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Abstract: In recent years, research on the preservation of historical architecture has gained significant
attention, where the effectiveness of semantic segmentation is particularly crucial for subsequent
repair, protection, and 3D reconstruction. Given the sparse and uneven nature of large-scale historical
building point cloud scenes, most semantic segmentation methods opt to sample representative
subsets of points, often leading to the loss of key features and insufficient segmentation accuracy of
architectural components. Moreover, the geometric feature information at the junctions of components
is cluttered and dense, resulting in poor edge segmentation. Based on this, this paper proposes a
unique semantic segmentation network design called MSFA-Net. To obtain multiscale features and
suppress irrelevant information, a double attention aggregation module is first introduced. Then, to
enhance the model’s robustness and generalization capabilities, a contextual feature enhancement
and edge interactive classifier module are proposed to train edge features and fuse the context
data. Finally, to evaluate the performance of the proposed model, experiments were conducted on a
self-curated ancient building dataset and the S3DIS dataset, achieving OA values of 95.2% and 88.7%,
as well as mIoU values of 86.2% and 71.6%, respectively, further confirming the effectiveness and
superiority of the proposed method.

Keywords: deep learning; historical building point cloud; MSFA-Net; semantic segmentation

1. Introduction

The historical architecture of the Chinese nation is considered to be the oldest archi-
tectural system with the longest history, the longest existence, and the highest innovation,
and has extremely high cultural heritage value. However, with the erosion of time, historic
buildings are threatened with destruction and extinction. In recent years, the protection of
cultural heritage has been continuously strengthened at the national level and a number
of policy documents have been implemented successively. This makes the protection and
repair of historical buildings in our country increasingly important and urgent.

With the continuous deepening of 3D digital technology in large-scale cultural heritage
protection research [1], point cloud semantic segmentation has become an important direc-
tion for remote sensing applications. Different from traditional pixels in two-dimensional
images, point clouds have more detailed depth information and provide a large amount
of valuable information to describe the real world [2]. However, point cloud data also
have shortcomings. Although point cloud data contains three-dimensional coordinates and
various additional attributes with high precision, high resolution, and high dimension, it
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cannot directly offer information at the semantic level. These problems make it difficult for
cultural heritage experts to directly use point cloud data. Therefore, as a basic link, point
cloud segmentation of historical buildings has important research significance.

Nowadays, point cloud semantic segmentation has become the basic technology for
three-dimensional scene understanding, and researchers have conducted in-depth explo-
ration on it, but its unique disordered and unstructured characteristics make it difficult
to obtain precise and effective semantic segmentation outcomes, which is extremely chal-
lenging [3–5]. In the early stage, people were committed to using the traditional point
cloud semantic segmentation method, which divides the point cloud data into different
surface regions according to the feature attributes of the point cloud. Its algorithms are
divided into four methods: edge based, region-growing based [6], model-fitting based [7]
and clustering based. Each algorithm has its own unique advantages and disadvantages
in point cloud semantic segmentation, as well as characteristics which are applicable to
different scenarios [8]. Although the traditional point cloud segmentation method performs
well in man-made structures with regular geometric shapes and runs faster, there are still
some limitations in large-scale historical buildings. For example, most historical buildings
consist of a large number of components with irregular shapes, so it is difficult to select
suitable geometric models to fit objects. Only relatively rough segmentation results can
be obtained.

With the deepening of research, deep learning technology has propelled amazing
advancements in point cloud semantic segmentation. Numerous methods for semantic
segmentation of point clouds using deep learning techniques have emerged in recent
years [9]. In contrast to the conventional point cloud semantic segmentation technique,
the deep learning-based model technology not only has higher performance of multiscale
spatial three-dimensional information but also has different granularity levels of semantic
information, include partial segmentation, semantic segmentation, and instance segmen-
tation. They can be categorized into three types based on various point cloud extraction
techniques: voxel-based methods [10,11], projector-based methods [12,13], and point-based
methods [14]. The projection-based method and voxel-based method have high computa-
tional costs, and it is easy to cause semantic feature or spatial position loss in the process
of projection or voxelization. In order to address this issue, researchers constructed a
network for collecting features from point clouds without requiring data transformation
processes [15–17], which can directly consume irregular three-dimensional point cloud
data, reduce the limitation of point cloud characteristics, and make full use of point cloud
geometry information to improve the interpretation ability of three-dimensional point
cloud scenes. PointNet [18], as a pioneer of deep learning, first provides a network architec-
ture that directly handles the original point cloud. Therefore, many scholars have proposed
improved networks based on it, but most of the methods are limited to the input of mi-
nuscule three-dimensional point clouds into the network and cannot be directly extended
to larger scenarios. Subsequently, Hu et al. [19] proposed a RandLA-Net network model
with better performance in large-scale scenarios. It chooses random sampling instead of the
widely used remote point sampling method and extracts geometric features through the local
feature aggregation module, which reduces the network complexity and effectively retains the
geometric details. On this basis, many methods of local feature aggregation have recently been
presented. As an illustration, SCF [20] introduces spatial representations that are not affected by
Z-axis rotation, LACV-Net [21] uses the neighborhood feature as the offset and converges to
the centroid feature, which reduces the local perceptual ambiguity through its similarity, and
DGFA-Net [22] has an expansion graph characteristic aggregate structure.

According to the above analysis, although point-based methods have obtained good
accuracy in semantic segmentation, they are rarely used for historical architecture in China.
When dealing with large-scale ancient architectural scenes, these methods cannot suffi-
ciently capture both local and global information, especially when faced with uniquely
structured historical architectural components. Overemphasis on local features may ne-
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glect the spatial geometric structure information of the point cloud. Therefore, the main
contributions of this study are as follows:

(1) This paper proposes a unique semantic segmentation network named MSFA-Net. It
designs a double attention aggregation (DAA) module, which consists of a bidirec-
tional adaptive pooling (BAP) block and a multiscale attention aggregation (MSAA)
block. Through the combination of two different attention mechanisms, it can obtain
multiscale information features of the target in the sampling process and reduce
redundant information.

(2) This paper proposes a contextual feature enhancement (CFE) module, which enhances
the connection between the model context by fusing the local global features across
the encoding and decoding layers and fully considers the semantic gap between
neighboring features.

(3) This paper proposes an edge interactive classifier (EIC), which introduces the features
of each point into the edge interactive classifier to obtain the edge features of each
point. Through the information transfer between nodes, it better performs label
prediction, making it possible to smoothly segment the edges of objects.

2. Materials and Methods
2.1. MSFA-Net Model Construction

This section outlines the proposed network’s detailed design, which follows the
encoder–decoder structure and is depicted in Figure 1 of this text. The input point cloud is
introduced into the coding layer, which includes a downsampling operation and a dual
attention aggregation module (DAA). In view of the efficiency of random sampling in
dealing with large-scale point cloud data, this study adopts this method to simplify point
cloud data. Both upsampling and MLP operations are present in every decoding layer.
Then, we add a CFE module between the encoders and decoders, allowing features to be
transferred interactively across the encoding and decoding layers, fusing the local features
the encoding and decoding layers had previously gathered to improve context linkage.
Finally, an EIC module was designed to obtain the edge features of each point and perform
better label prediction through information transmission between nodes. The label with
the highest score is used to determine the semantic segmentation outcome.
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2.2. The Structure of the Double Attention Aggregation (DAA) Module

Figure 2 depicts the DAA module’s detailed structure, and the input point information
comprises the previously learned spatial and feature information. Point coding blocks are
built using spatial information, and weighted learning is accomplished via bidirectional
adaptive pooling (BAP) and multiscale attention aggregation (MSAA) modules. The next
coding layer receives all the acquired features and processes them.
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The numerical symbols utilized in Figure 2, as well as the other number symbols
depicted in the module schematic diagrams shown in Figures 2–6, are detailed in Table 1.

Table 1. List of abbreviations.
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2.2.1. Multiscale Attention Aggregation Module

The present study introduces a multiscale attention aggregation module, which ex-
tracts feature information from different scales. This module computes corresponding
attention scores based on neighbor information and utilizes them to weight the neighbor
features, resulting in the acquisition of the final aggregate feature vector. Figure 3 depicts
our multiscale attention aggregation module.
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The central point and nearby points are first subjected to feature extraction in this
module; then, position encoding [19] is added to both the mapping function ζ and the
conversion function γ to enhance the ability to express features. Let fi be the characteristic
of the central point pi, and f k

i be the characteristic of the points that surround it. The
following is the formula for our multiscale attention aggregation module:

Fi = ∑K
k=1 so f tmax

(
ζ
(
α( fi) + ck

i

))
⊙

(
γ
(

f k
i

)
+ ck

i

)
(1)

In this module, by utilizing feature information at different scales, the receptive field
is expanded to increase the perceptual ability of the point cloud. Not only can it better
capture the geometric features of the characteristics, but it can also dynamically adjust the
importance of the features according to their significance, focus on minute details, and
reduce the problem of mis-segmentation.

2.2.2. Bidirectional Adaptive Pooling Module

Attention mechanisms have been widely used in computer vision technology and
have been added to various segmentation tasks. A bidirectional adaptive pooling block
is created, combining spatial information in response to the drawback that it is easy to
unintentionally lose crucial information in random sampling tasks. This block can not only
better capture forward and backward information but also enhance the model’s capacity to
recognize important features. Figure 4 depicts our bidirectional adaptive pooling structure.
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To obtain the aggregate feature set F̂i =
{

f̃ k
i

}K

k=1
, a shared function q (.) is designed to

learn the aggregation of local features centered on the current point. Every feature is given
a distinct attention score in its neighbor points by the shared MLP’s learnable weight Wi.
It is used to gauge how similar the present points are to those further away and to gauge
the significance of screening features. Then, a shared function h(.) is designed to learn the
weights of points that are closer to the current point. Each function includes a softmax and
a shared MLP. The following is a definition of this form:

Sk
i = q

(
f̃ k
i , Wi

)
, (2)

Sk
i = g

(
f̃ k
i , Wi

)
(3)

where Wi shares the MLP’s learnable weight.
Then, the weighted summation is used to determine the attention scores for both

forward and backward learning, which can be thought of as soft masks that automatically
select important features. The weighted feature summation is performed, and the formula
is as follows:

f̂i =
K

∑
k=1

(
f̃ k
i ·Sk

i

)
(4)

The final information feature vector f̂i is created by combining the forward and
backward weighted sums after each weighted sum is collected. Our method represents
the features more accurately and comprehensively because it takes into account how each
point is related to its neighbors.

2.3. The Structure of the Contextual Feature Enhancement (CFE) Module

To enhance the relationship between model contexts, this study first creates a module
based on contextual feature enhancement that combines local and global characteristics
from the encoder and decoder. Figure 5 depicts its structure. From the figure, it can be seen
that the feature representation corresponding to the decoder layer of Fl

e is denoted as Fl
d.

For Fl
d in the decoder, it is enhanced using Fl

e and Fl+1
e from the encoder.
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First, to increase computational efficiency, we compress the feature map of the encoder
in the preceding layer. Then, the nearest neighbor interpolation is used to interpolate the
feature graph, and the convolution operation is used to map the feature, and the attention
weight is obtained by normalizing the sigmoid function. Finally, the attention weight is
employed to weigh the last encoder feature map and the current feature map to accomplish
the feature map fusion. The following is the formula:

Fl
a = mFl

e + M
(

Fl
e − mFl

e

)
(5)

where M stands for MLP and m stands for average.
Based on the acquired feature map, feature enhancement is performed on both the

global and local features. Contextual associations within the input data are identified,
enabling the model to prioritize crucial feature information. The following is the formula:

Fl
c = Fl

e ⊙ Fl
a + Fl+1

e ⊙ (1 − US
(

M
(

Fl+1
e

))
(6)

In this process, the attention map weights the feature maps at different positions,
allowing the model to focus more on the regions related to the current task. By weighting
the feature diagram of the preceding layer encoder, the model may be made to target
high-level characteristics more, to produce more precise models of important regions,
enhancing the performance of the model. Additionally, this weighting method can also
play a regularization role to avoid the occurrence of overfitting problems.

2.4. The Structure of the Edge Interactive Classifier (EIC) Module

In previous studies, most classifiers use the full-connection layer and dropout layer
to predict their classes point by point, but the nonactive functions that make up the full-
connection layer easily cause inconsistent neighbors during prediction. Therefore, an edge
interaction module is proposed to obtain edge features by exchanging information between
adjacent nodes. Figure 6 depicts the edge interactive classifier module [23].
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The point cloud is represented by P̃ =
{

xn, yn, zn, f̃n

}N

n=1
, where xn, yn, zn stand for the

NTH point’s coordinates, and f̃n ∈ RD denotes the feature output of the local aggregation
module’s preceding layer, by which the feature graph of the neighbor node is aggregated.

For vertex f̃i, the nearest k vertex feature
{

f̃ k
i

}K

k=1
is obtained and obtain edge features by

echoing with the feature map, where the edge feature is ej
i = ReLU

(
W· f̃ j

i

)
. Where W is

the learnable weight and ReLU is the ReLU activation function. The edge feature between
the ith point and its jth neighbor is known as ej

i.
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Then, to determine the relationship between each node and its neighbors, compute
the attention matrix for the original feature and the edge feature:

ai
j =

(
ej

i

)T
·ej

k (7)

f ′i = ∑
j

f i
j ·Ej (8)

where f′i represents the aggregation feature of node i, Ej is the neighbor node j’s feature
matrix, and the attention coefficient f i

j represents the relationship between node i and
its neighbor node j. Finally, perform maximum pooling on it, select the most significant
features, and combine them with the output of the preceding convolution layer to create
fusion features. In order to improve contextual information and capture edge-to-edge
interaction features, this module is included in the final two MLPs.

3. Experiment
3.1. Experimental Platform

This experiment was run on NVIDIA GeForce RTX 3080/PCIe/SSE2, Intel® CoreˆTMi9-
10900K CPU @ 3.70 GHz *20 in Ubuntu 18.04 environment. We adopted TensorFlow, which
is implemented in Python 3.6, as the framework for our algorithm. During the training
phase, the network selects eight batch sizes and performs 100 iterations epochs of the
calculation. Concurrently, the starting learning rate is fixed at 0.01, and after each epoch, it
is reduced by 10%. For gradient descent optimization, the network optimizer makes use of
Adam [24].

3.2. Dataset

Two historic buildings were selected as study areas for this study. The first research
area is located in Beijing Olympic Park, Chaoyang City, which dates back to the Xuande
period of the Ming Dynasty (1426–1435) and has been continuously maintained until now.
It is a religious building with a long history and cultural heritage. The other study area,
which is different from the religious buildings, is a Chinese classical building, built in the
Qing Dynasty (1908), located in the Xicheng district of Beijing, with extremely important
historical significance.

In order to obtain complete point cloud data of historical buildings in real scenes, we
use 3D laser scanning technology to obtain historical building data containing complete
internal and external structures, then preprocess them using a range of data processing
software, such as registration, filtering, sampling, and annotation. To objectively assess the
semantic segmentation network model’s capacity for generalization on historical building
data, based on the symmetry of historical architectural scenes and their structures, we
divided each building into left and right point clouds along the central axis, and marked
a total of 6 semantic categories: roof, column, forehead, door, window, and wall. This
segmentation method not only helps the neural network to better learn the structural char-
acteristics of historical building components, but also adopts the four-fold cross-validation
method in the subsequent steps, so as to scientifically evaluate the model’s capacity for
generalization. The manual annotation results of the point clouds are shown in the Figure 7:
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Figure 7. The experimental area manual annotation results. (a,b) The point cloud data of the
experimental area scene, (c) the annotation result of the point cloud data of experimental area 1 (left
and right), (d) the annotation result of the point cloud data of experimental area 2 (left and right),
and (e) the wood component division of the ancient building dataset.
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3.3. Evaluation Indicators

To be able to accurately reflect the performance of the presented approach in this study,
the study chose the classical evaluation criteria to validate it, namely, overall accuracy (OA),
mean class accuracy (mAcc), and mean intersection over union (mIoU). The calculation
formula of each part is as follows:

OA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(9)

mAcc =
i

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(10)

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(11)

Among them, k denotes the number of labels existing in the used dataset, pij represents
the number of points where samples originally classified as class i were misclassified as
class j, pii represents the number of points where samples originally classified as class i
were correctly classified as class i, and pji represents the number of points where a sample
originally classified as class j was misclassified as class i.

4. Results and Discussion

This section includes various experiments designed to test the performance of the
proposed MSFA-Net model. The study selected a self-curated historical building dataset
and a typical large-scale benchmark set, S3DIS [25], for evaluation. Under the same
conditions, it can be intuitively found that the MSFA-Net model has high accuracy and
is more suitable for semantic segmentation of point clouds of historical buildings by
comparing the MSFA-Net model with other semantic segmentation models. In addition,
this article also conducted ablation experiments to assess the modules’ efficacy of the
modules from an objective perspective. It is further proved that our suggested MSFA-Net
model can address the issues of inaccurate division of historical building components and
unclear boundary position to a large extent.

4.1. Comparison with Other Methods

In this paper, the proposed method is evaluated using four-fold cross-validation on
a self-curated historical building dataset and is quantitatively compared with semantic
segmentation methods that have achieved good results in recent years, including Rand-
LA-Net, BAF-LA [26], DLA-Net [27], and SCF-Net. Table 2 displays the outcomes of the
experiment. Obviously, our proposed network is superior to the above networks in OA
(95.2%), mAcc (92.5%) and mIoU (86.2%) and has relative improvements of 0.7%, 1.4%, and
1.6% compared with RandLA-Net in three quantitative aspects, respectively.

Table 2. Segmentation results of different networks on the historical building datasets. The class
metric is IoU (%).

OA (%) mAcc (%) mIoU (%) Column Door Forehead Wall Roof Window

RandLA-Net 94.5 91.1 84.6 80.0 88.1 83.7 85.8 98.1 71.9
BAF-LAC 93.4 90.2 82.4 79.1 85.2 83.4 80.3 97.1 69.3
DLA-Net 93.8 91.7 84.2 85.8 86.0 82.8 80.0 96.6 76.9
SCF-Net 95.0 92.0 85.0 81.9 86.9 84.5 84.8 98.3 73.8

Our 95.2 92.5 86.2 84.9 88.9 84.7 84.8 98.3 75.8

As shown in Figure 8, the forecast results for the several methods covered in Table 2
are shown, where black circles, brown ellipses, and red boxes all show parts of the different
networks that are poorly segmented or where boundary segmentation is not obvious.
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The previous semantic segmentation method is effective in the segmentation of historical
building scenes, but there are still some problems, such as incomplete segmentation of
columnar components and unclear segmentation of architectural boundaries. From the
outside of area 3 in the Figure 8a, it can be observed that compared to the real annotation,
the RandLA-Net model produces incomplete cylindrical segmentation in the areas marked
by brown ellipses, with significant omissions. The BAF-LAC model shows fewer missing
parts. Although the DLA Net and SCF Net models did not exhibit undersegmentation, both
exhibited oversegmentation. In the area marked by black circles, all models exhibit varying
degrees of oversegmentation. Both RandLA Net and DLA Net models have misclassified
the edges of the objects marked in red boxes, while BAF-LAC and SCF Net models have no
large area errors, but the segmentation boundaries are not smooth enough. In summary,
RandLA Net performs poorly in terms of columnar integrity and edge segmentation results,
with BAF-LAC, DLA Net, and SCF Net showing an increasing effect. However, the MSFA-
Net proposed in this paper performs better overall than other networks in the selected
regions. Similarly, the last row of Figure 8c depicts area 1, which, like the exterior of
area 3, features both three-dimensional and planar components. The brown oval mark
represents incomplete segmentation, the black circle mark represents undersegmentation
and oversegmentation, and the red box mark represents unclear edge segmentation. As can
be seen in the figure, the MSFA-Net model has superior segmentation performance at the
integrity and edges of column and planar components, while other networks have obvious
missegmentation problems at the boundaries of different components. However, Figure 8b
shows the interior of area 3, which mostly consists of flat categories such as doors, windows,
beams, and walls. The black box indicates the location of misclassification. RandLA Net,
BAF LAC, DLA Net, and SCF Net networks all have a large area of misclassification. It
is clear that the MSFA-Net proposed in this article has a smaller area of misclassification
compared to other networks, making it more suitable for point cloud semantic segmentation
tasks in large-scale historical architectural scenes.

However, misclassification is inevitable, and the problem of unclear segmentation
of similar scenes is common in all networks. It is still necessary to find improvement
strategies to improve the semantic segmentation effect. In the research of point cloud
semantic segmentation, the inherent noise, outliers, and uneven sampling density of raw
data pose challenges to preprocessing algorithms. Currently, there is no preprocessing
method that can completely eliminate these adverse effects. In addition, the limitations of
the model structure, insufficient feature extraction, and insufficient generalization ability
further affect the overall segmentation performance of the model. In summary, improving
the above issues can help reduce the occurrence of unclear segmentation.

To objectively demonstrate the effectiveness of the proposed method, this study
selected a typical large-scale indoor point cloud dataset S3DIS for validation. The S3DIS
dataset is a semantically annotated indoor scene cloud dataset that contains 6 different
indoor regions, producing 11 scenes with a total of 271 rooms. Each room is a medium-sized
point cloud, which is divided into 13 categories and marked with its own label for each
point. We compared the MSFA-Net model with seven classic methods, including PointNet,
SPG [28], PointCNN [29], PointWeb [30], ShellNet [31], KPConv, and RandLA-Net, and
conducted six cross-validations to evaluate the proposed method. The experiment uses
mIoU, mAcc, and OA as standard metrics. Table 3 displays the outcomes of the experiment,
which summarizes our network’s quantitative results on the S3DIS dataset in comparison
to other advanced underlying networks. The results show that our proposed network
achieved excellent performance in OA, mAcc, and mIoU, which are 0.7%, 0.6%, and 1.6%
better than RandLA-Net, respectively, and achieved excellent performance in the following
three categories: beam, board, and clutter.
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To more clearly show the different effects of the network, this article intuitively com-
pared the semantic segmentation results of RandLA-Net and MSFA-Net implementation
on the S3DIS dataset, and the effect is shown in Figure 9. Figure 9 shows visualizations
of three typical indoor scenarios: offices, conference rooms, and hallways. It is evident
from the quantitative and qualitative results that our suggested MSFA-Net is capable of
more correctly and fluidly segmenting object boundaries. However, semantic segmentation
inevitably leads to misclassification, as shown in Figure 9, where a table in the conference
room is misclassified.
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Table 3. Segmentation results of different networks on S3DIS. The class metric is IoU (%).
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PointNet 78.6 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 51.4 42.0 9.6 38.2 29.4 35.2
SPG 86.4 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
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Our 88.7 82.6 71.6 92.8 97.0 81.7 64.0 53.8 64.1 70.8 72.5 81.9 61.5 64.5 66.2 60.6
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4.2. Ablation Study

The validity of MSFA-Net is evidenced by the results of our experiments on the two
datasets mentioned above. To better understand the model, the next step is to conduct
ablation research, and all ablation networks were trained on homemade datasets of histor-
ical buildings. The study used standard 4-fold cross-validation to evaluate the ablation
network and used OA, mIoU, and mAcc as metrics. We performed experiments on various
combinations of these modules to evaluate the efficacy of the suggested modules quanti-
tatively. As shown in Table 4, we first removed all modules and then added BAP, MSAA,
CFE, and EIC into the model in turn. The table not only shows the individual effects of
each module but also visually demonstrates that the performance gradually improves as
more modules are added.
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Table 4. Results of ablation studies on a dataset of historical buildings. The class metric is IoU (%).

Model Name

Modules Evaluation Index

B
A

P

M
SA

A

C
FE

EI
C OA (%) mAcc (%) mIoU (%)

None 87.8 81.3 71.1

BAP
√

94.1 89.5 83.0

MSAA
√

94.8 92.1 85.3

CFE
√

89.0 79.9 71.5

EIC
√

88.8 80.8 71.7

BAP + MSAA(DAA)
√ √

94.9 92.5 85.8

BAP + MSAA + CFE
√ √ √

95.0 92.4 86.0

Our
√ √ √ √

95.2 92.5 86.2

4.2.1. Ablation Experiment of DAA Module

(1) Ablation experiment of BAP module

This section confirms the efficacy of bidirectional adaptive pooling (BAP) blocks from
several angles, including eliminating all and only positional coding blocks, replacing
them with maximum pooling or average pooling, and using one-way learning feature
information. The experiment was carried out on the historical building dataset, and the
test results were carried out on area 2, as shown in Figure 10.
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Experimental results have shown that the bidirectional adaptive pooling module
achieves optimal performance in various accuracy indicators, indicating that the BAP
module helps to enhance the model’s ability to recognize key features and solve the
problem of accidental loss of key information points during random sampling. The results
also prove that the pooling method we used is better than average pooling and maximum
pooling, and position encoding blocks play an important role.
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(2) Ablation experiment of the MSAA module

To demonstrate the advantages of the MSAA over other attention mechanisms, ex-
periments were conducted on an empty frame system. The MSAA is replaced with the
dual-distance attentive pooling (DDAP) [20] module between the same network layer, and
operations such as removing position encoding and replacing pooling are tested. Figure 11
displays the outcomes of applying various attention mechanisms to the model for the
experimental analysis in the area 2 dataset.
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From the first three columns of the bar chart, it can be seen that the MSAA module
proposed in this study has the highest accuracy in the three evaluation indicators, which
clearly indicates that the MSAA proposed in this paper is more effective than the no at-
tention mechanism and DDAP. As a novel feature enhancement module, DDAP adopts
geometric distance and feature distance automatic learning methods for feature learning,
which indirectly verifies that MSAA blocks can more fully learn feature information at dif-
ferent scales, suppress useless information, and fully mine local neighborhood information.
Additionally, it is inferred from the figure that the performance of MSFA-Net will decline
if there is no location-coding block in the MSAA block or if it is replaced by maximum
pooling.

(3) DAA comparative experimental results and analysis

By conducting comparative experiments to verify the performance of using the DAA
module to improve the RandLA Net model, this study trains the optimized RandLA Net
model and the original RandLA Net model separately on the historical building dataset.
The evaluation indicators and parameter settings used are as shown in the previous text.

Figure 12 clearly shows the visualization results of the comparative experiment of
the RandLA Net model before and after improvement. The optimized model effectively
overcomes the problem of insufficient feature extraction. It can be seen that each wooden
component has a higher improvement in the integrity of the results compared to the original
network segmentation, but it can also be seen that the final semantic segmentation effect is
poor at the edges of the components, and further optimization is needed.
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4.2.2. Ablation Experiment of the CFE Module

We conducted an ablation study of the CFE module in area 4, and Table 5 displays
the experimental outcomes. Firstly, all modules were removed, and then only the CFE
module was added. The improvement from the first line to the second line shows that this
module can fully consider the semantic gap between neighboring features and strengthen
the connection between contexts. From the third to fourth lines, it can be seen that the effect
of focusing only on partial features or global features is not ideal, focusing only on partial
features will miss the semantic connection between neighbors, and focusing only on global
features will lose a large number of detailed features, resulting in insufficient global feature
mapping, and it is impossible to carry out more delicate semantic segmentation.

Table 5. Ablation experiment of the CFE module.

mIoU (%)

(1) None 73.0
(2) CFE 75.3
(3) Only global feature 63.2
(4) Only partial feature 73.5

4.2.3. Ablation experiment of the EIC module

The EIC module introduces the features of each point to make better label predictions
through the information transmission between each node, further improving the capacity
to extract edge features to make the boundary segmentation clearer. We conducted ablation
experiments in area 4, and Table 6 displays the experimental outcomes.

Table 6. Experimental results of EIC module for ablation.

mIoU (%)

(1) None 73.0
(2) Only EIC 75.9
(3) Replace edge features with neighbor features 69.3
(4) Replace with average pooling 74.0

The table shows the quantitative results after adding the EIC module, replacing the
edge feature with the neighbor feature, and replacing the average pooling module. As
shown in Figure 12 above, without the addition of an edge classifier, the network cannot
accurately identify the boundaries of objects that are easily misjudged, resulting in unclear
edge segmentation of historical building components. The results in Table 6 show that the
proposed EIC model has better prediction performance and more accurate classification. This
indicates that the EIC module can significantly improve the accuracy of semantic segmentation
of historical building components and make the segmentation boundary smoother.

5. Conclusions

This paper proposes an efficient MSFA-Net model to solve the issue of semantic
segmentation of efficient architectural scene components. Three modules make up the
model. The first module is made up of a bidirectional adaptive pooling block and a
multiscale attention aggregation block that employs multilevel and different scale feature
information to enhance the network’s capacity to understand the topological relationship
of nearby points and minimize redundant data. The second module, called the contextual
feature enhancement module, combines local–global characteristics from the encoder and
the decoder to enhance the relationship between the model contexts. As the third module,
the edge interactive classifier further strengthens the extraction of edge features based on
the original so that it can segment the edge of the object more smoothly.

Although this article has validated the superiority of the proposed model on both the
public dataset S3DIS and the self-curated historical building dataset, there are still some
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issues that need to be overcome. Firstly, research needs to continue to enrich the diversity of
the dataset. Many types of historical buildings exist in the Chinese nation, and in the future,
representative historical buildings from different periods need to be collected to enrich the
types of components in the dataset and enhance the universality of the model. Secondly,
due to the varying density of point clouds, the segmentation effect of building components
with small data volumes and incomplete geometric information is poor. Therefore, future
research will set constraint functions for different wooden components to further refine the
research. Finally, with the continuous updating and development of collection instruments,
the density and quality of point cloud data will continue to improve, and large-scale
point cloud data will become more common, with higher annotation costs. Under this
requirement, how to reduce model complexity and annotation costs will become the focus
of future research.
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