are neglected, and their structures are treated as air.

4.1. Finite Element Model Meshing Results

The finite element mesh model of the permanent magnet eddy current drive mecha-
nism after irrelevant inspection is shown in Figure 8.
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4.2. Static Magnetic Field Results of the Permanent Magnet Eddy Current Structure

When the relative speed is 0 r/min, the magnetic flux density on the front and back of
the conductor disc assembly, as obtained from the simulation, is shown in Figure 9. At this
time, the permanent magnet drive switch is in a stationary position, and the position of the
conductor disc assembly relative to the magnet disc assembly is fixed. The magnetic field
in the air gap is kept stable by the residual magnetism of the permanent magnet, and the
main axial force on the magnet disc assembly is exerted by the conductor disc backplane.
From the static magnetic field analysis, it can be observed that the size of the air gap is
an important factor affecting the magnetic field intensity. Under the static conditions of
the cylinder, a 2 mm air gap allows the magnetic field to pass through a relatively narrow
gap, resulting in a large magnetic flux, with a magnetic field intensity of 0.613 T on the
surface of the conductor disc. However, under the 4 mm air gap of the spray condition, the
magnetic field intensity is relatively lower at 0.570 T due to increased magnetic leakage
in the air gap and on the surface of the permanent magnet. From Figure 10c, it can also
be observed that the arrangement of the stainless steel yoke iron on the conductor disc
provides good isolation from other metal materials.
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4.3. Transient Magnetic Field Results of the Permanent Magnet Eddy Current Structure

When the relative speed is 20 rpm, the magnetic flux density on the front and back
of the conductor disc assembly, as obtained from the simulation under two different
conditions, is shown in Figures 11 and 12. The magnetic flux in the air gap region on
the surface of the conductor disc within the permanent magnet eddy current structure
is attenuated compared to the static case. This is because, under static conditions, the
magnetic flux can fully pass through the air gap region, resulting in a higher magnetic field
intensity in the air gap. However, as the relative speed increases, as shown in Figure 13,
the magnetic flux in the working air gap region is affected by the locally induced magnetic
field of eddy currents, and the two magnetic fields superimpose, resulting in a decrease in
magnetic flux and, subsequently, a decrease in magnetic field intensity.
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By comparing the induced current density on the surface of the copper conductor disc
at 20 rpm in Figure 14a and 120 rpm in Figure 14b with a working air gap of 4 mm, it can
be observed that with increasing speed, the induced current density in the copper disc
increases rapidly, possibly due to the eddy current effect. Under low-slip conditions, as the
speed increases, the induced electromotive force in the copper disc increases, stimulating
more eddy currents. These eddy currents lead to a significant increase in the induced
current density in the copper disc, and this nonlinear response may result in a rapid
increase in induced current density.
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Figure 14. Transient induced current density map on the surface of the copper conductor disc:
(a) Induced current density at 20 rpm. (b) Induced current density at 120 rpm.

4.4. Transmission Characteristics of the Permanent Magnet Eddy Current Structure

From Figures 15 and 16, it can be observed that the overall theoretical curves of the
layer model’s analytical results are in good agreement with the finite element analysis
results in the low-slip region. The predictive results of the analysis and modeling method
are more accurate in the low-slip region, but there is a larger error in the region of larger
slips. However, the trend of the transmission characteristics is accurate. When cutting
coal at low speeds of 20 rpm at the truncation section, the analytical model can be used
to calculate the axial force and torque of the permanent magnet eddy current structure,
thereby calculating the range of compensating force that can be provided when designing
the seal and the switching conditions of the seal.
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structure (4 mm).

From Figures 17 and 18, it can be observed that the transmission characteristics of
the permanent magnet eddy current switch-type seal are related to the working air gap as
follows: as the working air gap increases, the torque transmitted by the permanent magnet
eddy current structure rapidly decreases, and the axial force transmitted also decreases
accordingly. The initial axial force applied to the magnet disc decreases as the working air
gap in-creases.
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From Figures 19 and 20, it can be observed that the transmission characteristics of the
permanent magnet eddy current structure are related to the backplane air gap as follows:
in the low-slip region, as the backplane air gap increases, the rate of increase in torque
transmitted by the permanent magnet eddy current structure decreases with increasing slip,
and the maximum torque that can be achieved decreases. The initial axial force decreases
with increasing backplane air gap, and the rate of increase in axial force with increasing slip
decreases. In the high-slip region, the torque and axial force of the permanent magnet eddy
current structure are not significantly affected by the thickness of the working air gap, but
they depend on the slip speed. This is because, under high-slip conditions, the interaction
between the induced magnetic field on the surface of the copper disc in the conductor disc
assembly and the magnetic field of the permanent magnet dominates.
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From Figures 21 and 22, the transmission characteristics of the permanent magnet
eddy current structure are not significantly connected to the thickness of the backplane,
as follows: when the working air gap is the same as the backing plate air gap, the torque
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and axial force communicated by the permanent magnet eddy current structure remain
constant as the backplane thickness increases.
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Figure 23 shows the relationship between axial force and different conductor disc
thicknesses at various backplane air gaps. It can be observed that the axial force applied
to the magnet disc is related to the size of the backplane air gap where the conductor
disc backplane is situated, and it is not dependent on the thickness of the conductor disc
backplane. When the backplane air gap is smaller, the axial force applied to the magnet
disc is greater.

Thus, as shown in Figure 24, in the static state, the attraction of the magnet disc
assembly by the conductor disc backplane is only related to the thickness of the adjustable
air gap, which tends toward 0 as this air gap increases, with the relationship approximated
by Fy = −139.9e−0.5389x.
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Figures 25 and 26 depict the relationship between axial force, torque, and slip for
different conductor disc thicknesses at various backplane distribution circle diameters and
backplane widths. It can be observed that, in the high-slip region, the axial force and torque
applied to the magnet disc are independent of the structural parameters of the conductor
disc backplane. This is because, at high slip, the transmitted axial force and torque mainly
come from the induced magnetic field generated by the copper disc in the conductor disc
acting on the magnet disc. In the low-slip region, the axial force and torque applied to the
magnet disc are related to the area of the magnet disc facing the conductor disc backplane.
A larger facing area results in a larger axial force and torque being applied to the magnet
disc. Figure 27 represents the axial force generated per unit area of the conductor disc
backplane for different distribution circles, where the smaller the total area of the conductor
disc backplane, the higher the axial force per unit area—a difference that is not captured by
the two-dimensional layer model.
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5. Experiments and Results

The unique structure of the switching seal makes it difficult to measure the torque and
axial force characteristics of the permanent magnet eddy current drive structure inside it.
Currently, the only way to indirectly reflect the validity of the permanent magnet eddy
current drive structure characteristics is by measuring the sealing of the switches. This
is done by checking the flow rate at the spraying and water supply outlets. It should be
noted, however, that such results only confirm the validity of the design concept of the PM
eddy current drive structure, but they do not reflect the accuracy of the modeling of the
transmission characteristics in question.

5.1. Test Prototypes and Test Methods

The test system was designed as shown in Figure 28, and its component equipment
and key parameters are shown in Table 4. The test principle was to control the speed of
the gear motor through the frequency converter and manually control the pressure and
flow of the water supply system. In the left seal and the right seal at the outlet pipe, we set
up a vibration-resistant pressure gauge, pressure sensors, and flow sensors, and used an
adjustable DC power supply to power the sensors; the collected data were routed through
the USB-6008 DAC to the host computer.
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Figure 28. Test system and components.

Table 4. Device model and performance parameters.

Instrument Composition Model Parameters

Geared motors YB3-380V-40-axis 3 kW Speed RPM1480 Ratio 20
DAC USB-6008 12-Bit,10 kS/s

Flow sensors FLYW110 0.8~8 m3/h,1.5%F.S.
Pressure sensors CYB-20SA 0~6.3 Mpa, 0.25%F.S.

Converter G120 3AC380V
Upper computer Region R9000P 3.2 GHz

Shockproof pressure gauge YN63-I 0~6.3 Mpa

The test methods were as follows: Firstly, install the prototype, use water to make sure
all parts are wet, and check whether there is any leakage and whether the data acquisition
system works normally. After, gradually increase the speed from 0 rpm to 50 rpm in 1 rpm
increments, and collect the flow rate data for fifteen minutes at each speed, and take the
average value of the time as the flow at that speed. Finally, gradually decrease the speed
from 50 rpm to 0 rpm in 1 rpm increments, collect the flow data at each speed for fifteen
minutes, and take the average value of the period as the flow at that speed.
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5.2. Test Results

In Figure 29, the speed–flow diagrams of the two seal outlets are shown when the
speed increases from 0 to 50 rpm and then decreases from 50 rpm to 0 rpm. It can be seen
that, during the rotation speed-up phase, the switching seal changes from the cylinder
condition to the internal spray condition at about 5 rpm, while during the rotation slow-
down phase, the switching seal changes from the internal spray condition to the cylinder
condition at about 10 rpm. The reason for this difference in speed between opening and
switching is the influence of the working air gap. The permanent magnet eddy current
structure of the switching seals has a working air gap of 2 mm when the left seal is closed,
at which time the axial force and torque are larger (see Figures 15, 17 and 18), whereas
when the right seal is closed the working air gap is 4 mm, and at this time the axial force
and torque are smaller compared to the left seal closure condition (see Figures 16–18). This
difference in speed between the switching conditions also verifies the correct analysis of
the transmission characteristics of the permanent magnet eddy current structure.
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6. Conclusions

1. This study utilized the method of separation of variables to solve the electromagnetic
field of the permanent magnet eddy current structure with a gap between the conduc-
tor disc and the backplane, and we derived the calculation methods for torque and
axial force. Validation against results obtained using finite element methods showed
that the analytical results were accurate, particularly under low-slip conditions, thus
making this method suitable for electromagnetic field design calculations for such
low-slip disc-type structures.

2. The working air gap of the permanent magnet eddy current structure plays a dominant
role in the transmitted torque and axial force. Both torque and axial force decrease
with increasing working air gap. The backplane air gap significantly influences the
transmission characteristics of the switch-type seal in the low-slip region, leading to
decreased torque transmission and initial axial force with increasing backplane air
gap. However, in the high-slip region, the backplane air gap has little effect on the
transmission characteristics.

3. The transmission characteristics of the permanent magnet eddy current structure
show no significant relationship with the thickness of the conductor disc’s backplane.
However, under low-slip conditions, axial force and torque are related to the area of
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the conductor disc’s backplane facing the permanent magnet, with larger facing areas
resulting in greater transmitted axial force and torque.

7. Patents

We have applied for a patent on the relevant technology, patent number
CN202211533290.7, which is currently in the stage of substantive examination.
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Appendix A. Derivation of the Governing Equations for Electromagnetic Fields

According to the fundamental equations of the magnetic field,

B = µ0µr H + µ0M (A1)

In a field with curl, there is

∇× B = µ0(µr∇× H +∇× M) (A2)

By introducing vector magnetic potential, Equation (A2) can be simplified to

∇× (∇× A) = µ0(µr∇× H +∇× M) (A3)

By the curl calculation formula, there are

∇× (∇× A) = ∇(∇·A)−∇2A (A4)

According to the Coulomb gauge ∇·A = 0, Equation (A4) can be reduced to Equation (A5).
Tt is the electromagnetic field control equation for the layer model.

∇2A = −µ0(µr∇× H +∇× M) (A5)

where Ak represents the magnetic vector of Layer k. µ0 represents the vacuum permeability,
with a value of 4π× 10−7 H/m. µk represents the relative magnetic permeability of Layer k.
Hk represents the magnetic field intensity of Layer k. Mk represents the magnetization
intensity of Layer k.
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Appendix B. Solving the Governing Equations of Electromagnetic Fields Using the
Method of Separated Variables

Since only the eddy current components in the z-direction are considered, and the
eddy current components in the z-direction are only related to x and y, we can neglect the
magnetic field strength and the magnetic induction strength in the z-direction.

The solution to Laplace’s equation in the separated variables method is given by

∇2Ak =
∂2Ak
∂x2 +

∂2Ak
∂y2 = 0 (A6)

Suppose that the solution of a second-order partial differential equation can be ex-
pressed as the product of functions of individual independent variables:

Ak(x, y) = f (x)g(y) (A7)

Substituting the above form of the solution into the given second-order Laplace
equation,

f ′′(x)
f (x)

+
g′′(y)
g(y)

= 0 (A8)

The transformation into two ordinary differential equations is achieved by setting
both sides proportional to the derivative of some variable:

f ′′(x)
f (x) = λ2

g′′(x)
g(x) = −λ2

(A9)

Solving the two Equations (A10) and (A11) usually yields an eigenvalue problem on λ:

f ′′(x) = −λ f (x) (A10)

g′′(y) = λg(y) (A11)

Since the magnetic field exhibits a periodic distribution in the x-direction, f (x) can be
expressed as a Fourier series in complex form:

f (x) = ∑ Breimx (A12)

The magnetic vector can be expressed by the separated variables method as follows:

Ak(x, y) = Ak(x)·Ak(y) (A13)

Since the magnetic field exhibits a periodic distribution in the x-direction, the solution
of the magnetic vector can be expressed as follows:

Ak(x, y) = ∑
j=±1,3,5···

Ak(y)eimx (A14)

By introducing Equation (A14) into the electromagnetic field governing Equations (8),
(10)–(12), (15), and (16), The general solution is shown in Equation (17) Considering the
boundary conditions obtains the following matrix equation:
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em·0 e−m·0 0 0 0 0 0 0 0 0 0 0
ema e−ma −ema −e−ma 0 0 0 0 0 0 0 0
0 0 emb e−mb −emb −e−mb 0 0 0 0 0 0
0 0 0 emc e−mc −emc −e−mc 0 0 0 0 0
0 0 0 0 eλ1d e−λ1d −eλ1d −e−λ1d 0 0 0 0
0 0 0 0 0 0 eme e−me −eme −e−me 0 0
0 0 0 0 0 0 0 0 0 0 eλ2 f e−λ2 f

ema
µ1

− e−ma
µ1

− ema
µ2

e−ma
µ2

0 0 0 0 0 0 0 0

0 0 emb
µ2

− e−mb
µ2

− emb
µ3

e−mb
µ3

0 0 0 0 0 0

0 0 0 0 m emc
µ3

−m e−mc
µ3

−λ1
eλ1c
µ4

λ1
e−λ1c

µ4
0 0 0 0

0 0 0 0 0 0 λ1
eλ1d

µ4
−λ1

eλ1d
µ4

−m emd
µ5

m e−md
µ5

0 0

0 0 0 0 0 0 0 0 m eme
µ5

−m e−me
µ5

−λ2
eλ2e
µ6

λ2
e−λ2e

µ6





C1
D1
C2
D2
C3
D3
C4
D4
C5
D5
C6
D6



=



0
iBr
m
− iBr

m
0
0
0
0
0
0
0
0
0



(A15)

Appendix C. Detailed Boundary Conditions
∂A1n

∂x = ∂A2n
∂x

∣∣∣
y=a

1
µ1

∂A1n
∂y = 1

µ2

∂A2n
∂y

∣∣∣
y=a

(A16)


∂A2n

∂x = ∂A3n
∂x

∣∣∣
y=b

1
µ2

∂A2n
∂y = 1

µ3

∂A3n
∂y

∣∣∣
y=b

(A17)


∂A3n

∂x = ∂A4n
∂x

∣∣∣
y=c

1
µ3

∂A3n
∂y = 1

µ4

∂A4n
∂y

∣∣∣
y=c

(A18)


∂A4n

∂x = ∂A5n
∂x

∣∣∣
y=d

1
µ4

∂A4n
∂y = 1

µ5

∂A5n
∂y

∣∣∣
y=d

(A19)


∂A5n

∂x = ∂A6n
∂x

∣∣∣
y=e

1
µ5

∂A5n
∂y = 1

µ6

∂A6n
∂y

∣∣∣
y=e

(A20)

where a, b, c, d, e, and f are the y coordinates of each layer interface in the layer model,
as shown in Figure 5, whose values are determined by the parameters of the permanent
magnet eddy current structure.
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