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Simple Summary: In the sorting process of Chinese softshell turtles, it is necessary to classify them
based on their weight and accurately identify their plastron and carapace. This process requires
heavy manual labor and complex mechanical processing methods. To improve processing efficiency
and reduce costs, this article introduces machine vision technology, and a new image processing
method is proposed. This method can estimate the weight of Chinese softshell turtles and accurately
locate the positions of their plastron and carapace. The automation level of aquaculture can be greatly
enhanced, and hardware costs can be reduced through software optimization through this approach.

Abstract: With the rapid development of the turtle breeding industry in China, the demand for
automated turtle sorting is increasing. The automatic sorting of Chinese softshell turtles mainly
consists of three parts: visual recognition, weight prediction, and individual sorting. This paper
focuses on two aspects, i.e., visual recognition and weight prediction, and a novel method for the
object detection and weight prediction of Chinese softshell turtles is proposed. In the individual
sorting process, computer vision technology is used to estimate the weight of Chinese softshell turtles
and classify them by weight. For the visual recognition of the body parts of Chinese softshell turtles,
a color space model is proposed in this paper to separate the turtles from the background effectively.
By applying multiple linear regression analysis for modeling, the relationship between the weight
and morphological parameters of Chinese softshell turtles is obtained, which can be used to estimate
the weight of turtles well. An improved deep learning object detection network is used to extract the
features of the plastron and carapace of the Chinese softshell turtles, achieving excellent detection
results. The mAP of the improved network reached 96.23%, which can meet the requirements for the
accurate identification of the body parts of Chinese softshell turtles.

Keywords: Chinese softshell turtle; object detection; image processing; deep learning; weight prediction

1. Introduction

The Chinese softshell turtle (Pelodiscus sinensis), also known as water fish, turtle, or
pond fish, belongs to the order Testudines, family Trionychidae, and genus Pelodiscus. Chinese
softshell turtles are rich in nutrients and have strong nourishing properties, which are highly
favored by consumers. Since the 1990s, China’s turtle breeding industry has experienced
rapid growth. By 2019, the annual production had exceeded 320,000 tons [1], forming a
sizable and distinctive turtle breeding industry that has also spurred the development of
related industries.
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The shape and size information of Chinese softshell turtles can intuitively reflect their
weight information, which is of great significance to the turtle breeding industry. However,
obtaining biological information about turtles solely through manual measurements is
highly inefficient and results in significant labor costs. Applying machine vision technology
to the detection and identification of the external morphology of turtles can effectively
address this issue.

Currently, machine vision methods have been widely used in various areas of aqua-
culture and agriculture, including species identification [2–9], automated counting [10–12],
fish behavior recognition [13,14], and freshness detection [15,16]. Scholars both domesti-
cally and internationally have conducted extensive research in the field of aquatic machine
vision. For instance, D.J. White et al. [3] utilized machine vision technology to achieve a
species identification accuracy of up to 99.8% for seven species of flatfish. Zhang Zhiqiang
et al. [17] established a model to predict fish mass based on the relationship between the
lengths and masses of the head, abdomen, and tail of fish. Pinkiewicz et al. [18] developed
an analysis system that uses computer vision to analyze the movement and behavior of
fish in aquaculture and can detect fish shapes in video recordings to continuously quantify
changes in swimming speed and direction. Yinfeng Hao et al. [14] established a relationship
model among fish length, post-tail removal fish body area, and mass to predict fish mass.

However, there is still a lack of research on the object detection and external size
measurement of Chinese softshell turtles. This study focuses on extracting image features
of turtles by machine vision technology and establishing a weight prediction model for
turtles to achieve predictive grading based on their weight. Additionally, deep learning
methods are employed to detect Chinese softshell turtles, locate their plastron and carapace,
and lay the foundation for the subsequent mass estimation of turtles.

In the individual sorting of Chinese softshell turtles, computer vision technology is
utilized to estimate the weight of each turtle, and the turtles are classified based on their
weights. Subsequently, through visual recognition, the sorted Chinese softshell turtles are
identified. Following these processes, we obtain the coordinates of turtle plastron and
carapace. The process of automated sorting is illustrated in Figure 1, but this paper focuses
on the parts of visual recognition and weight prediction.

Figure 1. Turtle-sorting flow chart.

The individual sorting process utilizes images captured by industrial cameras to
calculate the morphological parameters of Chinese softshell turtles. Based on the fitted
relationship between the parameters and mass, the mass of the turtles is estimated, and
sorting is conducted according to their mass. The workflow of mass estimation is illustrated
in Figure 2.

For the purpose of visual recognition and weight estimation, we use image processing
algorithms to separate the turtles from the background, calculate the rotation angle, and
restore the turtle to the standard state; then, we use deep learning detection to detect the
turtle, calculate the pixel length, and then convert it to the real length. Finally, the true
length and mass prediction model of plastron and carapace is used to estimate the weight
of the turtles.

In the visual recognition process, a deep learning algorithm is employed to accurately
locate the plastron and carapace of Chinese softshell turtles. The coordinates of plastron
and carapace are then transmitted to the subsequent weight prediction part. The workflow
of visual recognition is depicted in Figure 3.
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Figure 2. Mass estimation flow chart.

Figure 3. Visual recognition flow chart.

The main focus of this paper is on the visual algorithms used in the sorting and
visual recognition processes. We propose a color model to separate individual Chinese
softshell turtles from the background in images. Additionally, we utilize multivariate
linear regression analysis to fit the relationship between the weight and morphological
parameters of Chinese softshell turtles and identify suitable models to estimate their weight.
Furthermore, we improve the YOLOv7 deep learning object detection network, resulting
in a significant increase in detection accuracy for the plastron and carapace of Chinese
softshell turtles.
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In object detection based on deep learning, the attention mechanism, which is a
technology that imitates cognitive attention, [19] is a very important method. The attention
mechanism can enhance the weight of certain parts of the input data in the network while
weakening the weight of other parts, thereby achieving the purpose of allowing the entire
neural network to focus on the place where it needs the most attention, and this is an
adaptive process. This article introduces two attention mechanisms, SE attention and
SimAM, to improve YOLOv7, and the improved network is named YOLOv7-SS, which
comprises YOLOv7, SE, and SimAM.

2. Materials and Methods
2.1. Experimental Materials and Platform Setup

In this experiment, a total of 153 Chinese softshell turtles were selected, all of which
were male individuals with body lengths ranging from 153.9 to 221.6 mm and body weights
ranging from 388.9 to 1086.4 g. All Chinese softshell turtles used in this experiment were
obtained from a Chinese softshell turtle breeding farm in Guangdong Province.

A “one picture, one turtle” scenario was designed by using a 68 × 130 cm blue PVC
background board to capture the image dataset of Chinese softshell turtles.

The image acquisition platform is shown in Figure 4. The binocular camera was fixed
on a tripod and transmits captured images to the computer via a USB data cable. The
resolution of the binocular camera was 1280 × 960 pixels, and the baseline length was 6 cm.
The measurement algorithm was implemented in C++ programming language, utilizing the
OpenCV computer vision library for image-related operations and the PyTorch framework
for building and training deep learning models.

Figure 4. Image acquisition platform.

Prior to capturing images, the external parameters of each Chinese softshell turtle
were measured. The required morphological parameters include weight (g), plastron length
(cm), plastron width (cm), plastron total length (cm), carapace length (cm), and carapace
width (cm), as detailed in Table 1. A schematic diagram of the parameters is shown in
Figure 5. For each Chinese softshell turtle, external parameters were measured by using
a vernier caliper with a precision of 0.1 mm, and an electronic scale with a precision of
0.01 g was used for weight measurement. A total of 153 male Chinese softshell turtles were
measured for external parameters, and over 11,000 images were collected.

Table 1. The description and definition of the morphological parameters of the Chinese softshell turtles.

Morphological Parameter Definition

Mass (M) The mass of the Chinese softshell turtle (g)
Carapace length (LC) The maximum straight-line distance from the anterior to the posterior end of the carapace
Carapace width (WC) The maximum straight-line distance from the left side to the right side of the carapace

Plastron full length (LF) The straight-line distance from the anterior end of the plastron to the beginning of the tail
Plastron length (LP) The maximum straight-line distance from the anterior to the posterior end of the plastron
Plastron width (WP) The maximum straight-line distance from the left side to the right side of the plastron
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(a) Plastron parameters (b) Carapace parameters

Figure 5. Morphological parameters of Pelodiscus sinensis.

2.2. Image Processing

Image processing involves several key steps, including image preprocessing, object
detection, region of interest (ROI) extraction, and feature extraction.

The experiments in this paper were based on the PyTorch 1.9.0 deep learning frame-
work, running on the Windows 10 operating system. Regarding hardware, we mainly
used Nvidia GeForce RTX 2060 GPU to complete the training of the deep learning object
detection network. Table 2 shows detailed information about the specific experimental
environment configuration.

Table 2. Experimental environment.

Configuration Parameters

Operating System Windows 10
CPU Intel(R) Core(TM) i5-10400F @2.9 GHz
GPU Nvidia GeForce RTX 2060

Deep learning environment CUDA 11.2, CUDNN 8.1.1.33, and Pytorch 1.9.0
Image library OpenCV 4.5.3

Development tools Visual Studio 2019

2.2.1. Image Preprocessing

Since the preprocessing of the captured images is required, a new color model is
proposed for segmenting the targets. This model can be represented as follows:

f (i, j) = Cr · R(i, j) + Cg · G(i, j) + Cb · B(i, j)
Cr + Cg + Cb = 0
|Cr|+ |Cg|+ |Cb| > 1

(1)

In this color model, Cr, Cg, and Cb represent the coefficients of the R, G, and B channels,
respectively, while R, G, and B denote the pixel values of the R, G, and B channels in the
image. The region composed of points that satisfy this model is considered the target to
be detected.

To convert the image to grayscale based on the above color model, the following
formula is used:

f (i, j) =

{
255, I ≤ Thresh
0, I > Thresh

(2)

where f (i, j) represents the pixel value at coordinates (i, j)
In the preprocessing of the images of the back of the Chinese softshell turtles, since

a blue background was used in this experiment, the parameters used in this paper were
Cr = −1, Cg = −1, Cb = 2, and Thresh = 70.

After preprocessing with this color model, applying a closing operation to the processed
result can completely separate the individual Chinese softshell turtle from the background.
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2.2.2. Contour Extraction

An algorithm proposed by S. Suzuki et al. [20] was employed in this study to
perform topological analysis on binary images and extract the contours of the Chinese
softshell turtles.

This algorithm utilizes encoding to assign different integer values to different bound-
aries, allowing for the determination of boundary connections and hierarchical relation-
ships. The input binary image consists of pixel values of 0 and 1, denoted by f (i, j). The
algorithm terminates scanning in the two following cases:

(1) f (i, j− 1) = 0, f (i, j) = 1, where f (i, j) is the starting point of the outer boundary.
(2) f (i, j) ≥ 0, f (i, j + 1) = 0, where f (i, j) is the starting point of the hole boundary.

Then, starting from the start point, the algorithm marks the pixels on the boundary.
A unique identifier, referred to as NBD (New Boundary Detection), is assigned to each
newly discovered boundary. Initially, NBD = 1, and it is incremented by 1 each time a new
boundary is discovered. During this process, if f (p, q) = 1 and f (p, q + 1) = 0, f (p, q) is
set to −NBD. The extracted contours from this step are used for further processing.

2.2.3. Pose Estimation

The moments in the image [21,22] are defined as follows:

M00 = ∑
I

i ∗V(i, j) (3)

where M00 is a moment of order 0, the image here is a single-channel image, and V(i, j)
represents the gray value of the image at point (i, j).

M10 = ∑
I

∑
J

i ∗V(i, j) (4)

M01 = ∑
I

∑
J

j ∗V(i, j) (5)

where M10 and M01 are both first-order moments, and i and j represent the horizontal and
vertical coordinates of the image.

When the image is a binary graph, it can be used to calculate the center of gravity of
the binary image. The formula is as follows:

xc =
M10

M00
, yc =

M01

M00
(6)

where xc represents the horizontal coordinate of the target’s center of gravity and yc
represents the vertical coordinate of the target’s center of gravity.

M20 = ∑
I

∑
J

i2 ∗V(i, j) (7)

M02 = ∑
I

∑
J

j2 ∗V(i, j) (8)

M11 = ∑
I

∑
J

i ∗ j ∗V(i, j) (9)

where M20, M11, and M02 represent the second moments.
In an image, these second moments can be used to calculate the orientation of objects.

The formula is as follows:
θ =

1
2

arctan(
2b

a− c
) (10)

where a = M20
M00
− x2

c , b = M11
M00
− xcyc, c = M02

M00
− y2

c , and θ represents the rotation angle.
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We perform moment calculation on all the coordinates of the extracted contours in
the image; then, the angle of the Chinese softshell turtles can be calculated according to
Equation (10).

2.3. Mass Prediction Model

In this paper, the morphological parameters of 153 male Chinese softshell turtles from
a breeding farm in Guangdong were measured. The relationship between each parameter
and the mass was statistically analyzed, and a mass prediction model for Chinese softshell
turtles was established. The linear regression models between the mass of Chinese softshell
turtles and various morphological parameters were built by using SPSS 26.0 software,
based on which the mass of Chinese softshell turtles was predicted.

The evaluation metrics for the regression models include R2 score, mean absolute error
(MAE), mean square error (MSE), and root mean square error (RMSE), defined as follows:

R2 = 1− ∑n
i=1(ŷi − y)2

∑n
i=1(yi − y)2 (11)

MAE =
∑n

i=1|ŷi − y|
n

(12)

MSE =
∑n

i=1(ŷi − y)2

n
(13)

RMSE =

√
∑n

i=1(ŷi − y)2

n
(14)

where ŷi represents the predicted mass, yi denotes the actual mass, y represents the mean,
and n is the sample size.

2.4. Object Detection Algorithm YOLOv7-SS

Figure 6 depicts the images of Chinese softshell turtles collected in this experiment,
where Figure 6a shows the plastron and Figure 6b shows the carapace.

(a) Plastron (b) Carapace

Figure 6. Sample images of Chinese softshell turtle.

After calculating the pose of the Chinese softshell turtle, the region of interest (ROI)
is extracted, and the turtle is rotated to a standard position based on the rotation angle,
with the head horizontally oriented to the left. In this paper, this operation is referred to as
standardization of the target. At this point, the Chinese softshell turtle is considered to be
in a standard state. Figure 7 shows the extracted region of interest (ROI).

Due to the significant variations in the positions of the limbs, head, and tail of the
Chinese softshell turtle across different images, traditional image segmentation algorithms
face challenges in segmenting turtles in images. Therefore, this paper adopts a deep
learning-based approach for object detection.
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Figure 7. Region of interest.

Since the introduction of the You Only Look Once (YOLO) algorithm by Redmon
et al. [23], the field of object detection has made significant progress. The subsequent
development of YOLOv2 [24] by the same team further optimized the neural network
structure. Additionally, Bochkovskiy et al. proposed the classic YOLOv4 algorithm [25],
enabling excellent results to be achieved with a single GPU.

In this paper, we utilize the YOLOv7 algorithm proposed by Wang et al. [26] to train
the network on the standardized images of the plastron and carapace of Chinese softshell
turtles. Subsequently, we validate the detection results by using non-standardized images
of the turtles.

YOLOv7 is a rapid object detection algorithm that was enhanced in this study by incor-
porating the Squeeze-and-Excitation (SE) attention mechanism [27] and the Simultaneous
Attention Mechanism (SimAM) [28].

The SE (Squeeze-and-Excitation) attention mechanism consists of two main steps:
Squeeze and Excitation. In the Squeeze step, the feature map undergoes global average
pooling to compress the input feature map into a vector. Subsequently, a fully connected
layer maps this vector to a smaller 1 × 1 × C vector. In the Excitation step, the elements of
the 1 × 1 × C vector are compressed to values between 0 and 1 by using the sigmoid function.
This vector is then multiplied with the original input feature map to obtain the weighted
feature map. Deep learning network models can utilize the SE attention mechanism to
adaptively learn the weights of each channel, thereby enhancing the performance of the
model. The schematic diagram of the SE mechanism is illustrated in Figure 8.

Figure 8. Principle of SE attention. Here, C represents the number of channels in the image, typically
3, indicating that the image is an RGB color image; H represents the height of the image, i.e., the
vertical size of the image, usually measured in pixels; W represents the width of the image, i.e., the
horizontal size of the image, also typically measured in pixels.
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The proposal of the SimAM is based on discoveries in the field of neuroscience. It
defines the following energy function for each neuron in a neural network:

et
(
wt, bt, y, xi

)
=

1
M− 1

M−1

∑
i=1

(yo − x̂i)
2 + (1− (wtt + bt))

2 + λw2
t (15)

The variables wt and bt in the above equation can be obtained by solving the following
formula:

wt = −
2
(
t− µt

)(
t− µt

)2
+ 2σ2 + 2λ

(16)

bt = −
1
2
(
t + µt

)
wt (17)

where µt =
1

M−1 ∑M−1
i=1 xi , σ2

t = 1
M−1 ∑M−1

i (xt − µt)2 .
The minimum energy can be calculated by using the following formula:

e∗t =
4
(
σ̂2 + λ

)(
t− µ̂

)2
+ 2σ̂2 + 2λ

(18)

According to the definition of attention mechanism, the input features are enhanced
according to the following formula:

X̃ = sigmod
(

1
E

)
� X (19)

This yields the formula for the SimAM. Additionally, the neural network in this paper
utilizes the Focal GIoU loss function, which combines Focal Loss [29] and GIoU Loss [30].

Focal Loss is an improved loss function based on the cross-entropy loss function. It
incorporates a balancing factor, α, to address the issue of imbalanced proportions between
positive and negative samples. The formula is as follows:

L f l =

{
−α(1− y′)γ log y′ y = 1
−(1− α)y′γ log(1− y′) y = 0

(20)

The ordinary Intersection over Union (IoU) metric struggles to accurately reflect how
the predicted box and the ground truth box intersect. Generalized IoU (GIoU) introduces the
minimum enclosing rectangle for both the predicted and ground truth boxes to obtain the
proportion of overlap between the predicted and ground truth boxes within the enclosing
region. Therefore, GIoU not only considers the overlapping region between the two boxes
but also pays attention to other non-overlapping regions. GIoU can effectively reflect the
intersection of these two boxes within the enclosing region. Its formulation is as follows:

GIoU = IoU − |C− (A ∪ B)|
|C| (21)

In the original network architecture, adding attention mechanisms may affect the
weights in the original backbone network. Therefore, in this paper, the SimAM is added
at the connection between the ELAN layer and the next layer of the original network to
minimize the impact on feature extraction. Additionally, the SE attention mechanism is
added to the detection head, positioned at the connection between the original ELAN-H
layer and the next layer.

After adding the above structures, the modified network architecture is shown in
Figure 9. This improved version of YOLOv7 is referred to as YOLOv7-SS in this paper.

When comparing the improved network and the unimproved network, the same
hyperparameters are set for each network to prevent differences in hyperparameters from
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affecting the training results. The hyperparameter settings of the network are shown in
Table 3.

Figure 9. The structure of the YOLOv7-SS network.

Table 3. The hyperparameters in the training process.

Parameter Value

epoch 300
initial learning rate 0.01

batch size 8
momentum 0.937

weight decay 0.0005
box 0.05
cls 0.3
obj 0.7

Parameter Measurement

By using LabelImg software, the images of Chinese softshell turtles collected were
annotated. There were over 11,000 images in total, of which the training set images
accounted for 80%, the verification set accounted for 10%, and the test set accounted for
10%. The YOLOv7-SS model was trained for 300 epochs. The objects annotated included
individual Chinese softshell turtles, their abdomens, and tails. After calculating the rotation
angle (θ) of the Chinese softshell turtles and restoring it to the standard position, the images
were subjected to object detection. The centroid of the detection box was considered the
position of the Chinese softshell turtles.

Then, YOLOv7-SS was used to detect the turtles that had been converted to the
standard state. The pixel length of the detection frame can be converted into the actual
length of the plastron and carapace of the Chinese softshell turtles. The conversion formula
is as follows:

s =
Lb
Lbp

L = s× Lp

(22)



Animals 2024, 14, 1368 11 of 16

where s represents the scale factor, Lb is the real length of the measuring tool, and the unit
is mm; Lbp is the pixel length of the measuring tool in the image, in pixels; L represents the
real size of the turtle; and Lp represents the pixel length of turtle in the image.

3. Results
3.1. Image Processing Results

The images of a Chinese softshell turtle processed by the polarized color model
proposed in this paper are shown in Figure 10, revealing clear outlines of the turtle.

(a) Preprocessing of proposed color model (b) Processing of closing operation

Figure 10. Image processing results.

After processing the images by using the polarized color model proposed in this paper,
the preliminary segmentation between the target and background is achieved, as shown in
Figure 10a. Subsequently, after performing a closing operation in image processing, the
individual targets are clearly separated, as depicted in Figure 10b. Then, contour extraction
algorithms are applied to extract the outlines of the Chinese softshell turtle, as shown in
Figure 11.

Figure 11. Extracted contour.

After obtaining the coordinates of all contour points, the rotation angle of the target
in Figure 11 is calculated to be 139.11° by using Equation (10). This angle represents the
counterclockwise rotation from the positive x-axis direction around the origin. By using
this angle, the Chinese softshell turtle is restored to the standard orientation, as shown in
Figure 12, before the target detection operation is conducted.

3.2. Results of the Weight Model

The comparison results of the quality prediction models for the Chinese softshell turtle
are presented in Table 4. The table indicates a positive correlation between the turtle’s
quality and morphological parameters, with a relatively high degree of correlation.

Specifically, by utilizing plastron length (LP), plastron width (WP), and full length (LF)
as independent variables and quality as the dependent variable, the quality model exhibits
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a high degree of fit, with an R-squared value of 0.916. Moreover, the maximum relative
error (MaxRE) among the three models is minimal for this configuration, only 9.67%.

(a) Rotated to standard state (b) Processed by clolor model

Figure 12. Standard state.

Table 4. Comparison of Chinese softshell turtle mass prediction models.

Dependent Variable Predictor Variables R2 MAE (g) RMSE (g) MaxRE (%)

Mass
LC + WC 0.883 42.08 47.38 12.39
LP + WP 0.903 38.13 44.97 11.58

LP + WP + LF 0.916 35.33 40.28 9.67

3.3. Object Detection Results

The improved YOLOv7-SS object detection network can accurately identify the plas-
tron and carapace of the Chinese softshell turtle, as shown in Figure 13.

(a) Plastron detection result (b) Carapace detection result

Figure 13. Object detection results of Chinese softshell turtle.

To clearly examine the impact of the improvements in the algorithm, this study
conducted comparative experiments on the test set of Chinese softshell turtle images.
YOLOv5, YOLOv7, and the proposed YOLOv7-SS were compared. The comparative results
are presented in Table 5.

Table 5. Comparison of performance of different object detection networks.

Detection Algorithm Precision (P) Recall (R) mAP@0.5 mAP@0.5:0.95

YOLOv5 81.96% 90.52% 89.82% 56.15%
YOLOv7 87.41% 92.74% 88.10% 64.22%

YOLOv7-SS 95.38% 94.68% 96.23% 73.63%
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The precision of YOLOv7-SS is 95.28%, which is nearly 8% higher than the original
YOLOv7 and 13.42% higher than the YOLOv5 algorithm, indicating a significant perfor-
mance improvement. The comparison of mAP values between YOLOv7-SS and the original
YOLOv7 is illustrated in Figure 14.

(a) mAP@0.5 (b) mAP@0.5:0.95

Figure 14. mAP comparison.

4. Discussion

Computer-assisted digital image processing is widely used in animal weight esti-
mation. For example, C.P. Schofield [31] applied image analysis techniques to estimate
the weight of pigs. Sirimonpak et al. [32] estimated the weight of pigs by extracting and
calculating data such as the lengths of the major and minor axes, centroid, and eccentricity.
Similar methods have also been applied to weight estimation in rabbits [33], broilers [34],
and other animals. In this article, we propose a polar model image processing method and,
for the first time, estimate the weight of Chinese softshell turtles. This method shows good
estimation performance in the weight estimation of Chinese softshell turtles.

Although the color model we proposed still shows some noise after image processing,
the expected effect can be achieved through subsequent image closing operations. In
general, the segmentation method based on color space proposed in this article can perfectly
segment the target from the background.

Multiple linear regression analysis is used to explore the relationship between the
weight and morphological parameters of Chinese softshell turtles for weight estimation.
Although the R-squared value of the multiple linear regression model is only 0.916, it
represents a big step forward in exploring the relationship between the morphological
parameters and center of gravity of Chinese softshell turtles, laying the foundation for the
subsequent accurate weight estimation of Chinese softshell turtles.

Generally speaking, when the number of samples participating in multiple linear
regression is larger, the calculated regression model is more accurate. Therefore, it should
be feasible to improve the accuracy of the regression model by increasing the number of
Chinese softshell turtles. Our subsequent work will consider this question.

The detection accuracy of YOLOv7-SS is 8% higher than that of the original YOLOv7,
and the convergence speed is also very fast. However, there is a jitter problem during the
training process, which is not as smooth as the convergence process of the original YOLOv7.
The detection and weight prediction method for Chinese softshell turtles proposed in this
article has completed the first two steps of turtle sorting and laid the foundation for the
automated sorting of turtles.

Although the method proposed in this article has good detection results for a single
turtle, in the scenario of multiple turtles, there will be mutual occlusion, which seriously
affects the weight estimation of the visual recognition system. The goal of our subsequent
work is to solve this problem.
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5. Conclusions

The proposed polarized model effectively separates individual Chinese softshell turtles
from the background, demonstrating clear segmentation results.

The results of multiple linear regression analysis indicate a certain linear relationship
between the weight of Chinese softshell turtles and their morphological parameters. Specif-
ically, the variables plastron length (LP), plastron width (WP), and full length (LF) serve as
independent variables, while weight serves as the dependent variable. The obtained model
exhibits a high degree of fit, with an R2 value of 0.916. However, there is still room for
improvement in the accuracy of the fitting model. Future work should focus on enhancing
the precision of the fitting model to better predict the weight of Chinese softshell turtles.

The improved YOLOv7-SS algorithm shows a significant increase in detection ac-
curacy for Chinese softshell turtles. Although the mAP value of YOLOv7-SS fluctuates
considerably during training, it eventually converges to a satisfactory result. Future efforts
will explore methods to enhance convergence speed and stability during training.

In summary, our main contributions are reported below.

(1) A color space model is proposed to separate individual Chinese softshell turtles from
the background effectively.

(2) Multiple linear regression analysis is used to explore the relationship between the
weight and morphological parameters of Chinese softshell turtles for weight estima-
tion, which shows a high degree of fit, with an R2 value of 0.916.

(3) YOLOv7-SS, an improved YOLOv7 deep learning object detection network that
includes the SE attention mechanism and SimAM, is used to extract the features of
the plastron and carapace of Chinese softshell turtles, and its detection accuracy can
reach 96.23%, which is nearly 8% higher than that of the original YOLOv7.
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