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Abstract: To combat climate change and meet energy conservation and emission reduction goals,
the building sector must adopt low-carbon technologies and low-carbon management methods.
To systematically explore existing research areas and track future research trends of carbon emission
in the construction stage (CECS), this study conducts a bibliometric and content analysis of CECS
studies. 563 relevant publications published between 2000 and 2022 are examined and analyzed
using data from the Web of Science (WoS) core collection database. The findings reveal that studies
of CECS have evolved through three stages: preliminary exploratory period, stable development
period, and rapid development period. In addition, the literature co-citation network and content
analysis classify the 13 found co-citation clusters into four knowledge domains: sources definition,
data statistics, assessment methods, and carbon reduction strategies. Finally, a knowledge map of
CECS studies is presented, outlining significant aspects of research, existing gaps in knowledge, and
directions for future study. This work will make it easier for academics and professionals to pinpoint
promising areas of study, fill in knowledge gaps, and broaden the scope of existing research on CECS.

Keywords: carbon emissions; construction; carbon reduction; science mapping; bibliometric analysis;
content analysis

1. Introduction

With the progressive improvement of people’s living conditions and the rapid devel-
opment of the social economy, greenhouse gas emissions, especially CO2, have increased
tremendously. Given the tight association between carbon emissions and climate change,
regulating carbon emissions has become an urgent global concern to minimize global
warming. According to the International Energy Agency, the building industry accounts
for 40% of world energy consumption and between 30–50% of total human greenhouse
gas emissions, which suggests that the construction industry has enormous potential for
energy saving and emission reduction [1]. If the building industry wishes to achieve a
breakthrough in energy saving and emission reduction, quantitative studies on carbon
emissions and emission reduction studies are important. When compared to the operation
phase, the building phase consumes more energy and resources per unit of time, resulting
in a concentration of carbon emissions [2,3]. Therefore, it is of considerable importance as
the basis for quantitative analysis of low-carbon buildings to accurately monitor carbon
emissions during this phase and to devise matching emission reduction methods [4].

A large and growing body of literature reviewed the studies on carbon emissions
quantification and discussed the factors influencing carbon quantification. For instance, Fen-
ner et al. (2018) [5] reviewed current approaches for carbon footprint assessment and out-
lined the discrepancies of most life-cycle carbon assessment studies, and Chen et al. (2022) [6]
conducted a thorough analysis of research about embedded carbon emissions in prefabri-
cated structures. Much of the literature since the 2000s emphasizes the carbon emissions in
the construction stage (CECS). Among them, there are different theories on CECS abate-
ment. For example, Sizirici et al. (2021) [7] compiled the most up-to-date findings on
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cutting down on carbon emissions during the building process itself, including material
manufacturing and construction. More recent attention has focused on the provision of new
concepts such as green building and sustainable building. For instance, Lu et al. (2020) [8]
summarized the knowledge system, research hotspots, and future development of green
building carbon emissions. Obviously, more and more scholars around the world have
devoted their efforts to promoting CECS studies from different perspectives, and have
obtained remarkable results. There are a number of publications that provide reviews of
CECS research, but they tend to focus on either a specific area of CECS research or on a
different part of the building’s life cycle. For example, several articles are limited to the
management of CECS [9], while others focus on embodied carbon emission [6]. Most of the
literature is dominated by qualitative studies, which are highly subjective and ambiguous,
and lack systematic analysis and rigorous argumentation [10–13]. Herein, it is necessary
to systematically review CECS studies through the mixing of quantitative and qualitative
methods, clarify the critical research contents of CECS, and explore existing knowledge
gaps and future directions.

The bibliometric analysis allows a quantitative study of the hotspot distribution
structure, quantitative relationships, and change patterns of CECS research [14]. Content
analysis is a qualitative technique used by academics to uncover the findings and aims of a
study [15]. Combined with thematic analysis, this study conducts a comprehensive review
of CECS research from 2000 to 2022 using bibliometric and content analysis. The overall
research status may be better understood by analyzing publication years, countries, insti-
tutions, subject categories, journals, highly cited articles, keywords, etc. It is possible that
research frontiers and hotspots can be found by an analysis of both citing and cited papers.
Using a network diagram, the citation analysis visualization method illustrates the current
and future state of research in the field of study. Moreover, a CECS knowledge map is
provided, revealing essential research components, knowledge gaps, and future objectives.

2. Methodology

Figure 1 illustrates the research framework for this study. Using bibliometric and
content analysis techniques, this research undertakes a quantitative and qualitative analysis
of CECS investigations. There are three specific steps to follow.

2.1. Data Collection

The first step is to collect data from high-quality articles on CECS. This study uses the
Web of Science (WoS) core collection as its data source. The search algorithm is utilized
based on article kinds and parameters to discover more relevant articles. Following that,
we review the abstracts of the publications we find and screen the literature.

2.1.1. Literature Retrieval

Following pre-analysis and comparison, the following search schema has been chosen
to search the WoS core collection database: TS = (carbon emission* OR CO2 emission* OR
carbon dioxide emission* OR CO(2) emission* OR greenhouse gas* emission* OR GHG*
emission* OR carbon footprint OR cf OR on-site emission*) AND TS = (construction site*
OR building construction* OR materialization stage*). The terms “TS” and “*” stand for the
article’s topic and a fuzzy search, respectively. Literature published between 2000 and 2020
(including 2000 and 2020) is retrieved from the WoS core database. The document type is
restricted to articles and reviews, and the language is only available in English. A total of
3259 articles are obtained after data deduplication.
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Figure 1. Research framework.

2.1.2. Exclusion Criteria

Examination of the obtained results is necessary to insure that the selected papers
fulfill the criteria for subsequent investigation [16,17]. After reading the abstract, unrelated
material is removed from the complete study and analysis based on the following criteria:

(1) Each article focuses on carbon emissions in construction processes such as building
material manufacture and transportation, on-site construction, and construction waste
transportation and disposal.

(2) To better explore cross-cutting articles, the selection process does not limit the research
areas to mainstream fields such as engineering, environmental sciences technology,
and building construction technology.

(3) Research papers exploring the operational or dismantling phase, or articles that focus
on assessing several types of sectors encompassing a specific region at a macro level,
are excluded from this review.

563 articles are ultimately chosen for bibliometric and content analysis through addi-
tional screening.

2.2. Bibliometric Analysis

Because of the magnitude and scope of CECS investigations, manual bibliometric
analyses are almost impossible. Through bibliometric analysis and visual analytics, CiteS-
pace software can evaluate classic research topics and reveal future trends [18]. Thus,
the second step of this research was a bibliometric analysis of the literature’s distribu-
tion, co-occurrence, and co-citation using Cite Space. Critically, a quantitative analysis of
research hotspots and trends in the selected knowledge topics is conducted.
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2.3. Content Analysis

The final step will involve creating a knowledge map of CECS studies, which will
outline the key components of the research and some knowledge gaps.

3. Results and Interpretation
3.1. Overview of the Publication Year

Figure 2 depicts a general upward trend in researchers’ interest in CECS from 2000
to 2022, which can be separated into three distinct stages. Before 2012, the number of
publications each year was at most ten, and there were even a few years when no relevant
articles were published, indicating that this period was the preliminary exploration stage.
From 2012 through 2016, yearly publications remained steady at about 30. From 2017 to
2021, the number of publications increased from 42 to 128 for a total of 380, with only an
unexpectedly rapid decline in 2019 during this period. As a result, it is expected that CECS
research will expand in the coming years.

Figure 2. The number of articles on carbon emissions in the construction stage.

3.2. Overview of Publishing Institutions and Publishing Countries

The co-occurrence network of CECS studies by nation and institution is depicted
in Figure 3. Publication-wise, the top five nations are China, Australia, the United States,
South Korea, and the United Kingdom, with China coming in first with 168 papers (29.8%
of the total), demonstrating the prominence of Chinese scholars in this subject but also
the lack of international interaction (the centrality of 0.30). Although the UK has just
47 publications (8.35% of the total), its centrality is as high as 0.93, showing that the UK is
an essential player in cross-national collaborative research on this subject. The distribution
of institutions often correlates to the distribution of nations, as is widely known (regions).
Chinese research institutes seem particularly active in CECS research, with Hong Kong
Polytechnic University leading the list with 20 papers, followed by Chongqing University
(19) and Southeast University (19). RMIT University in Australia is second with 19 papers,
while Victoria University is third with 11 publications. In general, CECS research is
prioritized by both developed and developing nations. However, the research institutions
seem relatively fragmented, indicating that each institution is not doing enough ongoing
research in this sector.
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Figure 3. Countries and institutions’ co-occurrence network.

3.3. Subject Categories and Published Journals

The WoS categories with the most publications (>150) are environmental sciences
(210, 37.3%), construction building technology (196, 34.8%), green sustainable science
technology (190, 33.7%), engineering civil (189, 33.6%), and engineering environmental
(155, 27.5%). This shows that environment, architecture, sustainability, and engineering are
key research themes.

The top journal sources for CECS have listed in Table 1. Among the many journals
that have published articles about CECS, the top two journals are Journal of Cleaner
Production (75) and Sustainability (62). One of the most important measures of a journal
article’s significance is how often it is cited by other works [17]. Total citations, average
citations per article, and average citations per year are employed to quantify the effect of
journals on CECS research [19]. Renewable Sustainable Energy Reviews has the highest
average number of citations per article, with 125.12 for the 17 pieces it produced on
the topic. It is also ranked first in terms of average citation frequency, with more than
twice as many as the second-place paper. Additionally, the misunderstanding brought on
by older articles receiving more citations than new articles can be corrected by average
citations per year. The most cited journal is Journal of Cleaner Production, which averages
272.5 citations annually.



Buildings 2023, 13, 205 6 of 22

Table 1. Top research journal sources in 2000–2022.

Rank Journal Title No. of Articles Total Citations Ave. Citations
per Article

Ave. Citations
per Year

1 Journal of Cleaner Production 75 2180 29.07 272.5
2 Sustainability 62 510 8.23 46.36
3 Energy and Buildings 55 2660 48.36 204.62
4 Building and Environment 33 1878 56.91 110.47
5 Journal of Building Engineering 17 100 5.88 25
6 Renewable Sustainable Energy Reviews 17 2127 125.12 177.25
7 International Journal of Life Cycle Assessment 14 941 67.21 58.81
8 Sustainable Cities and Society 14 405 28.93 36.82
9 Resources Conservation and Recycling 13 469 36.08 24.68

10 Buildings 11 178 16.18 29.67

Citation data were obtained from the Web of Science core collection database (8 July 2022).

3.4. Keyword Co-Occurrence Analysis

Keywords highlight an article’s focus and core content [20]. By displaying the con-
nections and organization of research topics, keyword networks give an overview of
knowledge bodies [21]. In this study, a network of keyword co-occurrences is created using
keywords from the 563 documents that were gathered. Similar-meaning keywords (like
“LCA” and “life cycle assessment”) are merged during keyword analysis to hide unnec-
essary associations. In addition, “carbon emission”, “greenhouse gas emission”, “carbon
footprint”, “construction”, “building”, and other generic terms are excluded since they are
already used as search terms. Figure 4 displays the completed network structure, which
includes 364 nodes and 679 connections. Each node in the figure represents a keyword,
and keywords that appear more than seven times are visible. The top five keywords,
“life cycle assessment”, “embodied energy”, “energy”, “impact”, and “embodied carbon”
appear 249, 102, 82, 80 and 77×, respectively.

Figure 4. Keywords co-occurrence network.

Figure 5 shows a timeline view of keyword co-occurrence to illustrate the evolutionary
trend of keywords. The terms “life cycle assessment”, “embodied energy”, and “con-
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struction sector” rose in popularity between 2000 and 2004, indicating that researchers
have started looking at embodied carbon emissions over the course of a building’s life
cycle [22]. According to the new keywords “environment impact” and “impact” from 2005
to 2008, researchers began to notice the interaction between CECS and the environment [23].
Between 2009–2012, the terms “design”, “building material”, “concrete”, and “wood”
emerged, suggesting that green building design and low-carbon materials can also reduce
carbon emissions [24]. BIM is being employed for the first time in CECS studies at this
stage [25]. From 2013–2016, the rise of the keywords “residential building”, “office build-
ing”, and “green building” showed that CECS studies are being done for different kinds of
buildings. During 2017–2022, “prefabricated building” received a lot of attention, and re-
search clearly showed that using prefabricated processes and prefabricated components in
buildings is effective in lowering emissions [26], while keywords like “genetic algorithm”
and “multi-objective optimization” were frequently cited, indicating that computer-based
optimization methods are gaining popularity [27–29].

Figure 5. A timeline view of keyword co-occurrence in 2000–2022.

3.5. Documents Co-Citation Analysis and Cluster Analysis
3.5.1. Documents Co-Citation Network

The 563 articles of CECS were cited by 9064 articles, with the average citation fre-
quency of each article was 28.85. One year is selected as a period, and the g-index method
(k-value was taken as 20) is chosen to conduct literature co-citation and cluster analysis.
Figure 6 shows the co-citations of multiple documents. For instance, Luo et al. (2016) [30],
Zhang et al. (2016) [31], and 13 other articles have shared references since 2016, resulting in
several closely linked circles. A few links are purple, which corresponds to the years 2000
to 2006, while the majority of links are yellow and orange. This shows that the majority of
the document co-citations emerged after 2010 when the quantity of carbon emission articles
during construction began to skyrocket. The top three articles that have received the most
co-citations are written by Mao et al. (2013) [32], Hong et al. (2015) [33], and Chau et al.
(2015) [34], and they have 68, 53, and 47 co-citations, respectively.
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Figure 6. Documents co-citation network.

3.5.2. Citation Bursts

Burst detection is a type of temporal analysis that seeks out high-intensity features
over a predetermined time frame [35]. CiteSpace uses burst detection to determine if there
has been a noticeable increase in frequency over a given period of time [36]. As illustrated
in Table 2, citation bursts have been detected in 25 articles. The strongest burst is related to
Sartori et al. (2007) [37] (burst strength = 13.21, 2012–2015), which shows that buildings
carefully designed with “green materials” but without special energy measures are less
efficient than equivalent solar houses by the analysis of 60 cases. Another burst is related
to Dimoudi et al. (2008) [38] (burst strength = 10.52, 2010–2016), which investigates the role
of different construction materials, and suggests promoting construction methods that can
save quantities of material.

Table 2. Top 25 references with the strongest citation bursts in 2001–2022.

Strength of Burst Start of Burst End of Burst 2001–2022 Pub. Year References

13.21 2012 2015 2007 Sartori et al. (2007)

10.53 2010 2016 2008 Dimoudi et al. (2008)

10.05 2013 2018 2009 Yan et al. (2009)

8.95 2013 2018 2010 Ramesh et al. (2010)

8.02 2016 2020 2015 Hong et al. (2015)

8 2011 2015 2007 Nassen et al. (2007)

7.32 2010 2014 2006 Junnila et al. (2006)

6.89 2012 2015 2010 Dixit et al. (2010)
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Table 2. Cont.

Strength of Burst Start of Burst End of Burst 2001–2022 Pub. Year References

6.43 2010 2015 2007 Asif et al. (2007)

6.39 2011 2014 2005 Li et al. (2005)

6.28 2012 2018 2009 Gustavsson et al. (2009)

6.24 2012 2017 2007 Ortiz et al. (2007)

6.11 2014 2017 2009 Bribian et al. (2009)

6.04 2012 2014 2005 Gonzalez et al. (2005)

5.98 2013 2016 2009 Goggins et al. (2009)

5.89 2020 2022 2018 Pomponi et al. (2018)

5.83 2019 2020 2017 Li et al. (2017)

5.8 2012 2016 2007 Huberman et al. (2007)

5.8 2012 2016 2009 Gustavsson et al. (2009)

5.66 2020 2022 2016 Peng et al. (2016)

5.66 2020 2022 2020 Rock et al. (2020)

5.56 2015 2018 2012 Wu et al. (2012)

5.43 2017 2020 2015 Chou et al. (2015)

5.38 2012 2016 2008 Blengini et al. (2008)
5.36 2020 2022 2017 De Wolf et al. (2017)

Citation data were obtained from the Web of Science core collection database (8 July 2022).

3.5.3. Cluster Analysis

CiteSpace literature co-citation cluster analysis is an algorithmic approach to uncov-
ering common themes in closely related literature, which is more efficient than manual
summarization when dealing with large volumes of literature and can reduce the burden
on researchers [39]. The cluster analysis of the co-citation network yielded 65 clusters,
and Figure 7 lists the 13 largest co-citation clusters in terms of size. Each cluster stands for
a current research project in the area of carbon emissions. In order to determine cluster
labels, the log-likelihood rate is used (LLR) [40]. The Modularity value of 0.8863 provides
in the upper left information column of the CiteSpace plot is greater than 0.3, indicating
that the structure of the clusters delineates is significant, and the Silhouette value of 0.9116
is higher than 0.7, meaning that the clustering results are convincing.

Each cluster’s intellectual foundation can be thought of as a collection of tightly related
references, and the publications that refer to the clusters are regarded as the research fron-
tiers [41]. By combining citation-linked and text-based techniques, the central documents
(the representative cited papers and the active citing papers) allow us to understand the
dynamic connection between the intellectual foundation and the prospective research front
of a cluster [36].

Based on the original research content, four knowledge domains are created from
13 clusters (Numbered KD1-KD4).

(1) KD1 “carbon emissions sources” = cluster #1 “embodied carbon emissions” + cluster
#9 “web-cyclone” + cluster #10 “residential sustainability”

This knowledge domain KD1 focuses on carbon source coverage, composed of four
aspects: system boundary, Greenhouse gases (GHG) type, project type, and quantification
space. As of now, there is no consensus on the sources of CECS. Researchers are mainly
concerned with whether activities (such as energy consumption, material production,
manufacturing and transportation, equipment and labor use, etc.) should be included
within the system boundary.
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Figure 7. Cluster view of literature co-citation network.

The most cited article proposed a “cradle-to-site” assessment approach that included
raw material harvest, building material production and transportation, on-site construction,
and construction waste management [42]. In other highly cited articles, a few researchers
considered only the CECS of major construction materials (e.g., concrete, cement, brick,
steel, wood, glass, and plastic) and heavy machinery and excluded activities that had little
effect on the results or for which data were lacking [43,44]. The study of Nuri Cihat et al.
(2014) [45] extended the carbon source tracking pathway for building materials transporta-
tion and proposed a scope-based carbon footprint analysis to track the GHG emissions
throughout the supply chain. Peng (2015) [46] and Seo et al. (2016) [47] divided the carbon
emissions from construction waste disposal into three stages: transportation, disposal,
and landfill for detailed calculations.

In terms of active citing publications, Zhang et al. (2021) [48] extended the system
boundaries of the “cradle-to-site” assessment model by considering auxiliary construction
materials. In addition, Hong et al. (2015) [33] divided the CECS into direct carbon emissions
and indirect carbon emissions. A number of researchers argue that the calculation should
not consider the materials that make up the building itself [49,50]. But Su et al. (2016) [51]
pointed out that the ideal system boundary using the inventory analysis processing method
should include the production and transportation of raw materials. Several researchers have
focused on the carbon emissions of modular components during the factory manufacturing
stage, because prefabricated buildings offload some of the labor of cast-in-place construction
to factories [52,53].

(2) KD2 “CECS assessment framework” = cluster #2 “life cycle assessment (LCA)” +
cluster #3 “embodied carbon” + cluster #8 “reinforced concrete slab” + cluster #13
“data representativeness” + cluster #14 “life cycle CO2”

In this knowledge domain, researchers have developed various methods for calculat-
ing CECS. In the most cited article, Chau et al. (2015) [34] used a process-based method to
assess the embedded carbon emissions. There are typically two formulas for calculating
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carbon emissions. One is to multiply the activity data by the emission factor correspond-
ing to the activity, and the other is to multiply the energy consumed by the activity by
the carbon emission factor of the corresponding energy. As for the active citing articles,
Zhang et al. (2021) [48] used the input-output method to calculate the embedded carbon
emissions of auxiliary building materials that lacked process-level carbon emission factors.
In general, there are three main calculation methods for calculating CECS, process-based
method(PBM) [54,55], input-output method(IOM) [56–58], and hybrid method(HM) [59,60].
Current interpretation and quantification processes have been widely and experimentally
explored in qualitative terms, notably in the combination of PBM and IOM [61,62].

(3) KD3 “BIM-integrated evaluation framework” = cluster #5 “building information
modeling” + cluster #6 “embodied environment impact”

BIM has a fine-grained ontology model and a database containing rich semantic
information that provides practical material information, such as material quantities and
composition [63]. As a result, time-consuming and error-prone human operations can be
avoided by having BIM generate an exact bill of quantities automatically [64].

For highly cited articles, Peng used BIM to provide basic material amount information
and hence calculate CECS. At the same time, Li et al. (2021) [65] employed BIM-related
software to carry out digital information simulations to obtain the consumptions such as
building materials, machinery shifts, and labor. Various intelligent methods are utilized to
enhance data collecting and processing during carbon emission assessments. The visualiza-
tion impact of a BIM model is superior. Wong et al. (2013) [66] used virtual prototyping and
mixed reality technologies to “try before you build” or “construct the building many times”
before the project started, and exported schedule information and 3D models via Autodesk
NavisWorks to the simulation, where they were converted into 4D models. An assessment
of carbon emissions based on BIM can also use schedule management and cost management
details to visualize the time and space of carbon emissions and calculate their intensity [67].

Integration of BIM and LCA to estimate CECS is a hot topic. A connection between the
compiled LCA database and the BIM model was automatically set up using the Dynamo
development plugin [68]. The overall implied impact of different construction scenarios on
a building can be calculated by multiplying the building components’ environmental impact
quantities (possibly volume, weight, and cost) in BIM by the respective environmental
impact factors in the LCA database. Construction carbon assessments can be streamlined
through BIM by capturing graphical information about the building’s constituent elements
and materials [69]. Construction and demolition waste can be predicted and disposed of
using information technology based on BIM and scientific logistics networks [70]. Liu et al.
(2015) [71] looked at BIM in reducing construction waste, including construction waste
minimization, design waste minimization, and on-site and demolition waste management.

(4) KD4 “carbon reduction” = cluster #0 “construction” + cluster #4 “climate change” +
cluster #7 “modular construction”

For the most cited article, Mao et al. (2013) [32] found that there are three key ways to
cut GHG emissions. The first is to reduce the number of steel pre-built elements by opti-
mizing the design of the reinforced connections of the elements. The second is to develop
a reasonable and cost-effective ratio of concrete to brick on the exterior walls. The third
is to pick a factory that is close to the project or a material distribution hub. Hong et al.
(2015) [33] also made three recommendations. To increase compatibility, create a uni-
form conversion formula for carbon emission inventory and traditional bills of quantities.
Second, emphasize local raw materials, prefabricated components, secondary processed
construction goods, and low-impact construction procedures. Third, highlight realistic con-
struction management solutions for equipment use, people activities, and transportation.
Prefabricated steel construction material reuse was shown to be promising [72].

The active citing articles [34] summarized four major categories of shortcomings of
LCA in carbon emission studies, including boundary scope, methodological framework,
database inventory, and practice. According to Andersen et al. (2021) [73], wood has good
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carbon sequestration capacity, and it should be used more in buildings to reduce implicit
GHG emissions. Cross-laminated timber is a low-carbon alternative to steel/concrete [74].
Javed et al. (2020) [75] proved that compressed lime-bentonite clay bricks made from locally
available materials provide better energy efficiency, sustainability, and eco-friendliness.
Furthermore, Yoon et al. (2018) [76] proposed a sustainable design approach that sets
objective functions for cost, embodied energy, and CO2 emissions, and performs extensive
optimization analysis.

4. Discussion

Despite numerous CECS research, the available results have not been subjected to a
quantitative and thorough study. Therefore, based on the foregoing bibliometric review
and in-depth content analysis, a comprehensive knowledge map of CECS is proposed
(Figure 8). The next section discusses the study’s essential components, present research
gaps, and future studies.

4.1. Critical Research Parts of CECS

The four major study components of CECS, including scope definition, data collection,
assessment methods, and carbon reduction strategies, are all represented in the framework,
as shown in Figure 8. The current status of their research is described below:

4.1.1. Sources Definition

The definition of carbon sources is the first step in CECS studies, which serves as
the basis for quantification and assessment. Sources of CECS are related to the system
boundaries studied, greenhouse gases considered, projects involved in the construction
phase, and the quantified construction space.

System boundaries are designed to delineate the boundaries between CECS-related
activities and the outside world while determining the amount and type of activities [11].
The system boundaries of CECS studies differ in two ways. First, it is unclear how far up-
stream and downstream the study extends during the construction phase [77,78]. Another
point is whether the study considers the whole building [32,54,79] or only a divisional
work [80,81], a subdivision [82–84] or even a component [80,85]. There are six kinds of
greenhouse gases stipulated in the Kyoto Protocol, and GHG that affect global warming
are mainly CO2, CH4, and N2O [86]. Among them, CO2 produces 55 % of the greenhouse
effect, and there is an increasing trend year by year. Previous researchs only consider
CO2 [2] or major greenhouse gases, and some also conduct environmental assessments
of greenhouse gases and non-greenhouse gases [84,87]. CECS studies are often based on
actual projects, which are unique due to factors such as different structural types [88–90],
different building functions, and different construction methods [91,92]. CECS quantified
space is a general term for all spatial sites where carbon emissions are generated by the
construction of buildings or components. The embodied carbon emissions have been
scrutinized in recent years [93–95].
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Figure 8. Knowledge map for construction phase carbon emissions research.

4.1.2. Data Statistics

High-quality CECS data is the foundation of all carbon emission reduction efforts.
Data quality is the key to building a policy system that promotes effective carbon emission
reduction targets. CECS data have the following characteristics:

(1) Multiple sources. Under the common design-bid-construction model, primary build-
ing materials are selected by the general contractor or owner, labor subcontracts select
auxiliary materials, and finishing materials are often selected by the owner, suggesting
that statistical information on materials needs to be coordinated by multiple sources.

(2) Wide distribution. The delivery of materials, the transfer of construction trash, the use
of on-site construction machinery and equipment, as well as the on-site office, are all
sources of carbon emissions at the job site.

(3) Fast flow. The carbon source data is not only at the edges of the construction site,
but also in the supply chain and, in the case of assembled buildings, in prefabrication
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plants. In addition, construction materials, machinery, and equipment constantly flow
during construction, and the carbon source rushes with them.

(4) Difficult but best in the design phase and easy in the construction phase. Detailed and
accurate data (such as construction log, bill of quantities, etc.) can be collected during
construction but not during the most meaningful design phase for carbon reduction [96],
which means that the traditional carbon assessment cannot provide timely feedback and
guidance on how to improve carbon emissions in construction effectively.

(5) Timeliness. The artificial statistical data has timeliness, as a batch of materials procure-
ment costs is different at different times, and the fuel price of construction equipment
consumption also fluctuates, which is easy to cause errors based on production analysis.

(6) Commercial sensitivity. The collection of CECS data requires the relevant parties to be
responsible for the authenticity, accuracy, and completeness of their respective carbon
emission data. Project participants may refuse to share information due to concerns
about technology leaks to competitors, potential violations becoming known to the
supervising party, etc. Therefore, the communication and integration of information
among and within stakeholders must be carefully handled.

4.1.3. Assessment Methods

Traditional LCA evaluation approaches, such as PBM, IOM, and HM, still have several
limitations for calculating [46].

The basic concept of PBM for calculating carbon emissions is “Emission = Quantity ×
Coefficient” [97]. There are two ways to obtain the material, fuel, and electricity consump-
tion: bill of quantities and building information model [98]. PBM permits an accurate and
detailed study of a specific product but ignores indirect contributions from higher upstream
processes, which can result in a large underestimation of total impacts [45]. Additionally,
a complete library of carbon emission factors and detailed information on the construction
process are both required for the process-based method. Carbon emission factors of the
same building material may vary depending on the manufacturer, production process, raw
material supply chain, etc. The use of industry averages is not conducive to the promotion
of green building materials.

Theoretically, IOM systematically examines not only the direct environmental impact
of the analyzed product or service but also all the indirect consequences involved in the
supply chain [99]. Unlike the process-based approach, it does not have problems with
truncation bias [54,56]. As a result, the average published estimate of the IO model is
higher than that of the process-based model. IOM requires statistics on the cost of materials,
transport costs, the monetary value of machinery, etc., from bills of quantities and con-
struction quotas, as well as access to parameters such as emission intensity. However, IOM
inherits uncertainty, data aggregation, homogeneity assumption, age of data, and capital
equipment [100].

As seen from the above analysis, HM combining PBM and IOM’s advantages would
be a feasible option. However, this approach suffers from two drawbacks. Firstly, there
are truncation errors when combining process-based and input-output data, resulting in
the omission or double-counting of specific data [101]. Secondly, the hybrid strategy is
well-known for its data and time needs [77,102].

A BIM-integrated evaluation framework has outstanding advantages in automatic data
statistics and analysis, time and space visualization, on-site simulation, and optimization,
but it is rarely used in practical engineering.

4.1.4. Carbon Reduction Strategies

The construction sector is beginning to show interest in incorporating carbon assess-
ment thinking into building design and construction. As a result, a greater knowledge of
the CECS reduction potentials of various solutions is highly relevant and necessary [103].

Concrete is the world’s most frequently used building material, producing 14 billion
m³ per year and accounting for 6–10% of global anthropogenic CO2 emissions. Reducing
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cement consumption is the most effective way to reduce the carbon footprint of concrete,
so cement replacement has also received a great deal of scholarly attention [104]. Develop
sustainable concrete alternatives to conventional concrete, such as fly ash as an alterna-
tive to ordinary Portland cement [105,106]. Some scholars have used parametric design
methods to reduce emissions by enhancing the utilization of concrete and steel [107–111].
Other studies indicated that sourcing local materials can reduce emissions from off-site
transportation [24,112]. Construction waste recycling not only extends the life of construc-
tion materials but also reduces carbon emissions during the transportation and disposal of
construction waste [113–115].

As renewable resources and carbon-sequestering materials, wood and bamboo are
widely used. According to Sandanayake et al. (2018) [116], timber use reduces embodied
and transport greenhouse gas emissions during construction. Chen et al. (2021) [117] also
suggested improved logistics, manufacturing optimization, and local sourcing as ways to
cut carbon emissions. The glued timber and sawn timber value chains have a more positive
sustainability impact than cast-in-place concrete and precast reinforced concrete [118]. Since
China consumes over 50% of its timber from abroad, carbon emissions from the imported
timber supply chain are of concern [119]. The short growth cycle, hardness, and water
resistance of bamboo make it the ideal material for saving timber and replacing wood.
Xu et al. (2022) [120] calculated the carbon emissions and storage of bamboo and verified
the vital role of bamboo promotion in carbon reduction.

On construction sites, carbon reduction strategies can be divided into two categories:
on the one hand, more effective planning, management, and utilization of mechanical
equipment can cut down fuel and power consumption and improve site management to
reduce waste of materials and energy [121,122]. Alternatively, we should promote new
construction technologies, such as prefabricated assembly buildings [32,52,67,123], 3D con-
crete printing technology [124,125], and Post-Tensioned in situ construction methods [126],
to reduce waste on site and increase productivity.

4.2. Knowledge Gaps and Future Research

This analysis reveals topics that still require further research by evaluating CECS-
related literature from 2000 to 2022. According to Figure 8, six knowledge gaps as well as
their future directions are explored.

4.2.1. Establishing Integrated System Boundaries

The first knowledge gap is related to the lack of comprehensive system boundaries.
The subjective nature of system boundary definitions is one of the reasons for incomplete,
inaccurate, and unrepresentative study data [11]. Since there is currently no agreement in
the literature on what constitutes a standard system boundary model and what should be
contained in a CECS study, future research should focus on developing a comprehensive
system boundary definition model [127]. This future endeavor has two purposes. To begin,
it must include a lucid and exhaustive summary of recent research on boundary definitions.
Researchers will be able to determine whether this boundary definition is feasible and the
limitations of tracking CECS using this model. In this case, existing computational methods
can be optimized or appropriate computational methods can be developed. Additionally, it
will provide an approach to quantify buildings’ embodied carbon emissions. A model of
the system boundary could be developed to facilitate the conversion of carbon emission
data at different scope levels (building materials, components, divisional works, the whole
building, etc.).

4.2.2. Develop a Complete CECS Estimation, Monitoring, and Management System

The second knowledge gap is that data statistics are time-consuming and costly,
while data reliability and comprehensiveness are difficult to guarantee. Managing CECS
shouldn’t end with evaluating carbon emissions after implementing a project. Additionally,
project parties need to manage carbon emissions and optimize project plans before and
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during implementation [78,128]. In addition, the CECS accounting system should guide
the accounting parties to complete pre-project carbon emission projections and CECS
monitoring. BIM-based assessment methods can predict CECS at the planning and design
stage, while GIS, BIM, and IoT technologies can be used to monitor, visualize, communicate,
and analyze carbon emissions from construction activities in real-time, and to display the
spatial distribution and dynamic changes of CECS using an intuitive interface [53,67].
The evaluation methods and auditing standards for domestic low-carbon buildings should
be established as soon as possible to provide guidelines for design agencies, construction
units, real estate developers, etc. Promote the formation of novel low-carbon design
strategies and technology systems, and at the same time urge the emission reduction
actions of various construction-related industries to achieve carbon reduction goals [129].

4.2.3. Establishing a Database of Carbon Emission Factors for the Whole Life Cycle of
Construction Projects

The third knowledge gap is the imperfection of carbon emission factor libraries. While
the quantitative system is being established, to ensure the reliability of the data sources and
the results of the calculation in the application of the system, it is also suggested that the
state should start from the macro policy and step up the research, collation and statistics
on the energy consumption data, transportation channels and raw material inputs of all
domestic industries, to build and continuously improve the database of carbon emission
factors in China.

4.2.4. Intelligent Technology Integration and Application

The fourth knowledge gap is caused by a lack of comprehensive control over CECS,
which leads to ambiguity. Nahangi et al. (2021) [96] confirmed the high model requirements
for BIM-based assessments and highlighted the challenges and resulting uncertainties of
accurately and completely quantifying material and energy use on site. Therefore, it is
necessary to control CECS more comprehensively. The use of more intelligent technologies
for monitoring and managing CECS sustainability is recommended in future studies [130].
In the future, greater attention should be focused on developing more accurate, compre-
hensive, and systematic tools for the automatic collection, analysis, and visualization of
emission data.

4.2.5. Constructing a Multi-Objective Analysis Model for Comprehensive Benefits of
Carbon Emission Reduction

The fifth knowledge gap concerns the direct or indirect impacts of low-carbon con-
struction on all its stakeholders in practical application, and there are no analytical models
that consider the environmental, economic, social, and other benefits of low-carbon con-
struction [4]. The construction of a multi-objective analysis model for the comprehensive
benefits of carbon reduction in future studies will allow the selection of factors to be consid-
ered according to the researcher’s needs and the optimal reduction strategy to be derived
from the analysis model.

4.2.6. Clarify the Main Responsibility of Each Party

The sixth knowledge gap is the need for more clarity on the responsibilities of all
parties in implementing low-carbon construction. Most low-carbon construction cases
are used as demonstration projects, but few are applied in daily buildings [131]. Low
carbon pathways in buildings are implemented by four parties: government, owner, de-
signer, and constructor. The lack of chain management responsibility and top management
commitment may be fundamental barriers to low-carbon construction [34].

5. Conclusions and Implications

Construction of building projects emits a large number of greenhouse gases into the
environment within a short time frame and in a concentrated manner. Therefore, it is of
great significance to accurately measure carbon emissions at this stage and to formulate
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corresponding emission reduction measures, which is a key link to realizing energy saving
and emission reduction in the construction industry and is the basis for quantitative
analysis of low-carbon construction. The goal of this bibliometric and content evaluation is
to identify the current state and future trends in carbon emissions research in construction.
Through targeted search and screening, 563 articles from 2000 to 2022 were collected from
the WoS core database.

In terms of time, research on carbon emissions in the construction stage has passed
through three phases: the initial exploration period (2000–2011), the steady development
period (2012–2016), and the rapid growth period (2017–2022). Regarding the spatial distri-
bution of institutions, most studies originated in China, Australia, the United States, South
Korea, and the United Kingdom. In addition, the institutions conducting carbon emission
research are relatively dispersed. The statistics of the Web of Science categories show that
environment, architecture, sustainability, and engineering are the main research themes.
In terms of keywords, “life cycle assessment”, “embodied energy”, “energy”, “impact”,
and “embodied carbon” appeared most frequently. A keyword timeline view is used to
understand each hotspot’s duration and past research hotspots.

According to the literature co-citation network, 13 clusters are identified. This study
divides them into four knowledge domains: sources definition, data statistics, assessment
methods, and carbon reduction strategies. Based on the above bibliometric and content
analysis, a knowledge map is proposed. The key research components on carbon emissions
at the construction stage are discussed in detail, including sources definition, data statis-
tics, assessment methods, and carbon reduction strategies. In addition, the key research
components in system boundary definition, data statistics, carbon emission factor library
establishment, and data uncertainty. Immediately after that, knowledge gaps in system
boundary definition, data statistics, carbon emission factor database establishment, data un-
certainty, emission reduction strategy development, and emission reduction responsibility
analysis are also identified. Finally, a future research agenda is proposed. (1) establishing
integrated system boundaries, (2) developing a complete carbon emission estimation, mon-
itoring, and management system, (3) establishing a database of carbon emission factors for
the whole life cycle of construction projects, (4) intelligent technology integration and ap-
plication, (5) constructing a multi-objective analysis model for the comprehensive benefits
of carbon emission reduction, and (6) clarifying the main responsibility of each party.
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