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Abstract: To accurately measure the critical dimensions of flat parts using machine vision, an inspec-
tion method based on the adaptive chord inclination angle progressively screening the segmentation
points of graphic elements was proposed in this study. The method doubled the size of the part image
using bicubic interpolation, extracted the single-pixel contour with more detailed information, and
designed an adaptive step size to obtain the front and back chord inclination angles of the contour.
The method of complementing the front and back chord inclination angles was employed to avoid the
negative effects of contour jaggedness, thereby obtaining the contour segmentation points after the
initial screening. The segmentation points obtained in the initial sieving were divided into different
point clusters according to the distance, and the contour, which was segmented by two segmentation
points in different point clusters, was fitted using the least squares. The fitting results were evaluated,
and all the fitting results were selected using the improved non-maximum suppression (NMS) algo-
rithm to obtain the precisely selected segmentation points of the graphic elements. Consequently,
the segmented individual graphic elements were fitted with the segmentation points as constraints
to obtain the key dimensions of the closed part. The developed method could accurately find the
contour segmentation points, and the relative error was less than 0.6%.

Keywords: feature points; feature extraction; contour segmentation; machine vision; part inspections

1. Introduction

With the development of the modern manufacturing industry, the requirements for
the contour inspection of complex flat parts are becoming higher than ever, and the tradi-
tional dimensional inspection methods can hardly meet the requirements of measurement
accuracy and speed. Rapid and accurate dimensional measurement methods have become
an urgent problem. The application of machine vision to measure the sizes of parts has
been a research hotspot and a major direction of development in the machinery precision
machining and manufacturing industry [1].

Part size measurement based on machine vision mainly includes three technical points:
part image contour extraction, graphic element segmentation point detection, and graphic
element fitting. To date, numerous scholars have conducted research on these topics.
Research on the direction of image contour extraction started early, and early studies
mainly exploited the feature that contour points are discontinuous in the gray intensity
in an image. An image was convolved using a local filter to determine the contour pixel
point with the largest local gradient. Several linear filters [2–4] have been widely used,
such as the Sobel, Perwitt, and Canny operators. However, Perona and Malik [5] pointed
out that the real image contours are usually not step functions but a combination of step,
peak, and roof situations. To cope with this situation, the grayscale gradient features were
combined with other gradient features, including color and texture gradients, to obtain
a probabilistic detector (Pb) [6]. Ren [7] significantly improved the detection accuracy of
Pb using sparse coded gradient (SCG) features instead of hand-designed gradients in Pb.
SCG features can be automatically learned from image data using sparse coding, making
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the contour detection closer to that of humans. In recent years, many researchers have
introduced deep learning techniques to the contour detection problem, with deep features
instead of traditional hand-designed features. Xie [8] proposed holistically nested edge
detection (HED) based on deeply supervised nets (DSN) [9], which implemented holistic
image training and prediction, and multi-scale and multi-level feature learning.

In the scenario of part size measurement, the influence of complex background en-
vironments and textures was circumvented in image acquisition, which made contour
extraction less difficult. Therefore, mature algorithms were usually adopted. Tao et al. [10]
used the algorithm proposed by Suzuki [11] for contour extraction while measuring the
lengths of plastic part notches in a video. This algorithm was adopted in this paper.

The detection of the segmentation point of the graphic element is the most critical
part of the entire dimensional measurement system, and the detection accuracy directly
determines the accuracy of the graphic element fitting and even the final dimensional
measurement. This research can be divided into four directions: the approximate curvature
method, the Hough transform and its improvement algorithm, the contour approximation
method, and the auxiliary detection method.

Mokhtarian et al. [12] proposed a curvature scale space (CSS) corner point detector that
employed local curvatures in different directions for corner point detection and improved
localization accuracy. Subsequently, many studies have been conducted based on the
approximate curvature for graphic element segmentation point detection. For instance,
Wang et al. [13] proposed an eleven-point method to approximate the contour curvature,
which improved the noise resistance of the traditional three-point method. Hou et al. [14]
adopted the eleven-point method to find the approximate locations of feature points and
then calculated the curvature differences for feature points within those locations to find
the accurate locations of feature points.

The Hough transform was proposed by Paul Hough in 1962 to detect the features
of specific shapes (such as lines or circles) in digitized images. It has an excellent detec-
tion effect on the graphic elements, which can be described by parametric features. Mo
and Wu [15,16] achieved the segmentation of different figure elements by adopting the
traditional Hough transform and its improved algorithm; however, Zhou [17] proposed
a combination of the improved corner point algorithm and the point Hough transform
circle detection method to achieve different feature point detection. Qu [18] optimized
the Hough transform using the K clustering algorithm. Rachmawati et al. [19] proposed
a polygon approximation technique combining high-speed corner point detection with
Freeman chain code, which constructed an approximate polygon of a string of ordered line
segments using a set of image corner points, and the approximate polygon could be further
used in the field of shape representation and analysis as a contour description of digital
images. Liu [20] adopted a contour approximation algorithm to achieve graphic element
segmentation. Similarly, Wang [21] employed a polygon contour approximation method to
achieve graphic element segmentation.

The auxiliary detection method mainly relies on other geometric elements and features
near the segmentation point to detect the segmentation point of the graphic element.
Chen [22] achieved contour intersection and tangent point detection by comparing the
segmentation occupancy of the background and the part to the circular region around the
contour point.

Dou [23] employed chord-to-point distance accumulation [24](CPDA) to achieve
corner point detection. Shi [25] proposed the accumulation of point to tangent distance
(APTD) for detecting the inflection points of image contours, and Huang [26] determined
the segmentation point of a graphic element by studying the characteristics of the local line
angle of the contour and established a graphic element error model to achieve accurate
segmentation of the graphic element and fit.

The least-squares method is the most popular fitting algorithm for the final dimen-
sional part measurement. To solve the problem of non-closure after the graphic element
fitting, Wang [27] proposed the least-squares method with constraints. Li [28] introduced
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Tukey [29] weights during the least-squares fitting of each contour point and to suppress
the influence of large outliers on the fitting results. Moreover, in order to better evaluate
the roundness error, Khlil [30] proposed an improved algorithm to find the region with the
least roundness error using the alternating exchange method.

The existing research has made breakthroughs in many aspects, but there are still
some shortcomings in the dimensional measurement of complex plane parts:

1. A large number of studies only measured the sizes of specific parts, and the algorithms
are difficult to apply to complex parts.

2. Some studies did not pay enough attention to the reality that parts have complex
contours, which makes it difficult for the algorithms to accurately locate segmentation
points such as tangent points and inflection points.

3. Some studies required a lot of human intervention.

In this paper, we design an algorithm to address the defects of existing algorithms. The
chord inclination angle feature used in the initial screening of segmentation points utilizes
the jagged contour, thus eliminating the need for the smoothing of the contour, avoiding
errors caused by smoothing and at the same time being sensitive enough to tangent points
and inflection points. We also design the adaptive step to solve the impact caused by the
support area, design the segmentation point evaluation mechanism, and improve the NMS
algorithm to make it more suitable for segmentation point screening.

2. Image Preprocessing
2.1. The Image Pretreatment Process

The images used in this study were captured and acquired using an MV-VD200SC
(1600 × 1200) camera (Figure 1) manufactured by Microvision (Xi’an, Shaanxi, China).
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Figure 1. Camera for image acquisition.

The adaptive chord inclination angles depend on the single-pixel contour of the flat
part; therefore, it was necessary to convert the acquired part image to grayscale after
reading it. We doubled the grayscale image size using bicubic interpolation to obtain more
detailed information, binarized the grayscale image through the Otsu method, and finally
captured and obtained the single-pixel contour of the image. The workflow is illustrated in
Figure 2.
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Figure 2. Flow chart of image preprocessing.

The operation effect of each step of preprocessing is shown in Figure 3. In addition to
the original image, the effects of other steps are visually demonstrated by the red-shaded
part in Figure 3a. It can be seen in Figure 3 that the jagged part image was effectively
improved after interpolation.
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2.2. Design of Pending Inspection Image

During actual industrial production, various complex situations are involved in the
detection of flat parts. However, it is difficult to cover all complex situations in one part.
Therefore, we designed a pending inspection image to ensure comprehensive and credible
results for the experimental verification in this study. We employed an image (Figure 4)
as the pending inspection image, which contained the following types of segmentation
points: an intersection between lines, an intersection between a line and an arc, a tangent
point between a line and an arc, a tangent point of same-direction arcs, a tangent of reverse
arcs, a tangent of a large arc, a large angle intersection, and segmentation points between
shorter graphic elements. The graphic element information of this image was rich and
comprehensive and could basically cover the common inspection requirements in an actual
industrial production.
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Figure 4. Pending inspection image in this paper.

The equivalence relations between the graphic elements in the image to be exam-
ined were designed to analyze the relative error of the algorithm processing results. The
relationships among the graphic elements are listed in Table 1.

Table 1. Relationships between the graphic elements.

Type of Relationship Content

Equal length l4 = l7 = l10/2, l14 = l13, l5 = l6
Parallel l4//l10, l7//l2//l13

Equal radius Rl3 = Rl8 = Rl9 = Rl11
= Rl12

/2 = Rl1 /4
Other relationships ∠l13l14 = 165◦

The categories of the segmentation points involved in the pending inspection image
are listed in Table 2.

Table 2. Categories of segmentation points.

Type of Segmentation Points Segmentation Points

Intersection between line and line e, f, g, n
Intersection between line and arc b, h, j, k

Tangent point between line and arc a, c, d, m
Tangent point of same-direction arcs l

Tangent of the reverse arcs i
Tangent of large arc a

Large angle intersection n
Segmentation points between shorter graphic elements e, f, g

2.3. Bicubic Interpolation Process

The bicubic interpolation algorithm employed the grayscale values of 16 points around
the sampled point as three interpolations, which took into account not only the grayscale
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influence of the four directly adjacent points but also the impacts of the rates of change for
the grayscale values between each neighboring point. The three interpolations could yield
a magnification effect that was closer to the resolution of the image.

The distance between the pixels was combined using Equations (1)–(8).

dx1 =

∣∣∣∣ x′

a·x − (x− 1)
∣∣∣∣ (1)

dy1 =

∣∣∣∣ x′

a·y − (y− 1)
∣∣∣∣ (2)

dx2 =

∣∣∣∣ x′

a·x − x
∣∣∣∣ (3)

dy2 =

∣∣∣∣ x′

a·y − y
∣∣∣∣ (4)

dx3 =

∣∣∣∣ x′

a·x − (x + 1)
∣∣∣∣ (5)

dy3 =

∣∣∣∣ x′

a·y − (y + 1)
∣∣∣∣ (6)

dx4 =

∣∣∣∣ x′

a·x − (x + 2)
∣∣∣∣ (7)

dy4 =

∣∣∣∣ x′

a·y − (y + 2)
∣∣∣∣ (8)

The weights were obtained using a distance-based function, taking a as −1 in most
cases. In general, the distances of the blue pixels in Figure 5 were |t| 6 1, and the distances
of the green pixels were 1 < |t| < 2. The weights could be calculated using Equation (9).

h(t) =


(a + 2) · |t|3 − (a + 3) · |t|2 + 1 if|t| 6 1
a · |t|3 − 5 · a · |t|2 + 8 · a|t| − 4 · a if1 < |t| < 2
0 else

(9)Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 24 
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The value of the interpolated pixel was obtained by dividing the sum of the products
of each pixel and the weights by the sum of the weights, as in Equation (10).

I′
(

x′, y′
)
=

4

∑
j=1

4

∑
i=1

(
I(x + i− 1, y + j− 2)·h(dxi )·h

(
dyi

))
(10)

Bicubic interpolation was adopted to expand the length and width of the grayscale
image of the original flat part to twice the size of the original image so that the graphic
element of the part had more contour points as support.

3. Detection Algorithm Design of Segmentation Points of Graphic Elements
3.1. Obtaining the Initial Screening Segmentation Points

When acquiring single-pixel contours from a part image, the part contours need to
be distributed in a pixel-based grid, which inevitably causes jagged boundary contours
(Figure 6).
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The impact of the jagged contour on segmentation point detection is mainly attributed
to two aspects: on one hand, the jagged contour causes noise-like effects that lead to the
formation of pseudo-segmentation points; on the other hand, some local features of contour
serrations are stronger than the segmentation points of the pending inspection [31], thus
resulting in missed segmentation point detection.

Some methods have been studied and reported for the above situations. For instance,
Huang et al. [26] adopted Gaussian functions to smoothen the contour, resulting in an
increase in the support area of the detection operator [13]; however, smoothing the contour
causes leak detection of segmentation points with insignificant local features as well as
spatial location changes of the segmentation points, and the smoothing treatment is irre-
versible. In addition, increasing the support area of the detection operator also leads to the
leak detection of segmentation points that are closer.

Therefore, in this paper, we proposed a method to remove the effect of a jagged contour
using the complementary front and back chord inclination angles of the contour point.
For a point (Pi) on the contour, the front and back chord inclination angles are shown in
Figure 7.
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The front chord inclination angle (the angle between the green arrow and the red
arrow) was calculated using Equation (11).

θi+ = arc tan


∣∣∣∣ →
Pi+tPi ×

→
P0

∣∣∣∣∣∣∣∣ →
Pi+tPi ·

→
P0

∣∣∣∣
 (11)

The back chord inclination angle (the angle between the blue arrow and the red arrow)
was calculated using Equation (12).

θi− = arc tan


∣∣∣∣ →
PiPi−t ×

→
P0

∣∣∣∣∣∣∣∣ →
PiPi−t ·

→
P0

∣∣∣∣
 (12)

where P0 = (0, 1) is the unit horizontal vector and t is the length of the chord across the
contour point.

A jagged contour has a significant effect on the unidirectional chord inclination angles,
which was studied using the contour at a tangent point, as shown in Figure 8.
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The front and back chord inclination angles at the tangent point in Figure 8 are listed
in Table 3.
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Table 3. Variation in front and back chord inclination angles.

Index Front Chord
Inclination Angle

Back Chord
Inclination Angle Index Front Chord

Inclination Angle
Back Chord

Inclination Angle

Pi 21.8 Pi+11 21.8 21.8
Pi+1 0 Pi+12 21.8 21.8
Pi+2 0 Pi+13 21.8 0
Pi+3 21.8 Pi+14 30.96 0
Pi+4 21.8 Pi+15 21.8 21.8
Pi+5 21.8 21.8 Pi+16 21.8 21.8
Pi+6 21.8 0 Pi+17 21.8
Pi+7 21.8 0 Pi+18 21.8
Pi+8 0 21.8 Pi+19 30.96
Pi+9 0 21.8 Pi+20 21.8
Pi+10 21.8 21.8 Pj 21.8

The effect of a jagged contour can be suppressed by complementing the front and back
chord inclination angles.

The contour points had a uniform distribution of the jagged contour from Pi+5 (the
blue point in Figure 8) to Pi+13 (the purple point in Figure 8). As can be seen in Table 3,
the anterior chord inclination and posterior chord inclination of all contour points in this
section always fluctuated between 0◦ and 21.8◦, with a value (21.8) that was always the
same between (θi+5+ , θi+5−) and all (θi+n+ , θi+n−), n = 5, 6 · · · 13. Once there was a point
where the jaggedness distribution was clearly uneven (near the tangent point: (the red
point Pi+14 in Figure 8 ), there was a chord inclination angle (30.96) different from 0◦ and
21.8◦, which could be considered a segmentation point.

Benefits of this property include:

1. This property makes it possible to find the contour segment with the same chord
inclination angle and the longest length and to consider the two endpoints as the
segmentation points to be selected to suppress the pseudo-segmentation points caused
by the jagged contour.

2. The method of complementary front and back chord inclination angles is sensitive to
the tangent point that can effectively respond to the tangent point and precisely locate
the tangent point.

Experimental validation using the pending inspection image could effectively verify
the detection effect of the algorithm on graphic elements of different scales and different
types of segmentation points. The segmentation points initially screened for their contours
by adopting the method of complementary front and back chord inclination are shown in
Figure 9.
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3.2. Adaptive Step Size

For the method of complementary front and back chord inclination angles of the
contour, the step size (t) determines the sensitivity of the chord inclination angle to changes
in the jagged contour distribution. A smaller value of t leads to a lower sensitivity of the
chord inclination angle, which results in a larger deviation in the detection position of the
tangent point or leak detection. As can be seen in Figure 10 for the tangent of the large arc
in the pending inspection image, a larger value of t leads to a higher sensitivity of the chord
inclination angle, which results in all the shorter graphic elements in the contour being
considered as segmentation points, making it more difficult to differentiate them, as shown
in Figure 11 for the segmentation points between shorter graphic elements: e, f, and g.
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In summary, in the initial screening of the segmentation points by the chord inclination
angle, the crossover points of graphic elements could be detected using a short step size,
but the tangent points and inflection points could not be detected. In this case, fewer
segmentation points were obtained, and the operation cost of the subsequent algorithm
was low. Using a long step size, all segmentation points could be detected. In this case, the
number of segmentation points was too large, and the operation cost of the subsequent
algorithm was too large.

The goal of the adaptive step size design is to obtain an accurate and complete seg-
mentation point detection ability while costing less and increasing the adaptive ability of
the algorithm.

When the chord inclination angle is complementary to obtain the segmentation points,
if the pixel length (s) is taken as the step length, there are 1~s pixel segmentation points at
the crossover points of primitives. When the step size is shorter, there is only one isolated



Appl. Sci. 2023, 13, 1641 11 of 23

segmentation point at the tangent point and the inflection point. Therefore, the adaptive
step size is detection using a shorter step and then using a longer step near the isolated
segmentation point.

In this way, the value of a short step size only determines the operation cost of the
algorithm but does not affect its detection performance. Therefore, the minimum value of
the short step size was set to two pixels.

The contour intercepted by the nearest segmentation points to the left and right of
the isolated segmentation point were detected using a longer step size, and the number
of contour points between the isolated segmentation point and the nearest segmentation
points to the left and right were recorded as len1 and len2, respectively. The larger step
length should not be greater than min(len1, len2). If max(len1, len2)>>min(len1, len2), the
expected segmentation points tended to be on the longer side, and to make sure they
were properly positioned, we needed to set the step size to min(len1, len2). Based on the
above description, we temporarily set the longer step size to min(min(len1, len2), max(len1,
len2)/50). To avoid the calculated value of the longer step being too small to be used, the
longer step was defined using Equation (13).

Stepsize = max(10, min(min(len1, len2), max(len1, len2)/50)) (13)

The use of adaptive steps can effectively avoid all the shorter tuples being considered
as segmentation points and solve the bias of tangent point position detection. These effects
are presented in Figures 12 and 13.
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3.3. Improved NMS Algorithm to Precisely Select Segmentation Points

As shown in Figure 9, there were many redundant points near the crucial segmentation
points after the initially screening by complementing the front and back chord inclination
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angles. For redundant points, Wu et al. [16] regarded the point with the maximum curvature
among the redundant points as the segmentation point. Hou et al. [17] calculated the
curvature difference from the point cluster near the circular arc direction and regarded it
as the segmentation point when a point was greater than the threshold. However, as we
know, the curvature is susceptible to noise, and a screening approach based on curvature
makes it difficult to accurately locate the segmentation point. For the pseudo-segmentation
points on the arc, the previous study used the projection height method to treat them as
points on the same arc.

Regarding the above analysis, we proposed a segmentation point selection method
based on the improved NMS algorithm. The main process of this selection method is as
follows:

1. Segmentation points are classified as point clusters.

In some cases, the segmentation points after the initial screening are adjacent or
extremely close to each other. When fitting these segmentation points, the fitting error is
small owing to the few contour points being included. However, this fitting is meaningless
and even weakens the results of the effective fitting. Therefore, the segmentation points
that are extremely close to each other are considered as the same point cluster, and the
point clusters are numbered after the initial screening. Then, the subsequent fitting is not
performed in the segmentation points that are in the same point cluster.

2. Evaluation of each contour segment and the fitting results.

From a segmentation point, we search for another segmentation point in different
point clusters from proximal to distal and perform least-squares fitting on the contour
segment between the two segmentation points until the fitting error is greater than the
fitting tolerance threshold (T). Subsequently, the same operation is performed on the next
segmentation point until all segmentation points are processed.

When evaluating the results of each fitting, it is crucial to ensure that the best segmenta-
tion points are used to obtain the best evaluation results. Therefore, the selected evaluation
metrics must be the most sensitive to the contour points of the non-plot elements.

Figure 14 shows l8 of an arc from the pending inspection image to compare the sensi-
tivity of the maximum error, mean error, and mean square error to the wrong segmentation
point, and the results are presented in Figure 15.
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As shown in Figure 15, the maximum fitting error was the most sensitive to the false
segmentation points. However, only adopting the maximum fitting error to evaluate the
contour segment fitting results resulted in the local fitting results outperforming the overall
fitting results for the graphic element, which contributed to the misdetection of segmenta-
tion points and finally caused the complete graphic element to be error-segmented.

As shown in Figure 16, points of the same color belong to the same cluster. There
were multiple point clusters in one graphic element, and the maximum fitting error of the
contour fitting between two points in the point cluster with close distance (‘maximum
fitting error of contour fitting between two points’ is denoted as Max_Error) was smaller
than the Max_Error of the real segmentation points. If only the maximum fitting error
was used to evaluate the fitting results of the contour segments, the local fitting results
were better than the overall fitting results of the primitives, resulting in the misdetection of
segmentation points and the missegmentation of the complete graphic element.
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Therefore, the length (L) of the contour segment was introduced during the eval-
uation of the fitting results, and the length and maximum error (E) of each fitted con-
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tour segment were normalized to obtain l and e, and they could be calculated using
Equations (14) and (15).

l =
L− Lmin

Lmax − Lmin
(14)

e =
E− Emin

Emax − Emin
(15)

The evaluation of the fitting results for each time was recorded as result = n× l − e.
As for the compensation effect of length on evaluation, we expected that if there was a

point in the graphic element whose Max_Error was smaller than the Max_Error of the true
segmentation point, the length compensation would make the fitting evaluation of the true
segmentation point higher. The length difference was denoted as ∆S, and the Max_Error
difference was denoted as ∆E. Then, n · l+∆S− e−∆E > n · l− e could be obtained according
to the expectation of length compensation:

n >
Lmax − Lmin

Emax − Emin
·∆E
∆S

(16)

We did not need the length compensation to act on the point cluster where the split
point was located so we could know that ∆Smin = 5, according to the definition of the point
cluster.

The initial screening segmentation points were fitted by the least square method, and
the Max_Error values are shown in Figure 17. Under the effect of the fitting tolerance
threshold (T), the fitting mainly focused on the interior of the graphic element and the
junction of the graphic element, which were, respectively, located at the two peaks of the
frequency distribution histogram. The Otsu method was used to find the threshold to
distinguish the two types of fitting results. that is, the distinguishing threshold (t) was
found to maximize the variance between classes (Equation (17)).

(Sb)
2 = w0·(M0 −Mt)

2 + w1·(M1 −Mt)
2

= w0·w1·(M0 −M1)
2 (17)

where ω0 and ω1 and are the ratios of the number of pixels in the two classes, separated by
the threshold (t), to the total number of pixels (satisfied by ω0 + ω1 = 1); M0 and M1 are
the averages of the pixel values of these two classes. From this, t = 0.98 was obtained.
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The dividing value between the fitting results within the graphic element and the
fitting results at the junction of the graphic element obtained using the Otsu method was
set to the maximum value of ∆E, which was ∆Emax = t = 0.98:

in f (n) 6
Lmax − Lmin

Emax − Emin
·∆Emax

∆Smin
(18)

No length compensation was performed for the fitting result of Max_Error > ∆Emax
(n = 0) so that the operation could avoid the false detection of segmentation points caused
by length overcompensation.

To summarize, the result could be calculated using Equation (19).

result = n · l − e; n =

{
Lmax−Lmin
Emax−Emin

· ∆Emax
∆Smin

if Max_Error > ∆Emax

0 if Max_Error 6 ∆Emax
(19)

3. Precise selection of segmentation points

The improved NMS algorithm processed a set of contour segments: first, we needed
to search the contour segment with the highest evaluation and consider the two endpoints
as the segmentation points; then, we searched the contour segments that overlapped with
the highest rated one, subsequently eliminating both the highest-rated contour segment
and the overlapping parts of the contour segments that overlapped with it; and finally, we
repeated the above process until all contour segments were eliminated.

The segmentation points were precisely selected by adopting the improved NMS
algorithm for experimental use. The segmentation points precisely selected by the NMS
algorithm were accurately located. Meanwhile, there were no false or missed detections.
The results are shown in Figure 18, each point of a different color represents a segmentation
point between different graphic elements.
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The execution effect of the improved NMS algorithm is shown in Figure 19. The gray
and black points are contour points, and the points in the color coil constitute the contour
segments after evaluation. The red points are the segmentation points filtered by the NMS
algorithm.
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The workflow of the improved NMS algorithm is shown in Figure 20.
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4. Results

The initial screening results of the segmentation points based on the adaptive chord
inclination angle are shown in Figure 9 and Section 3.2. The precise screening results of the
segmentation points based on the improved NMS are shown in Figure 18 and Section 3.3.

After confirming the location of the segmentation point of the graphic element, the
graphic element needed to be fitted to determine its key parameters. If we directly fitted the
graphic element contour, it resulted in a situation where the fitting result was not closed, as
shown in Figure 21. Therefore, the graphic element was fitted with a two-point constraint.
The two endpoints were noted as (x0, y0) and (x1, y1).
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y = y0 (y0 = y1)
x = x0 (x0 = x1)
y = k·x + b

k =
y1 − y0

x1 − x0
, b = y0 − k·x0 (20)

The inclination angle of a straight-line segment is given in Equation (21):

angle = arc tan

 →
P0P1 ×

→
x

→
P0P1·

→
x

× 180◦ ÷ π (21)

where
→
x is the positive direction of the x-axis.

For a circular arc segment, the equation of a circle is as follows: x2 + y2 + a·x + b·y +

c = 0. Then, the coordinates of the center of the circle are
(
− a

2 ,− b
2

)
, and the radius is

R =
√

a2+b2−4·c
2 . We consider x as the set of x-coordinates of all contour points in the

element and y as the set of y-coordinates of all contour points in the element.
When y0 6= y1, the coefficients in the circle equation can be calculated by Equations

(22)–(24).

a = − J
∑ H2 (22)

b = D + a·E (23)

c = F + a·G (24)

D =

(
x0

2 − x1
2)+ (y0

2 − y1
2)

y1 − y0

E =
x0 − x1

y1 − y0

F =

(
y1·x0

2 − y0·x1
2)+ (y1·y0

2 − y0·y1
2)

y0 − y1

G =
(x0·y1 − x1·y0)

y0 − y1

H = x + E·y + G

J = ∑
((

x2 + y2 + D·y + F
)
·H
)
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When y0 = y1,the coefficients in the circle equation can be calculated by Equations
(25)–(27).

a =

(
x0

2 − x1
2)+ (y0

2 − y1
2)

x− x0
(25)

b =
E− F

∑ y2 − 1
n (∑ y)2 (26)

c = −∑
D + b·y

n
(27)

D = x2 + y2 + a·x

E =
1
n∑ D·∑ y

F = ∑(D · y)

n = lenght(x)

The results of fitting to the pending inspection image are shown in Table 4.

Table 4. Results of fitting on experimental plots.

Arc Graphic Elements Straight-Line Graphic Elements

Index Circle Center Radius Index Tilt Angle Length

l1 (401.11, 544.51) 362.35 l2 9.91 104.56
l3 (164.15, 532.68) 92.48 l4 −79.39 190.24
l8 (594.37, 643.38) 92.38 l5 69.86 32.31
l9 (775.13, 611.13) 91.66 l6 −46.12 35.38
l11 (891.96, 216.48) 92.26 l7 10.04 182.01
l12 (803.02, 230.08) 181.11 l10 99.75 354.12

l13 −169.87 284.42
l14 −155.09 277.83

5. Experiment and Analysis
5.1. Relative Error of Graphic Element Fitting

Given Section 2.2, there were a large number of equal relationships in graphic elements
for the pending inspection image, and the fitting results in Table 4 were analyzed for relative
errors.

From the fitting results, the average radius of the circular arc segment was 91.224.
The average length of l4, l7, l10 was 181.5925. The average length of l5, l6 was 33.845. The
average length of l13, l14 was 281.125. The design tilt angle of l4, l10 was 100◦. The design
tilt angle of l2, l7, l13 was 10◦. The relative errors are listed in Table 5.

5.2. Effect of Bicubic Interpolation on the Relative Error of the Fit after Processing

The original flat part image was doubled in length and width using bicubic interpo-
lation so that the part element had more contour points as support, which could further
improve the fitting accuracy of the element. The effect of interpolation processing on the
relative error is shown in Figure 22. It can be seen that the relative error of the measure-
ment results was generally reduced and tended to be stable after the interpolation process.
In particular, the relative error was significantly decreased at the short graphic element
(indices 4–8).
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Table 5. Relative errors of fitting results.

Index Average
Radius (Pixel)

Average
Length (Pixel)

Design Tilt
(◦)

Clamping Angle
(◦)

Fitted
Value(Pixel/◦) Relative Error

l1 364.896 362.35 0.703%
l2 10 9.91 0.90%
l3 91.224 92.48 1.35%
l4 100 100.61 0.61%
l4 181.5925 190.24 4.54%
l5 33.845 32.31 4.75%
l6 33.845 35.38 4.33%
l7 10 10.04 0.4%
l7 181.5925 182.01 0.22%
l8 91.224 92.38 1.25%
l9 91.224 91.66 0.47%
l10 100 99.57 0.43%
l10 363.185 354.12 2.55%
l11 91.224 92.26 1.12%
l12 182.448 181.11 0.73%
l13 10 10.13 1.3%
l13 281.125 284.42 1.15%
l14 281.125 277.83 1.18%
l14 165 165.22 0.13%
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5.3. Robustness and Generalizability

The method proposed in this study could effectively screen the correct segmentation
points and accurately identify the tangent points and inflection points. In particular, for
the parts with different placement angles that had the same detection effect, the detection
method had a certain degree of robustness. The experimental results are shown in Figure 23.
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The effects of contour defects on the segmentation points could be effectively removed
by adjusting the fitting tolerance threshold (T) when NMS algorithm selection was adopted.
Rectangular parts with more severe boundary contour defects were used to verify the noise
immunity capability of this detection method. The results are shown in Figure 24.
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In this study, we processed the following two parts using a laser cutting machine
(Figures 25 and 26). After image preprocessing, front and back chord tilt complementation,
NMS algorithm selection, and fitting with constraints, the detection effect of the proposed
method is shown in Table 6. Four sizes were selected for comparison.
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Table 6. Manual versus visual measurement.

Part Size Part Size
Value (mm)

Visual Correction
Values (mm) Error (mm) Relative

Error

part 1

a 9.96 10.02 0.06 0.60%
b 50.10 50.08 0.02 0.03%
c 50.04 50.08 0.04 0.07%
d 9.90 9.87 0.03 0.30%

part 2

a 9.90 9.86 0.04 0.40%
b 49.84 49.90 0.06 0.12%
c 9.92 9.86 0.06 0.60%
d 9.96 9.91 0.05 0.50%

As can be seen in Table 6, there was no significant difference between the visual
inspection results in this study and the value of part size in practice, and the relative error
was less than 0.6%.

6. Conclusions

Segmentation point detection for flat part image contours can segment different ele-
ments in the contour to facilitate subsequent graphic element fitting, and the segmentation
point, as a constraint for fitting, can effectively avoid the problem of the non-closure of the
element fitting results. The main advantages of the segmentation point detection method
proposed in this paper include two aspects: on one hand, the initial screening method
is sensitive to the points with inconspicuous local features, such as tangent points and
inflection points, and there is no leak detection for segmentation points; on the other hand,
the selection method can effectively eliminate the pseudo-segmentation points that result
from noise and jagged contours, and there is no need for a contour smoothing process,
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ensuring that the segmentation point position is accurate, which provides a guarantee for
the accuracy of the subsequent element fitting.

The original image was processed by bicubic interpolation, which increased the sup-
port pixels of the graphic element and significantly reduced the relative error of the image
element fitting. After actual measurement verification, the machine-vision-based flat part
measurement method proposed in this paper could obtain high-precision part dimensions,
and the relative error was less than 0.6%, which can meet the accuracy requirements of
most measurement scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13031641/s1. The supplementary file contains mainly algo-
rithms written in python and experimental data. Code: Algorithmic Program, Image: Pictures used
in the experiment, Data: Experimental Data.
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