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Abstract: The study of lubricating oil is paramount for the optimal functioning of modern engines,
and it has generated intensive research in the automotive industry. The aim is to improve the
tribological properties of lubricants by including nanomaterials as additives in base oils. This article
presents an exhaustive bibliographic review of the experiments carried out to optimize the tribological
properties of nano-lubricants in order to identify the nanoparticles and experimental processes used
and analyze the results obtained. The methodology adopted combines inductive and deductive
elements. It begins with the formulation of a general theory on the application of nanoparticles in
lubricants, followed by the collection of specific data on the conceptualization and preparation of
nano-lubricants. A total of 176 articles focused on the application of nanoparticles in lubricants,
especially to reduce the coefficient of friction, are reviewed. These works, with impact levels Q1 and
Q2, delve into the application and are analyzed to review the obtained results. Most researchers
worked with a nanoparticle concentration range of 0% to 1% by volume.

Keywords: nano-lubricants; nanoparticles; laser ablation; submerged arc; vapor deposition; sol–gel;
hydrothermal synthesis; ultrasound stirring; magnetic stirring; PH adjustment

1. Introduction

Lubricating oil is a fundamental component for the correct functioning of vehicle
engines today; therefore, it is one of the areas with the greatest research and innovation
within the automotive industry [1–4]. This is mainly due to the functions that it performs,
among which the following stand out: reduces friction [5], improves sealing [6], protects
against wear and reduces corrosion [7], eliminates contaminants [8] and dissipates heat [9].
It is estimated that 80% of mechanical failures are caused by a wear defect due to friction
and lubrication [10].

Holmberg et al. in [11] state that 33% of the energy loss in an internal combustion
engine is due to friction, attributing 11.5% to the moving parts of the engine, 5% to the
transmission gears, 11.5% to rolling resistance and 5% to brake friction. In this way, due
to the importance of lubrication, the need arises to improve the tribological properties of
lubricants, which leads to a research approach focused on the inclusion of nanomaterials as
additives in base oils [12–16].

In this sense, in the last two decades, the tribological behavior of lubricants has
been studied with the addition of various nanoparticles, such as Molybdenum Disulfide
(MoS2) [17], Tungsten Sulfide (WS2) [18], Aluminum Oxide (Al2O3) [19], Titanium Oxide
(TiO2) [20], Magnesium Stearate [21], Graphite [22], Graphene [23], MWCNT/ZnO Carbon
Nanotubes [24], Silicon Oxide SiO2/MWCNT [25] and Carbon Nanostructures [26].

These studies have obtained favorable results; for example, [27] shows an increase in
the thermal conductivity ratio of a lubricant, from 1 to 1.15, using Copper Oxide (CuO)
nanoparticles at concentrations of 0% to 4% of the volume with a size of 10 nm at tempera-
tures of 20 to 50 ◦C. This finding makes nanofluids attractive as coolants for devices with a
high energy density.
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Zawawi et al. [28] analyzed the behavior of the friction coefficient of nano-lubricants
composed of Aluminum Oxide and Silicon Oxide (Al2O3-SiO2), and they concluded that,
for a reduction in the friction coefficient of up to 4.78% and an improvement in the wear rate
of 12.96%, the optimal volume concentration of nano-lubricants should be 0.02%. It is true
that diverse and extensive nanomaterials are used as additives for lubricating oils; however,
it is metal nanoparticles or their oxidants and sulfides that have received the most study
and research [29,30] because metal nanoparticles enhance the lubricating oil’s tribological
characteristics through micro-bearing effects and various other mechanisms [31].

Considering the importance of the results presented in the previous paragraphs, this
article presents a bibliographic review of the experiments conducted for the improvement
of the tribological properties of nano-lubricants in order to identify the nanoparticles used
for these experiments, identify the processes of experimentation and, finally, analyze the
obtained results.

2. Materials and Methods

This article uses a mixed-approach methodology that combines inductive and de-
ductive elements in the research. Initially, as shown in Figure 1, a general theory of the
application of nanoparticles in lubricants is formulated. Subsequently, the data and specific
characteristics of researchers’ work are collected in the context of the conceptualization and
preparation of nano-lubricants. The methods and selection of nanoparticles are mentioned,
which, once applied to a lubricant, have an influence on the coefficient of friction. The
methodology adopted follows the PRISMA checklist, allowing inductive and deductive
research to feed into each other. A flow diagram is included in the Supplementary Materials.
The inductive methodology is applied in the observation of specific cases, leading to the
formulation of hypotheses on the confirmation of preparation, as well as the methods
commonly applied to the production of nanofluids and their influence on the reduction in
the friction coefficient.
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The researchers collected data on the one-step and two-step methods used to achieve
lubricant stability and durability. These data were then focused on individual cases, thus
deriving general principles applicable to the production of finished lubricants. However,
the deductive methodology was used to develop generalizations where theoretical princi-
ples were analyzed to understand and explain specific phenomena of importance in the
preparation of nanofluids. Once the methodology was defined, bibliographic materials
were then applied, both academic articles and books intended for scientific dissemina-
tion. Information relevant to the characteristics of nano-lubricants was extracted from
these materials.
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3. Preparation of Nano-Lubricants

The base fluid to which nanoparticles are added in a stable suspension state is known
as a nano-lubricant. Dispersion stability is an important challenge in the use of nanoparti-
cles in lubricants, and this is because nanoparticles agglomerate easily due to their high
surface tension, leading to the formation of non-dispersible aggregates [32].

To achieve a better dispersion of nanoparticles, methods are used to reduce their
high surface energy, such as surface functionalization. This approach offers a solution
to these challenges by altering the chemical composition of the nanoparticles to enhance
their dispersibility and maintain their stability, using a variety of techniques, ranging from
physical to chemical methods [33].

The physical method mainly focuses on the adsorption of surfactants on the surface of
nanoparticles to modify their surface characteristics. Regarding chemical methods, a series
of compounds have been created to functionalize the surface of nanoparticles of metals and
metal oxides, giving them specific properties such as hydrophobicity, hydrophilicity and
charge, which contribute to improving both their dispersion and their stability [34–36].

To understand the stability of the dispersion of nano-lubricants, colloidal theories
can be used, which attribute the stability of the suspension to the interaction between the
nanoparticles and the thermal agitation energy received by the base fluid [37].

3.1. Methods for the Preparation of Nano-Lubricants

In experimentation, the preparation of nano-lubricants is an important step to achieve
stability and durability in mixtures; therefore, to produce nanofluids, two methods have
been used, known as the one-step method and the two-step method [38–40].

3.1.1. One-Step Method

In the one-step method, nanoparticles are simultaneously and directly produced and
dispersed in a base fluid [41–46].

Several techniques are used for this process. The first, the laser ablation technique, is
schematized in Figure 2 in [47]. It consists of focusing on the surface of a material (gas or
liquid) using a laser beam, which causes its vaporization at the irradiated point. The impact
between the evaporated part and the surrounding molecules results in the formation of a
laser-induced plasma plume, which is subsequently confined in a specific region to disperse
the nanoparticles so that the coagulation phenomenon is correctly controlled in the final
stages of the process [48–50].
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The second technique is the submerged arc, used in [51–53]. Its principle is based on
submerging a pure copper rod in a dielectric liquid located in a vacuum chamber. At this
point, the temperature increases to a range between approximately 6000 and 12,000 ◦C,
producing an arc in the rod, which subsequently melts and vaporizes together with the
dielectric liquid [54], as detailed in Figure 3.
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Figure 3. Schematic diagram of a submerged arc nanoparticle synthesis system.

High-pressure steam removes vaporized metal, and, when applied in a vacuum cham-
ber, the metal undergoes a condensation process, nucleation and growth, thus transforming
into nanoparticles.

Finally, the vapor deposition technique, used in [55,56], is characterized by forming a
thin layer of base fluid on the wall of a container under the action of the centrifugal force
produced by a rotating disk (Figure 4). Subsequently, in a tank filled with inert gas at low
pressure, the material is heated and evaporated. After this process, the nanofluid is ready
when the vapors of the raw material condense due to the interaction with a thin film of
swirling water and settle in the base fluid [57].
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3.1.2. Two-Step Method

The two-step method consists of first preparing nanoparticles as dry powders through
chemical or physical processes and then, through intense agitation, dispersing them in
a base fluid. This method is the most used due to its low cost and ability to produce
nanofluids on a large scale [58–60].

In the two-step method, the preparation of nanoparticles is carried out prior to mixing
with the base fluid using the following techniques:

The sol–gel technique is applied in [61–63] and specifically explained by Behna-
jady et al. [64] in the following steps: First, using the ultrasonic bath technique, a mixture
of titanium and a solvent is sonicated. Deionized water is then added drop by drop to
the mixture using magnetic agitation to carry out the hydrolysis process. In the end, the
product from the previous steps is dried and calcined, producing a crystalline powder (see
Figure 5).
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Another technique is Hydrothermal synthesis [65–67], which is applied in a high
temperature range. In addition, low- or high-pressure conditions are established depending
on the main composition of the reaction in order to control the morphology of the materials.
The main advantage of hydrothermal synthesis is a negligible loss of materials [68].

Once the nanoparticles are obtained by the two-step method, a nanofluid is prepared,
which involves the suspension and dispersion of the nanoparticles using the techniques
described below.

Ultrasound technique: This technique consists of stirring the nanoparticles in a base
fluid (Figure 6) with ultrasonic sound waves with a frequency greater than 20 kHz. In this
way, the formation of nanometer-sized agglomerates is reduced by breaking intermolecular
interactions. The agglomeration of the dispersed nanoparticles will lead to declined thermal
performance, thermal conductivity and viscosity [57,69–74].

Magnetic stirring technique [75–78]: This technique consists of the action of a rotating
magnetic field created by stationary electromagnets or a set of rotating electromagnets that
operate with stirring mechanisms.

PH adjustment: A different consideration establishes PH adjustment as a supplement
to the previous techniques. The pH of the base fluid is adjusted to improve the suspension
and dispersion of the nanoparticles. This technique raises the value of the zeta potential,
which can be related to the stability of colloidal dispersions. The zeta potential decreases as
the Ph value increases [79–82].

Wei et al. [83] and Shao et al. [84] apply a technique in which they combine all the
processes described above in the preparation of a nanofluid to achieve better efficiency
and stability.

Finally, Figure 6 summarizes the methods and techniques used for preparing nano-
lubricants through a diagram.
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3.2. Nanofluid Stability

After preparing a nanofluid, it is necessary to verify its stability as a prior step to ex-
perimentation. The first technique is the UV–Vis spectrophotometer technique, which is ap-
plicable for all base fluids [85] and has achieved excellent results in several studies [86–88].
This technique bases its operation on the action of taking advantage of the change in the
intensity of light when it passes through a fluid. Using a wavelength of 200 to 900 nm, the
instrument analyzes fluid dispersions and measures absorption by liquid [89]. Jiang et al.,
in [90], apply the method as follows: First, by scanning, the aim is to find the maximum
absorbance of the nanoparticles in order to prepare a standard that fits a linear relationship
using at least three diluted concentrations (0.01–0.03%). Finally, the relative stability is
measured, and the treated nanofluid is allowed to rest for a few days.

Another way to measure nanofluid stability is the zeta potential test, which uses the
study of electrophoretic behavior to check the stability of nanofluids [91]. In an experiment
conducted by Wang [92], a 0.05% weight fraction of nanosuspension was needed to calculate
the particle magnitude and zeta potential. The zeta potential and the stability of the
suspension had particles with a similar charge; therefore, there was mutual repulsion
causing these particles to not agglomerate. In [93], Lee et al. mention that a suspension
with a zeta potential greater than 30 mV in R absolute value has correct stability.

The photo capture technique is the most important to observe the sedimentation
of nanofluids. Photos are captured after preparation with the reservation of suspension
quantities. When viewing the photos, sedimentation will be evident, as seen in [94–96].

Likewise, the Transmission Electron Microscopy (TEM) and Scanning Electron Mi-
croscopy (SEM) tools are very useful to distinguish the shape, size and distribution of
nanoparticles. However, with these tools, the real situation of nanoparticles in a base fluid
cannot be visualized. These tools are only used on dry samples [92,94,97,98].

The light scattering method is also used to visualize the structure of colloidal particles
in a suspension. The intensity of light scattered in a particle is related to its volume. Since
the interaction of electromagnetic radiation with a small particle is weak, the scattering of
light is mostly transmitted, and only a small amount is scattered [99,100].

Another method used to estimate the stability of nanoparticles is sedimentation bal-
ance, which consists of submerging the tray of a sedimentation balance in a fresh nanofluid.
The weight of the sedimentation or its volume indicates the stability of the nanofluid. In
general, nanofluids are considered stable if the concentration of the supernatant particles
remains constant over time [101–103].
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Finally, the colloidal stability of a nanofluid can also be determined by the three-omega
method. It can be evaluated by detecting the increase in thermal conductivity caused by
the sedimentation of nanoparticles in a wide range of volume fractions [104,105].

4. Influence of Nanoparticles on Lubricants

Nanoparticles play a vital role in friction zones, specifically in the limit lubrication
regime, where the wear and friction margins reach their maximum value [106].

Typically, the lubrication mechanism of nano-additives can be described to have four
main effects: micro-bearing, protective film, polishing and repair effects [107–111]. The
main mechanism of nano-additive lubrication highlighted in the reviewed studies is the
micro-bearing effect.

The diminutive size of nanoparticles allows them to penetrate the surface asperities in
the contact zone [112], as shown in Figure 7. Also, when added to a fluid, their size is small
enough to remain dispersed by Brownian motion. However, suspended particles can adhere
to each other and form agglomerates, resulting in a loss of wear protection and friction
reduction ability, hence the importance of the correct preparation of the nano-lubricant [89].

Rebaso et al. [113] concluded that friction significantly reduced as the stirring time
increased in the preparation of their oil enriched with MoS2. Therefore, the stirring time in
the preparation of a nano-lubricant plays an important role in the stability of the dispersion
and consequently affects lubrication performance [114–118].
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The proper concentration is another important factor affecting the lubrication char-
acteristics of nano-lubricants [119–122]. The addition of nanoparticles in an inadequate
concentration, whether in excess or shortage, can cause negative effects in some cases, due
to either increased friction or wear [123].

The intrinsic mechanical property of nanoparticles, such as hardness, is determined by
their size, which, in turn, affects their tribological behavior. For materials in the size range
of 100 nm or larger, hardness increases with particle size concentration [124]. If the hardness
of the nanoparticles is greater than that of the surface material, the result is notching and
scratching, as indicated by Peña et al. [125] in their study. The high hardness (8–9 Mohs) of
nano-Al2O3 resulted in abrasive wear and the agglomeration of nanoparticles.

The shape of nanoparticles also plays an important role in this regard because the
behavior of a nano-lubricant depends on the space between the nanoparticle and the
lubricated surface at the time of loading [121].

Spherical shaped nanoparticles show a high loading capacity due to their ball-bearing
effect. Figure 8 shows the linear contact that is associated with nanosheets and the planar
contact that is associated with nanoplatelets. In most studies related to nano-lubricants,
spherical nanoparticles have been used [18,22,126–130].
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Investigations of the tribological performance of nanoparticles as additives in lubricat-
ing oils are carried out with experiments using different tools such as four-ball tribometer,
piston ring, ball-on-disc and pin-on-disc tools, using normal conditions of the ASTM, DIN
and AISI standards [130–132].

5. Result Analysis
5.1. Preparation Methods

In the previous sections, the importance of preparing a nano-lubricant is defined,
whereby, under this concept, the methods with the greatest application in the articles
investigated are presented. A group of 39 works is considered for the analysis of the
preparation methods used, considering that the publication date of these investigative
works is greater than 2010 and with a significant impact (Q1 and Q2).

Of the analysis group, 23.07% used the one-step preparation method and 76.92% used
the two-step method, as shown in Figure 9 and described in Table 1, which also details
the type of dispersion used by the authors and its duration. La et al. [133] applied 12 h of
ultrasonic stirring to their nano-lubricant, with this being the longest stirring time applied
compared to the rest of the studies.
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Table 1. Methods, stirring process and stirring time applied in previous research.

Author
Method Used

Stirring Process Stirring Time
Two Steps One Step

Ali et al. [134] * Ultrasound/Magnetic Stirring 6 h
Liu et al. [135] * Ultrasound 3 h

Singh et al. [136] * Ultrasound 1.5 h
Guo et al. [137] * Ultrasound 30 min
La et al. [133] * Magnetic Stirring/Ultrasound 3 h/12 h

Chouchan et al. [138] * Magnetic Stirring 8 h
Vardhaman et al. [139] * Ultrasound 2 h

Mousavi et al. [140] * Ultrasound 45 min
Kałuzny et al. [141] * Ultrasound 1 h

Mello et al. [32] * Magnetic Stirring 7 h
Wu et al. [142] * Ultrasound 1 h
Ali et al. [143] * Magnetic Stirring 4 h

Wang et al. [144] * Ultrasound 1 h
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Table 1. Cont.

Author
Method Used

Stirring Process Stirring Time
Two Steps One Step

Paul et al. [145] * Ultrasound 6 h
Ghasemi et al. [146] * Magnetic Stirring/Ultrasound 15 min/20 min

Ali et al. [147] * Magnetic Stirring 4 h
Ali et al. [148] * Magnetic Stirring 4 h

Hemmat et al. [149] * Ultrasound 3 h
Sgroi et al. [17] * Ultrasound 5 h

Sepyani et al. [150] * Ultrasound 5 h
Ran et al. [151] * Magnetic Stirring/Ultrasound 20 min/30 min

Moghaddam et al. [152] * Ultrasound 1 h
Wu et al. [153] * Ultrasound 40 min

Hemmat et al. [154] * Magnetic Stirring 2 h
Ali et al. [155] * Magnetic Stirring 4 h

Asadi et al. [156] * Magnetic Stirring/ Ultrasound 2 h/1 h
Wu et al. [157] * Magnetic Stirring 1 h

Zheng et al. [158] * Magnetic Stirring/ Ultrasound 10 min/ 15 min
Meng et al. [159] * Ultrasound 5 h

Mungse et al. [160] * Ultrasound 4 h
Koshy et al. [120] * Ultrasound 1 h

Jia et al. [161] * Ultrasound 2 h
Zin et al. [162] * Ultrasound 1 h

Arumugam et al. [163] * Ultrasound 2 h
Wan et al. [164] * Magnetic Stirring 30 min

Ettefaghi et al. [165] * Ultrasound 1 h
Ettefaghi et al. [166] * Magnetic Stirring 3 h
Demas et al. [167] * Ultrasound 2 h

Eswaraiah et al. [168] * Ultrasound 1 h

Conversely, Zheng et al. [158] applied 10 min of magnetic stirring and 15 min of
ultrasonic stirring to their mixture; these are the values of the shortest stirring times. Thus,
these two authors represent the extremes of agitation application time in nanofluids. In
total, 56.41% of the experiments used the ultrasound dispersion method, 28.20% used
magnetic stirring, and the remaining 15.38% mixed both methods (Figure 10a).
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Figure 10. (a) Distribution of dispersion techniques used; (b) stability of nano-lubricants.

Figure 10b shows the authors who achieved stable nano-lubricants (17.94%) and non-
stable nano-lubricants (2.56%), as well as the authors who did not report stability (5.12%)
and the authors who achieved stability for a certain time (74.35%). Figure 11 details the
stability times achieved by 74.35% of the studies examined in this analysis.
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156,158–166].

5.2. Reduction in the Coefficient of Friction

To analyze the results of the reduction in the friction coefficient, 39 articles are con-
sidered. These are analyzed under the criteria of the maximum percentage reduction in
the friction coefficient achieved, the concentrations of nanoparticles applied, the concentra-
tions that produced the best results and the temperatures at which the experiments were
carried out.

Figure 12 details the results obtained by the researchers in terms of reducing the
friction coefficient. Singh et al. [136] achieved the highest percentage reduction in the
friction coefficient, with a 91.6% reduction in the friction coefficient in their experiment.

This author experimented with graphite nanoparticles at room temperature, using an
SAE-30 base oil and the pin-on-disc tool, with the application of variable forces between 20
and 50 N at 300 rpm. To understand Figure 12, it should be considered that some authors
experimented with more than one type of nanoparticle.

Likewise, after the literature review, it was found that 64.10% used a concentration
range in their experiments, with the remaining 35.89% only using a concentration value, as
detailed in Table 2.
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Table 2. Single concentration used by some authors.

Author Concentration [%]

Singh et al. [136] 0.3
Thachnatharen et al. [169] 0.025

Vyavhare et al. [172] 0.33
Charoo et al. [170] 0.5
Avilés et al. [173] 0.5
Mello et al. [174] 0.5
Kamal et al. [5] 0.1

Cheng et al. [175] 0.04
Wu et al. [153] 1

Ivanov et al. [176] 0.016
Rasheed et al. [171] 0.01

Ali et al. [177] 0.25
Padgurskas et al. [178] 0.5

Demas et al. [167] 3

Figure 13 shows the ranges of the concentration values applied, of which most of the
authors [137–140,142,143,145,147,179–183] considered a concentration value of less than
1%, with four tests carried out.
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Table 3 details the concentrations that were efficient for these researchers. The most
efficient concentration values were less than 1; however, two authors [125,184] found the
efficient concentration to be 2% and 3%.

Table 3. Effective concentration used by the authors who used a concentration percentage.

Author Effective Concentration [%]

Mousavi et al. [179] 0.7
Tóth et al. [180] 0.4

Chouhan et al. [138] 0.05
Wu et al. [142] 0.1

Beheshti et al. [181] 0.3
Vardhaman et al. [139] 0.25

Mousavi et al. [140] 0.4
Guo et al. [137] 0.3

Mousavi et al. [182] 0.4
Paul et al. [145] 0.1
Ali et al. [143] 0.4
Xue et al. [183] 3
Ali et al. [143] 0.4

Asnida et al. [185] 0.008
Laad et al. [15] 0.5

Rajendhran et al. [186] 0.5
Borda et al. [187] 0.3
Ran et al. [151] 0.5
Ali et al. [188] 0.25
Ali et al. [155] 0.1

Scherge et al. [184] 3
Jeng et al. [189] 0.07
Peña et al. [125] 2
Zin et al. [162] 0.01

Zhang et al. [190] 0.0375

Finally, of all the studies reviewed, 51.28% carried out their experiments at room
temperature, while the remaining 48.71% carried out tests at temperatures within the range
of 20 ◦C to 100 ◦C.
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5.3. Base Lubricants

This study collected the results of 67 high-impact articles, in which the base lubricants
most used for testing were as follows: SAE 5W-30 with 10 investigations, representing 16%
of the total articles; SAE 10W-40 with 7 investigations, representing 11% of the total articles,
and SAE 20W-50 with 6 investigations, representing 10% of the total articles.

The frequency with which these lubricants were used reflects the criteria of how
affordable they are in the local market, as well as their ease of marketing.

Furthermore, their standard properties facilitate mixing with the nanoparticle for the
subsequent study of this property. Table 4 shows the type of base oil, as well as how many
and which authors use said oil, while Figure 14 graphically outlines this information.

Table 4. Base lubricants used in investigations.

Base Lubricant #Articles/Citations

Lubricant/PAO6 [134]
SAE 20W-40 [135]

SAE 30 [136]
Paroline Lubricant/Oil [137]

Lubricant/HD 50 [133]
SAE 10W-40 [138,139,146,149,156,159,160]

SAE 40 [140,152,162,179]
SAE 5W-30 [17,141,143,145,147,148,155,176,177,188]

Lubricant/PAO [32,157,158,161,166]
SAE 20W-50 [142,165,166,169–171]

Lubricant/Hexadecane [144]
SAE 50 [150,154]

Lubricant/60SN [151]
Lubricant/Paraffin [153]
Lubricant/500 N [120]

Rapeseed Oil/SAE 20 W-40 [163]
SAE 15W-40 [164,190]

500W [168]
Lubricant/Group III [172,180]

SAE 10W-30 [15,181,185]
Lubricant/Ionic Liquid [173]

Diesel Oil [182]
Lubricant/PAO40 [174]

SN/GF-5 Lubricant [183]
Lubricant/SN 500 [175,186]
Lubricant/Mineral [187,189]

Chevron Taro 30 DP 40 [184]
SAE 75 W-85 [125]

SAE 10 [178]

It is important to consider sustainability in the nano-lubrication process. In this
sense, a large number of nanoparticles are environmentally friendly, since they minimize
the use of hazardous materials and additives, which is useful for environmental and
economic sustainability. Nanoparticles can also facilitate a reduction in energy consumption
during their production, reducing the carbon footprint, meeting the requirements of green
tribology [36].

However, sustainability applies not only to nanoparticles but also to the base oil for
comprehensive nano-lubricant production. Biomaterials based on vegetable oils offer a
sustainable, biodegradable and low-cost alternative for various applications in engineering
and biomedicine [191]. Taha-Tijerina et al. found that halloysite nanotubular structures
(HNSs) reinforcing natural ester lubricants significantly reduce the friction coefficient and
wear scar diameter, offering environmentally friendly alternatives to mineral fluids for
industrial applications [192]. Gupta et al. focused their research on the development of eco-
logical nano-lubricants, using mahua and linseed oils with h-BN nanoparticles as additives.
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The addition of h-BN nanoparticles improved the rheological and tribological properties of
the oils, making them more effective as lubricants. The study highlighted the potential of
using these bio-based lubricants with nanoparticles for sustainable development and as
a sustainable alternative to mineral oil [193]. Finally, Hameed et al. stated that a mixture
of 20% mahua biofuel with Al2O3 and CeO2 nanoparticles at 100 parts per million each
resulted in a reduction in brake-specific fuel consumption (BSFC) of 3.25%; an increase in
thermal efficiency brake performance (BTE) of 1.39%; and a reduction in hydrocarbon (HC)
emissions, nitrogen oxides (NOX) and carbon monoxide (CO) of 30.73%, 1.27% and 44.13%,
respectively [194].
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5.4. Nano-Additives

For an analysis regarding nano-additives, a total of 63 impactful articles were taken
into account. The most used nano-additives were as follows: MoS2 (Molybdenum Disulfide)
and ZnO (Zinc Oxide) with six investigations each, representing 10% of the total articles,
and Gr (Graphene) and Al2O3/TiO2 (Aluminum Oxide and Oxide of Titanium) with five
investigations each, representing 8% of the total articles; this information is collected in
Table 5 and schematized in Figure 15.

Table 5. Nano-additives used in research.

Nano-Additive #Articles/Citations

Al2O3/TiO2 [134,148,155,177,188]
MWCNT/TiO2 [135]

Graphite [136]
MoS2 [17,120,137,153,164,167]

Gr [133,147,158,171,173]
Gr-MS-Zn [138]

ZnO/MWCNT [139]
ZnO/MoS2 [140]
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Table 5. Cont.

Nano-Additive #Articles/Citations

MWCNT [141,165,166]
CuO [32,163,174,185]

La(OH)3/rGO [142]
Cu/Gr [143]

GO [144,145,160,168]
TiO2 [15,146]
ZnO [149–151,157,172,182]

MWCNT/CuO [152]
MWCNT/SiO2 [153]
MWCNT/ZnO [156]
GO/Ag/GNP [159]

Cu/rGO [161]
C [162,183]

ZnO/MoS2 [179]
ZrO2 [180]
hBN [169]

(BN), (WS2), (Gr) [170]
Hairy Silica Particles (HSPs) [181]

Ni- MoS2 [186]
Cu [184,187,190]

GrO [175]
ND [176]

Fe (Carbon Capsules) [189]
CuO/Al2O3 [125]

CuO, Cu, Fe, Co, Fe/Cu, Fe/Co, Co/Cu [178]
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The properties of nanoparticles are critically dependent on their dimensions, shape
and morphological structure, which are characterized using different imaging methods:
Field-Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM),
Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) [40].
Most of the studies presented characterized nanoparticles using FESEM. The nanostructure
of Al2O3 and TiO2 nanoparticles is fairly spherical, which provides a very good rolling
medium within engine oil [155,177,188]. The characterization of MoS2 nanoparticles clearly
indicated its layered lamellar structure [120]. In addition, ZnO NWs are vertically aligned,
with a hexagonal shape and a relatively smooth surface [55]. The characterization of
SiO2 nanoparticles indicated the uniform distribution of their sizes and their spherical
shape [128]. ZnO nanoparticles possess a polygonal shape with a wide range of sizes and
an elongated morphology [139].

Other authors employed TEM to observe the morphology and particle size of TiO2 [51,53].
Finally, MWCNT nanoparticles are characterized using SEM and TEM. The tubular

and filamentous morphology of nanotubes are shown to be very good when observed
using these microscopes. Nanotubes, which are made, have an average diameter of about
10–20 nm and an average length of 10 µm [165,166].

6. Discussion

The application of nanoparticles in lubricants to reduce the friction coefficient has
been the subject of numerous investigations, as demonstrated by this review of 194 articles,
mainly with Q1 and Q2 impact levels. The examination of these studies reveals that the
two-step method is the most common method for the formation of nano-lubricants since
it is more economical than the one-step method. The dispersion of nanoparticles in a
base fluid is mostly achieved by ultrasonic agitation, suggesting its effectiveness and wide
application in the scientific community.

Crucially, although nanoparticles can reduce the coefficient of friction by penetrating
the asperities of contact surfaces in boundary lubrication zones, their ability to increase
wear by agglomerating is a major challenge. Controlling the stability of nano-lubricants is
therefore essential to maximize their benefits.

Despite the efforts made, only a small percentage of researchers have managed to
develop long-term stable nano-lubricants. A notable example is the work of Koshy et al.,
who managed to stabilize their MoS2-based nano-lubricant for 365 days. This highlights
the need to continue researching and improving nano-lubricant stabilization techniques for
practical application.

Regarding the concentration of nanoparticles, most researchers focused on a volume
concentration range of 0% to 1%. This suggests that higher concentrations may not be
necessary or may even be counterproductive in terms of lubricant stability and effectiveness.

Conversely, the use of advanced characterization techniques, such as spectrophotome-
try, the Z potential, SEM/TEM and light scattering, is crucial to understand the dispersion
of nanoparticles in a base fluid and evaluate the stability of nano-lubricants. These tools
allow researchers to visualize the distribution and agglomeration of nanoparticles, which is
essential for optimizing the tribological properties of lubricants.

Additionally, it is important to consider the environmental impact of nano-lubricants
and their production. Studies are needed to evaluate their biodegradability and possible
harmful effects on the environment.

The potential benefits of using non-edible vegetable oils for bio-lubricant production
include sustainability by utilizing crops grown on wasteland; avoiding interference with
growing food on limited agricultural land; controlling soil erosion, land degradation and
deforestation; and promoting a closed-loop life cycle with balanced carbon emissions.
Furthermore, non-edible vegetable oils offer a high viscosity index, a high flash point,
excellent lubricity and superior biodegradability, making them a suitable alternative raw
material to mineral oil and capable of reducing environmental effects.
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The addition of Al2O3 and CeO2 nanoparticles in biodiesel blends, specifically with
mahua biofuel, has shown promising results in improving combustion efficiency; reducing
the emissions of pollutants such as CO, HC, NOx and smoke; and improving overall engine
performance. Studies emphasize the potential of nano-additives in biodiesel blends to
achieve cleaner combustion and higher efficiency in diesel engines.

7. Conclusions

In conclusion, the application of nanoparticles in lubricants offers great potential to
reduce the friction coefficient in boundary lubrication zones. However, more effort is
required to develop long-term stable nano-lubricants and improve the understanding of
their behavior under different operating conditions.

The two-step method and ultrasonic stirring are the most widely used for the prepara-
tion and dispersion of nanoparticles, respectively. These methods, along with the control of
nanoparticle concentration, are key to maximizing the tribological benefits of nanostruc-
tured lubricants.

Further research is needed to optimize the tribological properties of commonly used
base lubricants, such as SAE 5W-30, SAE 10W-40 and SAE 20W-50, to ensure optimal
lubrication in automotive applications.

The most widely used nano-additives, such as ZnO, MoS2, Gr and Al2O3/TiO2, offer
promising opportunities to improve the tribological properties of lubricants. However,
a greater understanding of their long-term effects and those under different operating
conditions is required for their practical implementation.

8. Future Perspectives

To advance in this field, it is necessary to explore new nanoparticles and preparation
methods that can improve the stability and effectiveness of nano-lubricants. Furthermore,
more studies should be conducted on the tribological behavior of nano-lubricants under
real operating conditions, especially in automotive applications.

Optimizing the tribological properties of the most used base lubricants is also essential.
Research must be conducted to find the right balance between nanoparticle concentration
and lubricant stability, as well as to evaluate its long-term performance.

Additionally, it is important to consider the environmental impact of nano-lubricants
and their production. Studies are needed to evaluate their biodegradability and possible
harmful effects on the environment.

In summary, the use of nanoparticles in lubricants represents a promising area of
research that has the potential to significantly improve the efficiency and durability of
lubrication systems. However, more research and development are needed to bring these
laboratory advances to practical and commercial applications.
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