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Abstract: The Measurement-While-Drilling (MWD) system, composed of a tri-axial magnetometer
and a tri-axial accelerometer, is widely used in the Horizontal Directional Drilling machine in coal
mines. This system can provide attitude information of each measuring point in the borehole, which
will eventually allow the trajectory of the borehole to be drawn. The attitude information, however,
showed a low-level accuracy, due to the sensor’s imperfection and mounting errors. The accuracy
worsened when low-cost sensors were employed, as they had higher random noise. Therefore,
an exploration of ways to eliminate the sensor imperfection and mounting tolerance as well as to
suppress the noise is needed. In this paper, a feasible calibration approach was designed to address
these issues. This new approach combined three foundational calibration algorithms, including the
ellipsoidal fitting method, the planar fitting method, and the inner product invariance method. The
traditional ellipsoidal fitting method and planar fitting method were optimized by using the recursive
least square criterion and omitting the steps of sample data acquisition, respectively. In addition, the
noise suppression method was involved in our approach to improve the calibration accuracy. The
numerical simulation results showed that the number of sampling points decreased significantly,
but the accuracy of the azimuthal angle and the pitch angle fully met the engineering requirements.
The experimental results showed that the pitch angle error was reduced by less than 0.5◦, and the
azimuth error was also reduced by less than 2.5◦. It should be noted that this new approach could be
implemented without the help of other expensive auxiliary equipment.

Keywords: ellipsoid fitting method; MWD system; plane fitting method; recursive least square
method; calibration approach

1. Introduction

With extensive application of nearly-horizontal drilling equipment in the coal mining
industry, in for example the gas drainage, the water detection, and the coal bed methane
exploitation, directional drilling technology has made a great development [1–6]. In
particular, the equipment used for monitoring the state of the borehole and measuring
the trajectory of the borehole have been an intensive research subject in recent decades [1].
The core of underground in-seam directional drilling technology is exactly this equipment,
namely the Measurement-While-Drilling (MWD) instrument. Many scholars have focused
on improving the detection function of this instrument to avoid coal mine disasters, such
as measuring vibrations to prevent rock bursts [2–5], while ignoring the measurement
of the borehole trajectory itself. Rebuilding the borehole trajectory aims to guide the
bottom drilling tool along a predefined line, which is very important during the drilling
process [7]. Thus, it is very necessary to accurately draw the borehole trajectory with the
MWD instrument [6–9]. The borehole trajectory is geometrically regarded as a 3D curve,
which is calculated from the attitude information of the borehole and the length of the drill
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pipe. Actually, the MWD instrument, installed in the nonmagnetic drill collar behind the
screw motor, can provide the attitude information [8–10], such as the azimuthal angle, the
pitch angle, and the tool-face angle.

This attitude information is mainly solved by the output of one tri-axial accelerometer
and one tri-axial magnetometer mounted in the carrier platform of the MWD instru-
ment [11]. Ideally, the tri-axial accelerometer and the tri-axial magnetometer are mathe-
matically considered as two standard Cartesian coordinate frames, and the platform is
considered another. These frames form a conceptual sensor model. However, many kinds
of errors exist in these tri-axial sensors, such as the null-bias, the sensitivity error, and the
non-orthogonal error, etc. [12]. In addition, the misalignment error also exists between
the three coordinate frames. Iuri, Valérie, and Long et al. [13–18] have fully analyzed
the sources of these errors and unified the errors into an error model with 12 parameters.
Furthermore, the random noise of the sensor should be taken into account as well during
the calibration process and the measurement process [17].

The above descriptions indicate that these errors must be eliminated appropriately
for the gaining of the attitude information from the MWD instrument. The counterparts
have acknowledged that the error elimination is contingent upon the deployment of the
calibration algorithms [13–23]. However, they ignored the method of obtaining the sampled
data. For example, Iuri [13] determined all the error parameters of a tri-axial accelerometer
by matching the output vector with the gravity acceleration; however, this method has a
restrictive condition of knowing the reference of the acceleration vector. Moreover, some
expensive instruments were employed to aid calibration, such as the Magnetic Shielding
Room [15]. Based on the same theory, Valérie et al. [14–16] presented and elaborated an
approach, the ellipsoid fitting method, for a stand-alone sensor triplet. Long et al. [18]
proposed a fast calibration method specific for a spinning projectile based on the ellipsoid
fitting method. Yang et al. [19] improved the ellipsoid fitting method with a truncated
singular value decomposition method to enhance the success rate of calibration. It is notable
that the above-mentioned studies have an underlying assumption: that is, the axes of the
sensor triplet are aligned with the axes of the carrier platform. However, the phenomenon
will never happen in practice. Moreover, the magnitude of sample data used in the ellipsoid
fitting method is not taken into consideration. Seong-hoon [24] unintentionally took into
account the shell or carrier of accelerometer during error estimation process by placing
the sensor at six different tilt angles. Similarly, Zhang [25], Fang [26], and Hanak [27]
drew on a combination of the ellipsoid fitting method and the multi-position method to
solve the problem. However, all the multi-position methods require an extra device to
provide a reference position and are unsuited to the MWD instrument. In addition, both
Yang [28] and Kok [29] found that introducing the relationship between the gravitational
acceleration and the geomagnetic field may help to eliminate the problem. Li [30,31] and
Salehi [32] exploited the relationship and proposed a cross product method and a dot
product method, respectively. However, they still do not take a carrier platform into the
calibration approach for a multi-sensor model. To fill these gaps, our study should address
the following two questions:

(1) How to align the coordinate frames of all the sensor triplets with the coordinate frame
of a carrier platform in the MWD instrument?

(2) Can the new calibration approach be effectively used to eliminate the measuring
errors without the use of prior knowledge about the vector field?

Our study designed a calibration approach in which three underlying algorithms—the
ellipsoidal fitting (EF) method, the planar fitting (PF) method and the inner product
invariance (IPI) method were combined as a new method to develop the measuring accuracy
and eliminate the systemic errors in the MWD instrument. Specifically, in our calibration
approach, the traditional EF method and PF method were optimized to cut down the size
of sample data. This new calibration approach was simulated to compare the accuracy
of the data under different conditions in MATALB. This new approach was also applied
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actually to calibrate the self-designed MWD prototype. The parameters obtained from the
calibration approach were verified by a tri-axial non-magnetic turntable.

2. Materials and Methods
2.1. Sensor Model and Error Model

The sensor model of the magnetometer-based MWD instrument is mathematically
considered as three sets of a coordinate frame: the coordinate frame of carrier platform
(xbybzb, abbr. car frame, and the index is b), the coordinate frame of the tri-axial accelerom-
eter (xayaza, abbr. acc frame, and the index is a) and the coordinate frame of the tri-axial
magnetometer (xmymzm, abbr. mag frame, and the index is m). By default, the car frame
xbybzb is thought of as a standard Cartesian coordinate frame. However, the other two
sensor coordinate frames are all non-standard (the axes are non-orthogonal and unequal
to each other). The situation is rendered in Figure 1. Moreover, the index so denotes a
mirror coordinate frame of a sensor triplet which is a standard Cartesian coordinate frame
in any direction, such as xaoyaozao or xmoymozmo for tri-axial accelerometer or tri-axial
magnetometer, respectively. After the matrix rotation transformation, the mirror coordinate
frames (xaoyaozao or xmoymozmo) would be aligned with the car frame (xbybzb).
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The attitude information (i.e., azimuthal angle ψ, pitch angle θ and tool-face angle ϕ)
for this sensor model is the three Euler angles which refer to the transformation from the
geographic coordinate frame (i.e., North-East-Down coordinate frame; abbr. NED frame) to
the car frame. The detailed calculation of these angles has been given by Xu.T in [33].

Based on the sensor model, the error model of these sensors can be formulated as the
equation of Equation (1). As shown in this equation, the vector vs

k represents one element
in the data set of raw measurements Dk{vs

kn = (vs
kxn, vs

kyn, vs
kzn)T|n = 1, . . . , N}. The vector

ub
k represents the local field vector in the car frame, ub

k = (ub
kx,ub

ky,ub
kz)T. In the equation, the

superscripts s and b represent the categories of the coordinate frame, in which s denotes
the coordinate frame of the sensor and b denotes the car frame. Similarly, the subscript k
denotes the type of vector (i.e., k = a or k = m denotes the acceleration vector of gravity or the
vector geomagnetic field), and the resulting physical quantities vs

kn and ub
kn in metric units

denote the nth measured value of the vector vs
k and ub

k in their respective coordinate frame.

vs
k = Ks

kbub
k + bk + εk (1)

where Ks
kb is a 3 × 3 matrix which aggregates all errors with a linear transformation, bk is

a 3 × 1 bias vector which includes all the additive errors and εk is Gaussian white noise.
Although it is impractical to separately consider the error sources [31], the error matrix Ks

kb
could still be divided into the internal component and the external component, according
to the error sources, which can be formulated as the following equation.

Ks
kb = Cs

ksoRso
kb (2)
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where Rso
kb represents the error parts outside a sensor triplet, and Cs

kso represents that inside.
Then, the error model for a MWD instrument can be separately rewritten as Equation (3).

vs
k = Ks

kbub
k + bk + εk or vs

k = Cs
ksoRso

kbub
k + bk + εk (3)

where, k (k = a or k = m) denotes the type of vector. The ub
a and ub

m conform to two respective
criteria, namely ‖ub

a‖ = ‖G‖ and ‖ub
m‖ = ‖M‖. G and M are the vectors of the Earth’s

gravitational field and magnetic field in the NED frame, and ‖·‖ is the Euclidean norm.
By algebraic transformation, a calibration model could be acquired as Equation (4).

ub
k = Lb

ks(v
s
k − bk − εk) and Lb

ks = (Ks
kb)
−1 (4)

2.2. Basic Calibration Algorithm
2.2.1. Ellipsoidal Fitting Method (EF)

According to the existing literature [14], the data points in the set Dk, measured by
a sensor triplet, are to lie on the surface of an ellipsoid. Yet, the data points of the local
field vector ub

k, in the car frame in any direction, are to lie on the surface of a sphere whose
radius is equal to the field strength. Then, the EF method, one kind of a scalar calibration
method, makes use of the fact that the strength of the local field vector is a constant. It can
determine all the error parameters of a single sensor triplet. With these error parameters,
the data points on the surface of a sphere are mapped to the data points on the surface
of an ellipsoid through translation, skewness and scaling. As discussed in [14], the data
set Dk obtained from rotating a sensor triplet in any direction could meet the equation of
Equation (5), according to the principle that the norm of the data points in Dk is equal to
the strength of the field vector.

‖ub
k‖

2
= ub

k
Tub

k =
(
vs

k − bk
)TLb

ks
TLb

ks
(
vs

k − bk
)

= vs
k

TLb
ks

TLb
ksv

s
k − 2bT

k Lb
ks

TLb
ksv

s
k + bT

k Lb
ks

TLb
ksbk

= vs
k

TQvs
k − 2bT

k Qvs
k + bT

k Qbk = ‖H‖2

(
vs

k − bk
)TQ

(
vs

k − bk
)
= ‖H‖2

(5)

where Q = Lb
ks

TLb
ks, and H is the Euclidean norm of the field vector. When the errors of

sensor are small, the matrix Q is strictly diagonally dominant [34]. The Gaussian white noise
is ignored here. After algebraic operation, Equation (5) could be rewritten as Equation (6),
which is shown below.

vs
k

TQ′vs
k + p′vs

k = 1 (6)

where Q′ = Q/(‖H‖2 − bT
k Qbk), and p′ = −2bT

k Q′. Then, a parameter σ is introduced to
simplify the equation of Q’, namely σ = 1/(‖H‖2 − bT

k Qbk). When Equation (6) is expanded,
a linear equation can be got, as shown in Equation (7).

avs
kx

2 + bvs
ky

2 + cvs
kz

2 + dvs
kxvs

ky + evs
kyvs

kz + f vs
kxvs

kz + gvs
kx + hvs

ky + ivs
kz = 1 (7)

The corresponding equation is shown in Equation (8). Once the coefficient vector
β = (a, b, c, d, e, f, g, h, i)T is figured out, the matrix Q′ and p′ can be derived by the
corresponding expression.

Q′ =

 a 0.5d 0.5 f
0.5d b 0.5e
0.5 f 0.5e c

, p′ =

g
h
i

 (8)
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Furthermore, the matrix Q and bias vector bk can also be solved out by the equations
as shown below.

bk = −0.5p′(Q′)−1 ⇒ σ = 1
‖H‖2−bT

k Qbk
=

1+bT
k Q′bk

‖H‖2 ⇒ Q = 1
σ Q′, p = 1

σ p′ (9)

An overdetermined linear equation set is established when the data points in Dk are
substituted into Equation (7) on the condition of N >> 12. The traditional solving method
of the overdetermined equations is just the least squares criterion. The resulting equation is
shown in Equation (10).

β =
(

Vs
kn

TVs
kn

)−1
Vs

kn
TIn (10)

where β denotes the coefficient vector of Equation (7), Vs
kn is the matrix of the raw data set

Dk and its dimension is N × 9. In is a unit vector of N × 1 dimension.
Then, the calibration matrix Lb

ks is derived by the eigenvalue decomposition method,
(Q = VDVT). The result is stated in Equation (11), in which V is the eigenvector of Q, and D
is a diagonal matrix with the eigenvalue of Q.

Lb
ks

TLb
ks = V

√
DVTV

√
DVT = VDVT = Q (11)

It is notable that the matrix Lb
ks has infinite solutions when the Q is decomposed by

Equation (11). This decomposition procedure can be algebraically expressed as Equation (12).(
RLb

ks

)T
RLb

ks = Lb
ks

TRTRLb
ks = Lb

ks
TLb

ks = Q (12)

where R is an arbitrary orthogonal matrix. Geometrically, this phenomenon implies that a
calibrated sensor coordinate frame by EF method could rotate to any direction, and any
one of the resulting coordinate frames can be considered as a mirror coordinate frame of
the original sensor coordinate frame. Thus, the result of matrix decomposition is Lso

ks, not
Lb

ks, and Lb
ks = RLso

ks.
Li, X. et al. [31] had classified the deviation matrix R in direction as a misalignment or

a rotation error. Obviously, the coordinate frame of a sensor triplet can be converted into a
Cartesian coordinate frame under the calibration of the EF method. The measuring points
will lie on the surface of a sphere after this calibration. Yet, the direction of this sphere is
uncertain, and the radius of the sphere equals to the magnitude of the field vector [29].

2.2.2. Plane Fitting Method (PF)

The coordinate frame of the two sensor triplets have been regulated to its respective
mirror coordinate frame in the first part of this section. However, the problem of the
direction of the mirror coordinate frame still exists. In this part, this problem will be solved
by aligning with the car frame. Včelák, J. [35,36] had proposed a similar method to solve
the problem but did not given the detailed equations. In this paper, the method is further
deduced and refined.

It is assumed that the Euler angles (αk, βk, γk) are used to depict misalignment between
the mirror coordinate frame (xkoykozko) and the car frame (xbybzb). As well, two sets of
raw data of the measured points (Dk−x and Dk−z) can be sampled from the sensors of the
MWD instrument by rotating around the two axes (xb-axis and zb-axis) of the car frame,
respectively. The outputs of the sensors mounted along the xb-axis and the zb-axis have a
sinewave form, when they are calibrated to its mirror coordinate frame by the EF method,
although they will be constant in the car frame. This phenomenon had been depicted
by Včelák, J. in [36]. The outputs of the other sensors, when they are calibrated to the
car frame, will form two planar circles which will be perpendicular to xb-axis or zb-axis,
respectively. Based on these phenomenon, the equations can be established on the principle
of the direction cosine matrix (DCM), as depicted as follows:
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 ub
kx

ub
ky

ub
kz

 = R−1
k

 uso
kx

uso
ky

uso
kz



=

 cos βk cos αk sin γk sin βk cos αk − cos γk sin αk cos γk sin βk cos αk + sin γk sin αk
cos βk sin αk sin γk sin βk sin αk + cos γk cos αk cos γk sin βk sin αk − sin γk cos αk
− sin βk sin γk cos βk cos γk cos βk

 uso
kx

uso
ky

uso
kz


(13)

ub
kx =

 cos βk cos αk
sin γk sin βk cos αk − cos γk sin αk
cos γk sin βk cos αk + sin γk sin αk

T

uso
k = constx (13a)

ub
kz =

(
− sin βk sin γk cos βk cos γk cos βk

)
uso

k = constz (13b)

where uso
k = (uso

kx,uso
ky,uso

kz)T is the output vector in its mirror coordinate frame (xkoykozko)

and ub
kx and ub

kz are the components of Earth’s field vector along the two axes (xb-axis
and zb-axis) of the car frame. When the data points in the dataset Dk−x are calibrated
firstly by the EF method and then substituted into Equation (13), Equation (13a) will be
established, and the component ub

kx will be considered as a constant (constx). In the same
way, when the data points in the dataset Dk−z are operated and substituted into Equation
(13), Equation (13b) will be established, and the component ub

kz will also be a constant
(constz). If the number of measuring points in the two datasets is large enough, there will
be two overdetermined equations listed. The two equations can also be solved by the least
squares criterion. During the solution process, six parameters, Akx,Bkx,Ckx, and Akz,Bkz,Ckz,
are introduced, and the equations can be rewritten as followd.

Akx = cos βk cos αk
Bkx = sin γk sin βk cos αk − cos γk sin αk
Ckx = cos γk sin βk cos αk + sin γk sin αk

(14)


Akz = − sin βk
Bkz = sin γk cos βk
Ckz = cos γk cos βk

(15)

Then the misalignment angles can be calculated with the tangent formula, which is
shown in the following equations.

tan γk =
Bkz
Ckz

(16)


tan αk =

Ckx sin γk − Bkx cos γk√
(Bkx sin γk + Ckx cos γk)

2 + A2
kx

tan βk =
Bkx sin γk + Ckx cos γk

Akx

(17)

Note that the dataset Dk−z and Equation (15) are only used for solving γk, and the
calculation of both αk and βk requires the value of γk. Thus, this feature may be utilized
to reduce calibration steps. In addition, if the axis around which the carrier platform is
rotated, such as the xb-axis and the zb-axis, parallelize to its measured vector, all of the
measuring points will shrink into a point.

In a word, the PF method could completely determine the misalignment between any
mirror coordinate frame of a sensor triplet and its car frame, and the calibration equation is
shown as follows.

ub
k = Rb

ksoLso
ks(v

s
k − bk) (18)

2.2.3. Inner Product Invariance Method (IPI)

As we know, the inner product of any two vectors does not change along with their
transformation from one coordinate frame to another. This principle can also be employed
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to identify the error parameters between two sensor triplets of different kinds of vector. That
is to say, an unknown coordinate frame can be calibrated by another standard coordinate
frame. In this paper, the acc frame would be calibrated first to coincide with the car frame;
then the mag frame will be post-calibrated by the calibrated acc frame, to be consistent with
the car frame.

It is assumed that a calibrated vector ub
a = (ub

ax, ub
ay, ub

az)T of the accelerometer is in
the car frame, and another vector vs

m = (vs
mx, vs

my, vs
mz)T is the raw output of a tri-axial

magnetometer, which is in its own sensor coordinate frame. The inner product of the two
vectors can be expressed as the following equation, according to the principle.

ub
a · ub

m = ub
a

Tub
m = ub

a
TLb

ms(v
s
m − bm) = ub

a
TLb

msv
s
m − ub

a
TLb

msbm = ‖G‖‖M‖ cos ξ = const (19)

where ξ is the co-angle of the earth’s magnetic dip and Lb
ms and bm are the undeter-

mined coefficient matrix and bias vector for the tri-axial magnetometer. When Equation (19)
is expanded with the two vectors, (ub

a and vs
m), and the data of the measuring points in the

two datasets (Db
a and Dm) are substituted in Equation (19), an overdetermined equation

will be established. The solving method is the same as before, and the result needs to be
restructured to get the matrix and bias vector. The attention of this method in the process of
applying to Attitude and Heading Reference System would not be repeated here, because
they were clearly discussed in [31].

2.3. Improvement of the Calibration Methods
2.3.1. Recursive Least Square Method (RLS)

The raw data of N measuring points for the dataset Dk should be collected in advance,
when the EF method is used to get the error parameters. If N is small enough, the calibration
method is undoubtedly efficient, premised on getting the right error parameters. In this sec-
tion, an improved method of direct least square method is introduced to reduce the number
of data required by the EF method. The detailed equation derivation is shown below.

Based on Equation (10), the equation Pn = (Vs
kn

TVs
kn)−1 is assumed and is then derived

further according to Woodbury matrix identity, as shown below.

Pn =


[

Vs
k(n−1)
vs

kn

]T[
Vs

k(n−1)
vs

kn

]
−1

=
(

Vs
k(n−1)

TVs
k(n−1) + vs

kn
Tvs

kn

)−1
=
(

P−1
n−1 + vs

kn
Tvs

kn

)−1

= Pn−1 −
Pn−1vs

kn
T

(1+vs
knPn−1vs

kn
T)

vs
knPn−1 = Pn−1 − gnvs

knPn−1

(20)

where gn = Pn−1vs
kn

T(1 + vs
kn Pn−1 vs

kn
T)−1. Then, Equation (10) will be decomposed and

rewritten on the condition that βn is presumed to be an estimated coefficient vector from
the sensor data of the nth times. The result is shown in Equation (21), where the equation
gn = Pn−1vs

kn
T(1 + vs

kn Pn−1vs
kn

T)−1 = Pn vs
kn

T can be solved out.

βn =
(
Vs

kn
TVs

kn
)−1Vs

kn
TIn = Pn

[
Vs

k(n−1)
vs

kn

]T[
In−1

in

]
= Pn

[
Vs

k(n−1)
TIn−1 + vs

kn
Tin

]
= Pn−1Vs

k(n−1)
TIn−1 − gnvs

knPn−1Vs
k(n−1)

TIn−1 + gnin

= βn−1 + gn
(
in − vs

knβn−1
)

(21)

The operation steps of the improved method are shown in the following list.

(1) Initialize the coefficient vector β0 and the covariance matrix P0.
(2) Gather the raw data of the nth measuring point, namely vs

kn = (vs
kxn, vs

kyn, vs
kzn)T.

(3) Calculate the gn and Pn according to Equation (20).
(4) Calculate the new coefficient vector βn according to Equation (21).
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(5) Judge the posteriori error ‖en‖, until it meets the inequality ‖en‖ = ‖in − vs
knβn‖≤ εstop,

then stop the iteration; otherwise, return to step (2). Here, the restriction value of εstop
is an empirical value. The method flow chart is shown in Figure 2.
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Figure 2. The flowchart of recursive least squares criterion.

All the methods that use the least squares criterion to determine the coefficients in
equation can be optimized by the recursive method. The purpose is to reduce the number
of the sampling points, such as the EF method and the PF method. However, if the number
of samples is fixed, the advantage of recursive least squares criterion will disappear.

2.3.2. Optimization of Plane Fitting Method

There is a noteworthy phenomenon that the calculation of the angle γk of deviation
in Equation (16) is only related to the dataset Dk−z, and not to Dk−x. Thus, a theoretical
hypothesis about the attitude information solution of the MWD instrument was presented,
that the calculation of azimuthal angle ψ and pitch angle θ are independent of the angle
γk. In this case, the step of gathering dataset Dk−z can be omitted and the PF method is
also simplified.

This hypothesis can be proved mathematically on the following precondition. Firstly,
the output of the tri-axial accelerometer needs to be calibrated to its own mirror co-
ordinate frame in advance by the EF method. The output vector can be expressed as
uso

a = (uso
ax,uso

ay,uso
az)T. Secondly, the parameters (Aax, Bax, Cax) related to the misalignment

error matrix Rso
ab have been solved by the PF method, on the condition that the dataset

Da−x is prepared. After calibration with the IPI method, the mirror coordinate frame of
the tri-axial magnetometer has the same misalignment as the tri-axial accelerometer to
the car frame.

Then, the irrelevance between the misalignment angle γk and the calculation of the
attitude information will be exhibited by the following equations.

(1) The solving equation of the pitch angle θ is derived with the vector uso
a = (uso

ax,uso
ay,uso

az)T

of the gravity vector G in the mirror coordinate frame.

tan θ = − ub
ax√

ub
ay

2 + ub
az

2
= −

uso
ax Aax + uso

ayBax + uso
azCax√(

uso
ax

2 + uso
ay

2 + uso
az

2
)
−
(

uso
ax Aax + uso

ayBax + uso
azCax

)2
(22)

where ub
a = (ub

ax,ub
ay,ub

az)T is the gravity vector G in MWD the car frame, and (Aax, Bax, Cax)
can be estimated by the sampling data set Da−x according to Equation (14).
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(2) The calculation equation of the azimuthal angle ψ can be rewritten as Equation (23).

tan ψ =
(ub

mzub
ay − ub

myub
az) × ‖G‖

ub
mx(ub

ay2 + ub
az2) − ub

ax(ub
myub

ay + ub
mzub

az)

=
Amx(uso

ayuso
mz − uso

azuso
my) + Bmx(uso

azuso
mx − uso

axuso
mz) + Cmx(uso

axuso
my − uso

ayuso
mx)

Amx

[(
uso

ay
2 + uso

az
2
)

uso
mx − uso

ax

(
uso

ayumy0 + uso
azumz0

)]
+Bmx

[(
uso

ax
2 + uso

az
2)uso

my − uso
ay(uso

axuso
mx + uso

azuso
mz)
]

+Cmx

[(
uso

ax
2 + uso

ay
2
)

uso
mz − uso

az

(
uso

axuso
mx + uso

ayuso
my

)]



(23)

where ub
m = (ub

mx,ub
my,ub

mz)T is the local geomagnetic field vector M in MWD the car frame.
The three parameters (Amx, Bmx, Cmx) are equal to (Aax, Bax, Cax) due to the use of the
IPI method.

It could be concluded from the two equations above that the hypothesis is true. The
calculation of azimuthal angle ψ and pitch angle θ for the MWD instrument is indeed only
related to the sensor output and the sampling data set Dk−x, but not to the misalignment
angle γk or the data set Dk−z [37].

It is worth mentioned that this hypothesis just meets the feature of the MWD instru-
ment. Because it is impossible to find the physical axes (the yb-axis and zb-axis) on this
cylindrical carrier platform, it is also infeasible to rotate around the zb-axis and gather the
data set Dk−z.

It should be emphasized here that the exact value of the misalignment error angle
(αa, βa, γa) cannot be obtained by the specific calculation without the data set Da−z. How-
ever, according to the hypothesis, the value of γa could be set to 0 artificially. Then, the
misalignment angle (αa, βa, 0) can be calculated according to Equation (14). From a geo-
metric point of view, the carrier platform of the MWD instrument is a cylinder, and once
the xb-axis is fixed, the yb-axis and zb-axis would be the axes of any orthogonal coordinate
frame in the plane perpendicular to the xb-axis. Therefore, when the angle γa = 0, the
car frame xbybzb would be aligned to the calibrated tri-axial accelerometer coordinate
frame xabyabzab.

2.4. Design of the Calibration Approach

The calibration approach was designed by assembling the sub-methods mentioned in
the above sections to calibrate the sensor model. The operation process of this approach
consisted of the sampling datasets (Da, Dm, Da−x) collection and the calibration methods
implementation. As shown in Figure 3, the calibration approach contributed to the lower
magnetic interference and the smaller sample data size.

In Figure 3, the method of getting the sample data can be regarded as a key point of
the calibration approach. The sample datasets Dk were gathered by rotating the MWD
instrument in different directions in an absolute interference-free environment, and these
datasets finally formed as an ellipsoidal surface. In addition, the sample datasets Da−s
formed a planar ellipse, which were collected by rotating around the xb-axis of the MWD
instrument. All of these datasets were used to cooperate with the improved EF method
and the simplified PF method to get the more accurate error parameters.
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2.5. The Collecting Method for the Sample Data

This section describes the collection of the data points (the datasets Dk and the dataset
Da−x). The error parameters, in a tri-axial accelerometer and a tri-axial magnetometer, are
provided in Table 1 in advance. Furthermore, the two constant vectors (the gravitational
vector and the geomagnetic vector) can be presented as G = (0, 0, 1) and M = (29.4, 0, 45.3),
respectively, in the NED frame, after an online search [38].

Table 1. The assumed error parameters for the sensor model of the MWD instrument.

Sensor Type Parameters Type Value

Accelerometer

Error matrix Ks
ab

 1.17660 0.20992 −0.14296
−0.10673 1.07493 0.30493
−0.0301 −0.12035 1.48215


Calibration matrix

Lb
as = (Ks

ab)−1

0.83905 −0.15131 0.11206
0.07671 0.89551 −0.17684
0.02327 0.06964 0.66261


Bias ba (0.1 0.12 −0.2)T

Magnetometer

Error matrix Ks
mb

 1.53537 0.32715 −0.10994
−0.08004 1.89784 0.08181
0.06812 0.15627 0.77476


Calibration matrix

Lb
ms = (Ks

mb)−1

 0.64052 −0.11893 0.10345
0.02967 0.52602 −0.0513
−0.06231 −0.09564 1.29199


Bias bm (1.5 4.13 0.9)T

The method of collecting the data sets Dk comes from a further extension of the equal-
angle criteria [37]. It aims to simulate the process of the MWD instrument measuring data
at different attitudes. Firstly, the error-free sampling points were gathered to simulate
the output of the tri-axial accelerometer and the tri-axial magnetometer in the car frame.
These sampling points were evenly distributed on the spherical surface which is formed by
the tri-axial components of the two constant vectors (G and M) in the car frame with any
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attitude. The method of collecting these error-free sampling points was implemented by
the following steps.

1. Artificially fix a pitch angle sequence [−90◦, 90◦, −45◦, 45◦, 0◦] in the range of
[−90◦, 90◦].

2. Pick out a value in turn from the angle sequence in step 1 as a selected pitch angle θi.
3. Calculate an azimuthal angel sequence based on the value of the selected pitch

angle θi, according to Equation (24), where nψi is the total number of angles in the
azimuth sequence.

4. Pick out a value in turn from the azimuthal angel sequence in step 3 as a selected
azimuthal angel ψij.

5. Five values are randomly given as a tool-face angle sequence in the range of [0◦, 360◦].
6. Pick out a value in turn from the tool-face angle sequence in step 5, as a selected

tool-face angel ϕk. Then, the selected attitude angles (ψij, θi, ϕk) are determined.
7. Solve the tri-axial components of the two constant vectors (G and M) in the car frame

by the direction cosine matrix which has been built with the selected attitudes angle
above. These tri-axial components are exactly the datasets of error-free data points.

θi =
[
−90◦ 90◦ −45◦ 45◦ 0◦

]
nψi =

{
round(12× sin θi) θi 6= ±90◦

1 θi = ±90◦

ψij = 360◦ × j
nψi

, j = 1, 2, · · · , nψi

(24)

Moreover, as shown in Figure 4, the selected attitude angles are commonly referred as
the Euler angles.
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Figure 4. Schematic diagram for distribution rule.

Secondly, these error-free data points were distorted with the error parameters listed
in Table 1. These newly gathered data points after the distortion were considered as the
output data of the MWD instrument. Then, 150 sets of output data were collected as the
datasets Dk (Da, Dm), which are shown in Figure 5a,b. A part of data in the datasets Dk,
following the rule of pitch angle θ = −45◦, were extracted as the planar data set Dk−x
(Da−x, Dm−x). Figure 5c,d show that 40 sets of data in Dk−x were extracted in total. It is
obvious that if the dataset Da−x can be extracted from the dataset Da, the collection step
(the fifth step in Figure 3) can be omitted; therefore, the calibration approach is further
simplified.
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Figure 5. The collected sampling datasets. (a) and (b) 150 sets of sampling points to simulate the
output of tri-axial accelerometer and tri-axial magnetometer without noise. (c) and (d) 40 sets of
sampling points following the rule of pitch angle θ = −45◦ without noise.

In addition, the random noise conforming to the Gaussian distribution N (0, σ2) was
added in the Dk, for making the collected data closer to the real data measured by the
MWD instrument. The noise variance σ2 is 0.000139 and 0, 0.00096, respectively, at the
frequency of 1 Hz, according to the datasheet of the tri-axial accelerometer and the tri-axial
magnetometer used in the self-designed MWD instrument.

It should be emphasized here that all of the collected data points were rotating around
the xb-axis as seen from Figure 5, which is the real axis of MWD instrument. To sum up, the
collecting method can be used to collect data in the real MWD instrument.

3. Analysis and Discussion of the Calibration Approach

The calibration approach was numerically simulated by the MATLAB program. The
collected data in Figure 5 are used to verify the feasibility of the calibration approach. The
other 15 sets of attitude data were randomly given to test the accuracy of this approach.
The simulation also compared the calibration results with and without random noise.

Firstly, the collected data and the testing date (15 sets of random attitude data) did not
contain random noise. The calibration approach (in Figure 3) was examined by the collected
data, on the condition of the given values of γa. Table 2 lists the estimated error matrixes
and biases based on the condition of γa = 0◦ and γa = 5◦. By comparing Tables 1 and 2, we
found that, the bias bk (ba, bm) and the diagonal elements of the error matrixes Ks

kb (Ks
ab

and Ks
mb) were fully determined by the calibration approach. The non-diagonal elements of

the error matrixes Ks
kb (Ks

ab and Ks
mb), however, were not.

Table 2. The resolved error matrixes and biases by the calibration approach.

Condition The Error Matrixes and Biases

Pitch θ = −45◦ Ks
ab ba Ks

mb bm

γa = 0◦

 1.1766 0.1837 −0.1754
−0.1067 1.1104 0.1248
−0.0301 0.124 1.4818

  0.1
0.12
−0.2

  1.4871 0.2952 −0.1569
−0.0775 1.8264 −0.2229

0.066 0.2722 0.7155

  1.5
4.13
0.9


γa = 5◦

 1.1766 0.1984 −0.1586
−0.1067 1.0951 0.2218
−0.0301 −0.0066 1.487

  0.1
0.12
−0.2

  1.4871 0.3078 −0.1304
−0.0775 1.8389 −0.0617

0.066 0.2083 0.7366

  1.5
4.13
0.9



After that, the testing data (15 sets of given attitude data) were employed to verify the
accuracy of the estimated error parameters. The test results are shown in Figure 6, and five
sets of them were picked out and listed in Table 3.
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Table 3. The comparison of attitude angles before and after calibration.

Given Attitude
(Unit: ◦)

The Raw Data Output by the Two Sensor Triplet. (Unit: ◦)

Calculating Attitude with the Error Parameters in Table 2
(Unit: ◦)

(γa = 0◦) (γa = 5◦)

ψ θ ϕ xm ym zm xa ya za ψ θ ϕ ψ θ ϕ

30 −80 −150 82.933 41.3127 13.4254 1.262 −0.1243 −0.442 30 −80 −140.575 30 −80 −145.6115
75 −54 −90 61.0612 −40.3344 −21.4997 0.9285 −0.5982 −0.1536 75 −54 −80.5751 75 −54 −85.6115
240 18 45 −27.6695 93.0142 13.2316 −0.2186 1.0809 0.7251 240 18 54.4249 240 18 49.3885
330 54 120 −16.8204 66.5614 −23.4914 −0.703 0.6639 −0.6725 330 54 129.4249 330 54 124.3885
350 75 150 −45.071 33.2847 −27.7686 −0.9773 0.2939 −0.5187 350 75 159.4249 350 75 154.3885

Figure 6a,b show the test results of the tri-axial accelerometer and tri-axial magne-
tometer, respectively, on the condition of γa = 0◦ for the MWD instrument. Figure 6c,d put
forward the test results on the condition of γa = 5◦. As shown in Figure 6, a fixed deviation
in the direction of around the xb-axis existed between the calibrated data points and the
given data points, although the two types of the data points should coincide with each
other. This argument is further illustrated in Table 3 by the value of the testing attitude
angles. In Table 3, the values of the tool-face angle ϕwere different, but the calculation of
the pitch angle θ and azimuthal angle ψwould not be affected by different values of γa in
the calibration approach. However, this case can be perfectly compatible with the MWD
instrument, because the drawing of the borehole trajectory does not need the participation
of the tool-face angle ϕ.

In addition, it should be mentioned that a total of 77 sets of data points (N = 77) were
used to estimate the error parameters when using the improved EF method on the two
conditions of εstop = 10−9 and Nmin = 70.

Secondly, a random noise was added in the collected data and the testing data. Thus,
a noise suppression method was also needed. This noise suppression method was realized
by obtaining average values of the multiple samples. That is, the MWD instrument contin-
uously sampled several times and outputted the mean of these sampling data when this
instrument is stable at a certain attitude. This method was used to improve the calibration
approach by changing the numbers of sampling times from a single time to several times at
each attitude. Of course, the sampling times of the MWD instrument were also transformed
from a single to several times in actual measurement. In the following simulation, the
estimated results, by the calibration approach with the noise suppression method and
without the suppression method, are compared in Table 4 on the same condition of γa = 0◦.
The number of sampling times during the collection of the datasets Dk was set as 16 times
at each attitude in the improved calibration approach. Then, the collection of the 15 sets of
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a given attitude also employed this noise suppression method by increasing the number of
sampling times from one to eight times at each attitude, and five sets of them are shown
in Table 5. In this Table, the calibrated results after the suppressed noise method and
non-suppressed noise method were compared. Therefore, this noise suppression method
is effective.

Table 4. The solved error matrixes and biases on the condition of adding the random noise.

Condition The Error Matrixes and Biases on the Condition of γa = 0◦

Random Noise Ks
ab ba Ks

mb bm

Without suppression
 1.1728 0.182 −0.1765
−0.1082 1.1103 0.125
−0.03 0.1241 1.4854

  0.1
0.1205
−0.1986

  1.4849 0.2892 −0.1636
−0.0727 1.833 −0.2268

0.0701 0.2756 0.713

  1.5429
4.0864
0.9022


With suppression

 1.1763 0.184 −0.1739
−0.1065 1.1111 0.1252
−0.0309 0.1243 1.4813

  0.099
0.1199
−0.1994

  1.4872 0.2956 −0.1557
−0.0788 1.8259 −0.2232

0.0661 0.2716 0.7154

  1.4674
4.133

0.9021



Table 5. The comparison of attitude angles calculation with noise suppression and without suppression.

Given Attitude (Unit: ◦) The Mean of the Output by the Two Sensor Triplet. (Unit: ◦)

Calculating Attitude with the Calibration Parameters in Table 4
(Unit: ◦)

Without Suppression With Suppression

ψ θ ϕ xm ym zm xa ya za ψ θ ϕ ψ θ ϕ

30 −80 −150 82.9511 41.3042 13.4293 1.2669 −0.126 −0.4423 29.667 −80.336 −138.882 29.689 −80.028 −140.286
75 −54 −90 61.0363 −40.3228 −21.4836 0.9248 −0.6022 −0.1461 77.786 −55.57 −80.506 74.279 −53.753 −80.107

240 18 45 −27.6766 93.0266 13.2195 −0.2212 1.0808 0.7277 241.013 18.317 54.259 240.175 18.114 54.33
330 54 120 −16.8173 66.5538 −23.4891 −0.6962 0.67 −0.6636 328.024 54.501 128.13 328.569 53.705 128.726
350 75 150 −45.0679 33.2827 −27.7877 −0.9718 0.295 −0.5164 350.129 75.509 159.499 349.289 74.909 159.004

It should be stated that such a setting of the sampling times not only meets the
operational requirements of the MWD instrument, but also facilitates MCU programming.
We also emphasize that if the Nmin is set as 90 and εstop is set as 10−4, the number of sampling
data points may be decreased to 95. This number (less than the total number 150) indicates
that the improved EF method is more effective than the original one.

Figure 7, which shows the comparison of the deviation of the 15 sets of data in three
cases, gives us a clear description of the improved calibration approach. These three cases
are divided according to the different number of sampling times in the noise suppression
method. The three cases are represented by C, D and E, respectively.

In case C, we collected samples 16 times continuously at each attitude in the datasets
Dk collection; meanwhile, we collected the other samples eight times continuously at each
attitude in the 15 sets of testing data.

In case D, we collected samples at the same times as in the case of C at each attitude in
the datasets Dk collection, but we abandoned the noise suppression method in the collection
of the 15 sets of testing data.

In case E, we abandoned the noise suppression method in the collection of both the
datasets Dk and the 15 sets of testing data.

Figure 7a,b are the diagrams of deviations between the calibrated attitude angles and
the given attitude angles. Figure 7c,d are the diagrams of the standard deviation (abbr. STD)
for the corresponding deviation. Figure 7a is the pitch angle deviation and Figure 7b is the
azimuthal angle deviation. Figure 7 shows that the case C is optimal and can be applied to
the real MWD instrument.
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4. The Experimental Verification
4.1. The Hardware Design for MWD Instrument

Based on this sensor model (Figure 1), a prototype of a MWD instrument was devel-
oped, and the schematic block diagram of this instrument is presented in Figure 8a. This
prototype consisted of three electronic subsystems: a sensor subsystem, memory subsystem
and control subsystem. All of these subsystems were mounted on an aluminum groove
and inserted in a beryllium copper pipe, as shown in Figure 8b.
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Figure 8. The figures of the self-designed MWD tool. (a) The schematic block diagram of the MWD
instrument; (b) The prototype photo of the MWD instrument.
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In the sensor subsystem, three single-axis AMR sensors (HMC1021Z) perpendicular
to each other were mounted on one side of the groove, and two dual-axis accelerometers
(ADXL203CE) were mounted on other side in the same way. Beyond that, six A/D con-
verters were also equipped for signal digitization with the help of a signal filter (three
first-order filters and three second-order filters). In the control subsystem, the core used the
minimum system of LPC2194 ARM, which is provided by NXP Semiconductors.

The entire system was powered by an 8 V Ni-MH battery, and this battery voltage
was adjusted into 3.3 V and 5 V for the CPU core board and peripheral circuit, respectively,
by a voltage regulator. The memory subsystem, including a ferroelectric memory and
flash memory, undertook the storage of calibration parameters and measurement data for
special purposes.

It should be emphasized that the precision of the output signal of AMR sensor falls
easily, and even the direction of its sensitive axis may also reset or reverse. Thus, a high
current flipping circuit (AMR SET/RESET circuit) is needed to contribute to each AMR
sensor for eliminating magnetic history and restoring high sensitivity [39], on the basis of
the datasheet [40].

The schematic diagrams of the signal conditioning circuit of HMC1021Z and the
matched SET/RESET circuit are shown in Figure 9. The steps for accurate measurement
with the AMR sensor are listed as follows, according to the datasheet.

(1) Apply a positive current pulse to S/R+ pin of the AMR sensors with the SET/RESET
circuit, and then read the measured value Vset from the corresponding A/D converter.

(2) Apply a negative current pulse and read the measured value Vreset in the same way.
(3) Calculate the actual value Vout, according to the equation Vout = (Vset − Vreset)/2.
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Figure 9. Partial circuit schematic diagram of HMC1021Z. (a) Schematic diagram of the signal
conditioning circuit. (b) Schematic diagram of the designed SET/RESET circuit.

However, the output signal of AMR sensor did not respond in time when a current
pulse was forced on the S/R+ pin. At the same time, the amplitude of this output decreased
regularly with time. This phenomenon can be verified by measuring the amplitude of the
signal (Vset or Vreset) at the input pin of A/D converter, which is shown in Figure 10. There
are two reasons for the response delay. One is the delay of the signal conditioning circuit,
and the other is the delay of the AMR sensor. In addition, the main reason for the decrease
of the output is the loss of the sensitivity of the AMR sensor over time.
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Figure 10. Voltage curve diagram of the signal from HMC1021Z after a positive current pulse.

Therefore, the CPU must wait for a certain time interval before starting the A/D
converter to sample when sending a current pulse, so that the A/D converter could sample
at a best sensitivity point. The time interval is generally 200~500 ms, and the best choice is
200 ms for the circuit shown in Figure 9.

4.2. Experimental Process and Result Analysis

The whole calibration was performed in a laboratory without magnetic interference.
In this process, the self-designed MWD instrument needed to be fixed on a tri-axial non-
magnetic turntable which could provide reference attitude. We read the attitude angles
both from the mechanical encoders of the non-magnetic turntable and the output of the
self-designed MWD instrument. Then, we operated the non-magnetic turntable using the
method mentioned in Section 2.5 and collected the output data of the MWD instrument at
the specified attitude angles. The datasets Dk (N = 150) were obtained; of course, the data
set Da−x (N = 40) could be also extracted from Dk. By the calibration approach shown in
Figure 3, the calibration matrix Lk and bias vector bk were determined as shown in Table 6.
After that, five sets of random attitude angles were chosen to check the accuracy of the
parameters in Table 6. From the results, shown in Table 7, we found that the proposed
calibration approach could completely calibrate the system error of MWD instrument but
could not eliminate the influence of the random noise; the noise of the sensor could only be
suppressed, not eliminated.

Table 6. The calibration parameters determined by the method.

Resolved by the Calibration Approach

Sensor Type The Calibration Matrix Lb
ks Bias bk

Accelerometer
(Lb

as and ba)

0.9971 −0.0038 0.0332
0.0264 0.9851 −0.0567
0.0144 0.0553 0.9974

 −0.0007
−0.0178
0.0013


Magnetometer
(Lb

ms and bm)

 1.1381 0.0013 −0.0001
−0.0058 1.0846 −0.0306
0.0195 0.0396 1.1058

 0.7778
2.5803
0.6863
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Table 7. Test verification of the calibration strategy.

Known Attitude
Angle (Unit: ◦) The Raw Reading from Sensors Solved from Raw

Reading (Unit: ◦)
After Calibration

(Unit: ◦)

Azimuth Pitch Magnetometer Accelerometer Azimuth Pitch Azimuth Pitch

ψ θ vs
mx vs

my vs
mz vs

ax vs
ay vs

az ψ θ ψ θ

1.5 0 26.98 6.055 40.3675 −0.0311 0.091 0.9961 355.2305 1.7788 1.7260 −0.1345
60 0 14.0425 −16.935 43.0425 −0.0316 0.0928 0.9956 53.6498 1.8115 60.2163 −0.1011
120 0 −12.285 −17.525 43.6325 −0.0319 0.0944 0.9957 116.9278 1.8256 119.9135 −0.0863
178 0 −25.735 5.2 41.55 −0.03119 0.0937 0.9954 183.0086 1.7866 177.5677 −0.1256
302 0 13.8625 28.645 38.37 −0.0308 0.0926 0.9955 301.1897 1.7617 302.1324 −0.1510

The maximum error (Max{|AttitudeOutput − AttitudeKnown|}) 6.35 1.8256 0.4323 0.1510

The mean of attitude deviation −2.2987 1.7928 0.0112 −0.1197

The Standard deviation of attitude deviation 4.7009 0.0257 0.2780 0.0259

In order to further verify the authenticity of the parameters in Table 6, a field test was
conducted in a coal mine to draw the borehole trajectory map. The mathematical method
for drawing trajectory is called the balanced tangent method which mainly depends on the
attitude angles (pitch angle θ and azimuthal angle ψ) at the measuring point of each drill
pipe. Before the test, a pre-designed trajectory should be prepared. Then, we moved the
MWD instrument along the prepared path and sampled at each measuring point at the same
time. Finally, the measured data were uploaded to the software for drawing the trajectory
map, which is shown in Figure 11 in the form of the upper-lower deviations and the
left-right deviations. This deviations refer to the distance that the actual drilling trajectory
deviates from the straight line of the initial direction (the attitude information of the orifice).
The upper-lower trajectory deviations are mainly related to the difference between the pitch
angle θ at each measuring point and the pitch angle at the orifice position, and the left-right
trajectory deviations are mainly related to the difference between the azimuthal angle ψ at
each measuring point and the azimuthal angle at the orifice position. With this trajectory
showing method, we can intuitively see how far the actual drilling trajectory deviates from
the direction of the orifice. In Figure 11, the black line is the prepared path, and the black
dots on the line are the points with known attitude information. The other lines are the
trajectories drawn with the data uploaded from the self-designed MWD instrument. We
can clearly see that the trajectory drawn with the data from the calibrated MWD instrument
roughly coincides with the prepared path, and the trajectory from the un-calibrated MWD
instrument deviates far from the prepared one.
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We found that the tri-axial non-magnetic turntable is not necessary from the whole
experiment. But if we do not use this auxiliary equipment, the data collection steps for
the raw datasets Dk and the dataset Da−x need to be conducted separately. Meanwhile, a
special bracket is required to help the MWD instrument rotating around the xb axis of the
car frame, to ensure the reliability of the dataset Da−x.

5. Conclusions

The purpose of this study was to design an approach to calibrate the MWD instrument
to improve the accuracy of drilling trajectory drawing, in order to provide accurate informa-
tion of the geological context. We found that our new calibration approach solved system
errors and suppressed the random noise with fewer data collection stages. Specifically,
the recursive least squares criterion was used rather than the direct least squares criterion
to reduce the magnitude of sampling data. The optimized PF method was designed to
simplify the procedures of data collection. To sum up, the new calibration approach well
matched the operating characteristics of the self-designed MWD instrument. This new cali-
bration approach is validated by the simulating program with MATLAB and the practical
application on the self-designed MWD instrument. Both show that the accuracy well meets
the engineering requirements.
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