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Abstract: The causal effect and pathways of gut microbiota and plasma metabolome on lung cancer
have been important topics for personalized medicine; however, the heterogeneity of lung cancer
subtypes has not gained enough attention in previous studies. This study sought to employ a
Mendelian randomization analysis to screen the specific gut microbiota and plasma metabolome,
which may have a causal effect on lung cancer. We further extended our analysis to estimate the
effects of these exposures on various pathological subtypes of lung cancer. Furthermore, a mediation
analysis was performed to identify the potential pathway underlying the influence of microbiota
and metabolites. Our study identified 13 taxa and 15 metabolites with a causal association with
the overall risk of lung cancer. Furthermore, we found 8 taxa and 14 plasma metabolites with a
causal effect on lung adenocarcinoma, 4 taxa and 10 metabolites with a causal effect on squamous
cell lung carcinoma, and 7 taxa and 16 metabolites with a causal effect on SCLC. We also identified
seven mediation pathways that could potentially elucidate the influence of these microbiota and
metabolites on overall lung cancer or special subtypes. Our study highlighted the heterogeneity of
the gut microbiome and plasma metabolome in a lung cancer subtype and elucidated the potential
underlying mechanisms. This could pave the way for more personalized lung cancer prevention
and treatment.
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1. Introduction

Lung cancer (LC) is a devastating disease with the highest incidence and mortality
among all malignancies worldwide [1]. Lung adenocarcinoma (LUAD), squamous cell
lung cancer (SCLC), and small cell lung cancer (SCC) are the most common pathological
subtypes of LC, accounting for more than 90% of all LC cases [2]. Each subtype has
distinct morphological features, molecular profiles, and clinical behaviors that impact
their diagnosis, prognosis, and treatment strategies [3]. Understanding the heterogeneity
of pathogenesis across these subtypes is essential for developing precise therapies and
personalized treatment strategies for patients. Epidemiological studies have hinted at the
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heterogeneity of pathogenesis across LC pathological subtypes [4]. For example, SCLC is
most common in male smokers, while LUAD is generally thought to be related to genetic
and environmental factors. Moreover, distinct molecular alterations have been found to
drive the development and progression of different subtypes of lung cancer. For example,
LUAD commonly exhibits driver mutations in genes such as EGFR, KRAS, and EML4-
ALK, allowing for targeted therapy with tyrosine kinase inhibitors. In contrast, SCLC is
characterized by TP53 and RB1 mutations, making it aggressive and initially responsive
to chemotherapy and radiation but prone to rapid resistance [5]. SCC, on the other hand,
often arises from chronic inflammation and tobacco exposure, leading to frequent TP53
mutations and chromosomal instability. While SCC treatment typically involves surgery,
radiation, and chemotherapy, targeted therapies have been less successful compared to
LUAD [6,7]. An increasing number of studies have unveiled subtype-specific biomarkers
and therapeutic targets, emphasizing the importance of personalized treatments tailored to
each patient’s tumor characteristics [8].

In recent years, several studies showed the important role of gut microbiota (GM) in LC
pathogenesis and treatment. The results from Lu et al. showed that Ruminococcus gnavus
was significantly upregulated in LC patients, with Firmicutes, Clostridia, Bacteroidacea,
Bacteroides, and Lachnospira being enriched in the healthy population [9]. Lee et al.
showed that bifidobacterium could improve sensitivity to immune checkpoint inhibitors
(ICIs) in non-small cell lung cancer (NSCLC) patients [10]. By analyzing stool samples from
sixteen NSCLC patients treated with ICIs, Huang et al. reported an overrepresentation
of parabacteroides distasonis, bacterium LF-3, sutterella wadsworthensis HGA0223, and
bacteroides vulgatus in patients with a favorable response to ICIs [11]. Derosa et al.
suggested that GM might mediate the negative association between antibiotics and ICIs
activity in patients with advanced NSCLC and renal cell cancer [12].

The plasma metabolome (PM) is thought to be an important medium for GM. For col-
orectal cancer, lactobacillus gallinarum-derived indole-3-lactic acid could protect against in-
testinal tumorigenesis by promoting the apoptosis of colorectal cancer cells [13]. For LUAD,
PM, and GM were also found to be associated with cancer invasive grades. Zhao et al.
revealed the serum-level differences in glycerophospholipids, imidazopyrimidines, and
AcylGlcADG 66:18 between LC patients and healthy volunteers. Furthermore, they showed
that LC microbes were associated with metabolites, such as Erysipelotrichaceae_UCG_003,
Clostridium, and Synergistes, which were associated with glycerophospholipids [14]. How-
ever, traditional etiology research struggled to establish causality and the heterogeneity
did not gain enough attention in previous studies to reveal the effect of GM and PM
on LC. The causal effect of GM and PM on LC and the heterogeneity across subtypes
remain controversial.

Mendelian randomization (MR) is a method in epidemiology that uses single-nucleotide
polymorphisms (SNPs) as instrumental variables (IVs) to evaluate the causal effect of expo-
sure on outcome [15]. This method minimizes two major concerns with other observational
epidemiologic study designs. Due to the inherently random allocation, genetic variants are
independent of confounders, which enables the inference of causal effects in the presence
of unobserved confounding. Moreover, MR results are protected against reverse causa-
tion bias as genetic variants are certainly randomly allocated before the progression of
disease [16].

There are several advantages of MR [17]. Firstly, it could address many limitations of
observational study design, including confounding, reverse causation, and the demonstra-
tion of causality. Secondly, compared to conducting a randomized clinical trial, MR requires
less time and expense. Thirdly, MR allows for an analysis of existing studies. Fourthly, MR
could address questions that randomized clinical trials were unable to answer.

To evaluate the causal role of GM and PM across LC subtypes, we integrated a
systematic MR, utilizing previously published genome-wide association study (GWAS)
summary data.
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2. Materials and Methods
2.1. Study Design and Data Sources

This study followed the STROBE-MR guidelines for reporting MR results [18]. The
flowchart is depicted in Figure S1. We obtained summary GWAS databases for LC, LUAD,
SCC, and SCLC from the GWAS Catalog. The databases GCST004744, GCST004748,
GCST004746, and GCST004750 were sourced from a meta-analysis which investigated
traits related to LC with a large sample size and minimal sample overlap [19]. In the plasma
metabolites database, a total of 452 plasma metabolites were examined in a population of
7824 Europeans [20]. Additionally, the GM GWAS results were sourced from the MiBioGen
program. The MiBioGen program was a large-scale international research project which
evaluated the associations between the abundance of 211 gut taxa and whole-genome
SNPs in over 18,000 individuals from more than 20 labs worldwide. In this program, 16r
DNA sequencing was utilized to analyze taxa abundance, and genotyping information
was evaluated using whole-genome genotyping microarrays [21]. The details of GWAS
databases included in this study are summarized in Table S1.

2.2. Instrumental Variables Screening and Mendelian Randomization Analysis

During the IVs for the GM and PM screening process, we dropped all palindromic
SNPs from the analysis to ensure we could comprehensively capture the relevant infor-
mation. To ascertain the causal relationship between GM and LC, or PM and LC, we
employed different methods of MR based on the number of IVs. If there were at least two
IVs available, the Inverse Variance Weighted (IVW) method was performed. In cases where
only one or two IVs were present, the Wald ratio model was applied. To investigate the
heterogeneity and pleiotropy of the selected exposure, we employed MR–Egger’s intercept
and the Cochran Q test. Only exposure that exhibited no heterogeneity or pleiotropy (with
a pleiotropy p-value > 0.05 and a heterogeneity Q-value > 0.05) was included in subsequent
analyses. We performed an MR Steiger test of directionality. The strength of the IVs was
assessed by calculating the F-statistic. If the corresponding F-statistic was <10, it was
considered that there was significant weak instrumental bias and the IV was dropped from
this study. This rigorous screening process ensured that our analysis was based on robust
and reliable exposure, thereby enhancing the validity of our findings.

2.3. Enrichment Analysis

For metabolites identified to have a causal effect on LC, we performed an enrichment
analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Small
Molecule Pathway Database (SMDPB) to explore the potential functions of this metabolism,
including metabolite pathway enrichment analysis and pathway activity profilin. The
enrichment analysis was conducted by MetaboAnalyst 5.0 (https://www.metaboanalyst.
ca/, accessed on 19 August 2023).

2.4. Mediation Analysis

Mediation analysis was a method used to evaluate the role of a third variable in
the mechanisms of exposure-induced outcomes. Through mediation MR, we identified
a pathway from GM to PM to LC, which helps elucidate the potential mechanism by
which GM could contribute to LC. Initially, we performed a mediation analysis to evaluate
the possible link between GM and PM identified by MR. Subsequently, we evaluated
the ‘indirect’ effect of GM on LC through a two-step MR process. The proportion of the
mediation effect of the PM was calculated using the following formula [22,23]:

PM =
βGP ∗ βPL

βGL

In this formula, PM represents the mediation effect of metabolites, βGP represents the
causal MR effect of GM on PM, βML represents the MR causal effect of PM on LC, and
βGL represents the ‘total’ effect of GM on LC.

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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2.5. Software and Pre-Registration

We used R (version 4.1.3) package TwoSampleMR (version 0.4.26) to conduct IV
selection, as well as Mendelian randomization and mediation analysis [24]. The flowchart
was produced by Fig-draw (https://www.figdraw.com/ accessed on 21 November 2023).

3. Results
3.1. Gut Microbiome Mendelian Randomization Analysis

Through univariate MR analysis, we examined the causal effect of all gut taxa on
LC (Figure 1A), LUAD (Figure 1B), SCC (Figure 1C), and SCLC (Figure 1D). We found
six taxa which exhibited a positive causal effect on LC and seven taxa which showed
a protective causal effect. When analyzing according to histopathological subtype, we
identified eight taxa with a significant causal effect on LUAD (including four taxa that
exhibited a positive causal effect and four taxa that showed a protective causal effect), four
taxa with a significant positive causal effect on SCC, and seven taxa with a significant
causal effect on SCLC (including four taxa that exhibited a positive causal effect and three
taxa that showed a protective causal effect) (Figure 2). In exploring the taxa shared between
subgroups, we found five taxa shared by LUAD and LC, and one taxon shared by SCC
and LC (Figure S2). Slackia and streptococcus showed a positive association with LC and
LUAD risk. RuminococcaceaeUCG005 was a risk factor associated with SCC and LC risk.
Notably, no taxon was shared by different pathological subtypes, suggesting that the effect
of GM varies across different pathological subtypes of LC. This finding underscored the
heterogeneity of the relationship between GM and LC.
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Figure 1. Results of a Mendelian randomization analysis and sensitivity analysis between gut
microbiota and lung cancer (A), lung adenocarcinoma (B), squamous cell carcinoma (C), and small
cell lung cancer (D) (locus-wide significance, p < 1 × 10−5).
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Figure 2. Mendelian randomization results of gut taxa with a causal relationship to outcomes.
Abbreviation: LC, lung cancer; LUAD, lung adenocarcinoma; SCC, squamous cell carcinoma; SCLC,
small cell lung cancer; Nsnp, number of single-nucleotide polymorphisms; IVW, inverse variance
weighted; OR, odds ratio.

3.2. Plasma Metabolome Mendelian Randomization Analysis

As shown in Figure 3, we conducted an analysis of the causal effect of 452 plasma
metabolites on LC, LUAD, SCC, and SCLC. In total, we identified fifteen plasma metabo-
lites showed a causal association with LC, including eight metabolites with a positive
causal effect and seven metabolites with a protective causal effect. In LUAD, we found
fourteen plasma metabolites with a causal effect, comprising eight metabolites with a
protective effect and six metabolites with a positive effect. In SCC, we found an equal
number of protective and risk metabolites, totaling 10. For SCLC, we identified a total of
sixteen metabolites with significant causal effect, including seven protective and nine risk
metabolites (Figure 4). Interestingly, there were some factors shared by subtypes of LC.
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For instance, Docosapentaenoic acid (DPA) was a risk factor shared by total LC, LUAD,
SCC, and SCLC (Figure S3). These results showed the causal effect of PM on LC and the
heterogeneity of PM across LC subtypes.
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3.3. Enrichment Analysis

Enrichment analysis, based on the KEGG, revealed that the 15 metabolites with a
causal effect on total LC were significantly enriched in the pathways of valine, leucine,
and isoleucine biosynthesis, as well as the vitamin B6 metabolism (Figure 5A). In the
SMPDB, these metabolites were enriched in the alpha-linolenic acid and linoleic acid
metabolism, the vitamin B6 metabolism, and threonine and 2-oxobutanoate degradation
(Figure 6A). When we conducted an enrichment analysis based on pathological subtype,
we found that the metabolites with a causal effect on LUAD were enriched in the vitamin
B6 metabolism pathway according to KEGG (Figure 5B), and in the alpha-linolenic acid
and linoleic acid metabolism, vitamin B6 metabolism, and betaine metabolism according to
SMPDB (Figure 6B). For SCC, 10 metabolites were enriched in valine, leucine, and isoleucine
biosynthesis in both KEGG (Figure 5C) and SMPDB (Figure 6C). For SCLC, KEGG-based
results showed that a total of 16 metabolites were enriched in the vitamin B6 metabolism,
butanoate metabolism, and pyruvate metabolism (Figure 5D). The SMPDB-based results
showed that these 16 metabolites were enriched in the alpha-linolenic acid and linoleic acid
metabolism, vitamin B6 metabolism, sulfate/sulfite metabolism, and estrone metabolism
(Figure 6D).
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3.4. Mediation Analysis Results

The taxa and metabolites with a significant causal effect on LC in MR analysis were
included in mediation analysis to identify the potential pathways through which the GM
and PMs affect LC. This analysis revealed a total of four mediation pathways: 40.8% of
the effect of the alloprevotella genus on LC was mediated by DPA (Figure 7A); 17.3%
of the effect of the ruminococcaceae UCG-003 genus on LC was mediated by gamma-
glutamylvaline (Figure 7B); 12.9% of the effect of the collinsella genus on LC was mediated
by serine (Figure 7C); 8.3% of the effect of the bacteroidia order on LC was mediated by
pyridoxate (Figure 7D). In LUAD, 11.1% of the effect of the bacteroidales class on LUAD
was mediated by pyridoxate (Figure 7E), In SCLC, two significant mediation pathways
were identified: 13.3% of the effect of the ruminiclostridium 6 genus on SCLC was mediated
by Serine (Figure 7F); 26% of the effect of the lentisphaerae phylum on SCLC was mediated
by laurylcarnitine (Figure 7G).
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4. Discussion

In this study, we explored the causal relationship between GM, PMs, and LC. We identi-
fied 13 taxa and 15 metabolites which were causally associated with LC risk. These metabo-
lites were predominantly enriched in the biosynthesis of valine, leucine, and isoleucine,
as well as the vitamin B6 metabolism. Through a mediation analysis of these exposures
with a significant causal effect on LC, we identified four pathways. When conducting an
analysis based on pathological subtypes, we discovered eight taxa and fourteen plasma
metabolites with a causal effect on LUAD, four taxa and ten metabolites with a causal
effect on SCC, and seven taxa and sixteen metabolites with a causal effect on SCLC. We
further investigated the shared factors between different subtypes. Among GM, no taxon
was shared by different subtypes. However, among PMs, DPA was common to LUAD,
SCC, and SCLC. The enrichment in each subgroup demonstrated tumor heterogeneity. For
LUAD, these metabolomes were enriched in the vitamin B6 metabolism. Conversely, for
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SCC, these metabolomes were enriched in valine, leucine, and isoleucine biosynthesis. In
the mediation analysis, we did not find any pathway shared by LUAD, SCC, and SCLC.

In this study, MR was utilized to assess the causal effect of GM and PMs on LC and
the major subtypes. Previous epidemiological research has identified various risk factors
associated with LC, including long-term smoking, genetic predisposition, environmental
pollution, occupational exposures, and contact with radioactive substances [25]. However,
these studies had limitations in establishing a definitive causal relationship. Unlike tradi-
tional epidemiological studies, MR utilized genetic variations present at birth to estimate
causal relationships between risk factors and health outcomes, resembling a randomized
controlled trial design. SNPs are independent of lifestyle and environmental factors, which
served as IVs in MR analyses, isolating direct causal effects. Therefore, MR could mimic
randomized controlled trials, reducing potential confounders and issues of reverse causal-
ity [26]. This method was valuable in uncovering the biological mechanisms of complex
diseases when traditional observational studies are limited or unethical. By implement-
ing this causal inference model, our study rigorously examined whether alterations in
GM and PMs had a causal effect on LC, rather than just being correlated with it. This
approach allowed a more confident determination of the causal role of GM and PMs in the
pathogenesis of LC.

The GM had effect on various metabolic pathways, including the lipid metabolism
and endogenous vitamin synthesis, making PMs a significant mediator of GM in the
body [27,28]. The metabolites produced by the GM can travel to different parts of the body
through the gut–brain axis, gut–lung axis, and gut–hepatic axis, potentially disrupting the
body’s physiological balance [29–32]. Research by Ji Ma et al. demonstrated that GM was
linked to reduced proliferation and invasion, as well as increased apoptosis, in breast cancer
cells [33]. Another study by Su et al. revealed that lactobacillus can stimulate the production
of IL-35+ B cells by generating 3-idoleacetic acid when exposed to lipopolysaccharide [34].
Our study identified 15 metabolites with a causal relationship to lung cancer (LC), with DPA
showing the strongest correlation. DPA, an omega-3 polyunsaturated fatty acid found in
fish and lean red meat, was known for its anti-inflammatory and anti-tumor properties [35].
However, previous research by Liu et al. suggested a higher risk of LC, LUAD, and SCC
associated with DPA [36]. Our findings supported this link and highlighted DPA as a key
mediator in the impact of alloprevotella on LC. Alloprevotella has been consistently found
at higher levels in the tumor mucosa compared to normal mucosa and feces [37,38]. Our
study further elucidated the pathogenic mechanism by which alloprevotella contributes to
LC though DPA.

Through an enrichment analysis based on the KEGG database, we discovered that
the metabolites with significant causal effects on LC were enriched in valine, leucine,
isoleucine biosynthesis, and vitamin B6 metabolism pathways. An analysis based on the
SMPDB database revealed these metabolites were enriched in the alpha-linolenic acid and
linoleic acid metabolism, the vitamin B6 metabolism, and threonine and 2-oxobutanoate
degradation. Previous studies have shown that alterations in the vitamin B6 metabolism
were associated with multiple diseases. The proficiency of the vitamin B6 metabolism
could modulate the adaptive response of tumor cells to various physical and chemical
stress conditions and was a good prognostic marker in NSCLC patients [39–41]. However,
it should be noted that using individual vitamin B6 supplements was associated with a 30
percent to 40 percent increase in LC risk among men [42]. Our results showed that PMs
might increase the risk of LC through the vitamin B6 metabolism.

The GM’s crucial role in intestinal function has led to increased interest in its potential
impact on cancer. Cao et al. found that gut microbiome shifts were associated with
colorectal cancer-associated T cell receptor repertoire abnormalities [43]. In a stage I
prospective clinical trial, Bertrand et al. demonstrated that fecal microbiota transplantation
from healthy donors plus ICIs was safe for patients with advanced melanoma [44]. In this
study, seven potential pathways were identified to explain how PM mediated the impact of
GM on LC. The results revealed the molecular mechanisms through which GM influenced
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the development of LC and provided a potential target for improving the therapeutic effect.
For example, serine was found to play a protective role in LC and mediated 12.9% of the
effect of the collinsella genus. In a previous study, serine was known to play a crucial role
in anti-tumor immunity regulation, having an influence on both tumor pathogenesis and
immunotherapy efficacy [45]. Additionally, collinsella has been observed to be enriched
in patients who respond well to immunotherapy [46]. Therefore, this study not only
enhanced understanding of the pathological mechanisms underlying LC but also laid the
groundwork for future intervention strategies targeting GM and PMs. This is a promising
way to improve LC prevention, diagnosis, and treatment outcomes by modulating the
microbiota composition of patients.

Traditionally, LUAD, SCC, and SCLC were categorized under LC. However, recent
advancements and growing evidence suggest that these should be viewed as distinct
cancers with unique characteristics [47]. SCLC is known for its aggressive nature, rapid
growth, and high metastatic potential, with a 5-year survival rate of only 6.1%. In contrast,
LUAD and SCC generally achieve better prognoses, with LUAD showing 5-year survival
rates of 34–52%, indicating a less aggressive course [48]. Treatment responses also vary
among these subtypes, with LUAD being more responsive to targeted therapies due to its
molecular profile, while SCC and SCLC show better responses to traditional chemotherapy
and emerging immunotherapies [49]. Our detailed analysis of tissue samples revealed
differences in the underlying pathogenesis of LUAD, SCC, and SCLC, emphasizing the
importance of understanding the distinct biological pathways involved in each subtype for
effective treatment strategies. The enrichment analysis highlighted the varying sensitivities
of these cancer types to different metabolic pathways. Interestingly, both LC and SCLC
demonstrated increased sensitivity to disruptions in the vitamin B6 metabolism, suggesting
potential new therapeutic options. Conversely, SCC showed a stronger response to changes
in the biosynthesis pathway of valine, leucine, and isoleucine, essential amino acids that
are crucial for cellular metabolism and growth. These findings emphasize the necessity of
personalized medicine approaches that consider the specific metabolic needs of individual
lung cancer subtypes, leading to more tailored and effective treatments.

This study has significant clinical implications. Firstly, utilizing MR, we successfully
identified the causal effect of GM and PMs on LC. This discovery provides reliable biomark-
ers for early detection and preventive measures against LC. By pinpointing these specific
microbial changes, clinicians could potentially intervene before the onset or progression
of the disease, significantly improving patient outcomes. Secondly, this research explored
the intricate mechanistic pathways through which GM influences LC by modulating PMs.
The results enhance the understanding of how the GM contributes to the progression of
LC and provide potential therapeutic targets. Lastly, we explored the heterogeneity of GM
and PMs across SCC, LUAD, and SCLC. The results highlighted the distinct variations
in their respective pathogeneses, emphasizing the critical importance of considering the
pathological subtype when diagnosing and devising treatment strategies for LC patients.
This could lead to more personalized medicine.

There were inevitably also several limitations in our study. Firstly, our shallow GM
database only provided taxonomic classification up to the genus level. This limitation
hindered our ability to identify specific species-level taxa that could directly influence LC,
preventing us from drawing definitive conclusions about the microbial agents involved
in LC pathogenesis or prevention. Additionally, despite our efforts to reduce biases using
statistical techniques like MR–Egger’s intercept and the Cochran Q test, analyzing the
summarized data could still introduce bias. While these methods helped us to address
unmeasured confounding factors, the use of summary statistics lacks the precision and
control of individual-level data, potentially impacting the accuracy of results. Another sig-
nificant limitation was the demographic composition of our dataset, primarily comprising
individuals of European descent. This homogeneity raises concerns about population strat-
ification and limits the generalizability of our findings to other ethnicities and populations
beyond Europe. The presence of population-specific variations in gut microbiota profiles
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and disease susceptibility emphasizes the need for caution when interpreting our results
across a diverse population.

5. Conclusions

This comprehensive MR study provides evidence supporting the causal relationship
between GM and PMs in the progression of LC and its major subtypes, including LUAD,
SCC, and SCLC. The study also reveals various pathways through which PMs mediate the
impact of GM on LC, emphasizing the intricate connection between gut health and LC.
Furthermore, the research showed the heterogeneity in both GM and PMs across different
LC subtypes, suggesting potential distinct mechanisms through which these microbiomes
can affect the development and characteristics of specific LC subtypes. The identification
of specific GM and associated PMs could serve as a valuable resource for identifying
therapeutic targets and advancing personalized medicine interventions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm14050453/s1, Figure S1: Research flowchart; Figure S2: The
vein plot of gut microbiota shared by lung cancer, lung adenocarcinoma, squamous cell carcinoma,
and small cell lung cancer; Figure S3: The vein plot of plasma metabolome shared by lung cancer,
lung adenocarcinoma, squamous cell carcinoma, and small cell lung cancer; Table S1: the detail of
database included in this study.
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