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Abstract: In the medical field, microwave imaging technology has experienced rapid development
due to its non-invasive and non-radioactive nature. The confocal algorithm is a method commonly
used for microwave breast cancer imaging, with the key objective of removing clutter in images
to achieve high-quality results. However, the current methods are facing challenges in removing
clutter. In order to reduce the clutter in images, a multiplicative improved coherence factor delay
multiply and sum algorithm based on the maximum interclass differencing method is proposed.
The algorithm compares the starting and ending moments of tumor signals in different channels to
determine whether the tumor-scattered signals in different channels overlap in time. An improved
coherence coefficient is obtained by summing the non-overlapping signals and multiplying the
time window. The multiplicative improved coherence factor, which is obtained by multiplying the
coherence coefficients of the improved multi-pair signals, is then multiplied by the focal point intensity
obtained using the delay multiply and sum algorithm to reduce clutter in an image. To evaluate
the performance of the proposed algorithm, several low-cost uniform and non-uniform models of
human breast and tumor tissue with dielectric properties were prepared for testing. The experimental
results show that, compared to the existing algorithm, the proposed algorithm can greatly reduce
the clutter in images, with a signal-to-clutter ratio of at least 4 dB higher as well as contrast at least
six-fold higher.

Keywords: breast cancer detection; confocal imaging; electromagnetic microwave imaging (EMI);
CF-DAS algorithm

1. Introduction

Breast cancer is one of various threats to women’s health today, and breast screening
plays a vital role in detecting cancerous tumors and thereby improving women’s survival
rates [1]. Currently, the primary techniques for early breast tumor detection are X-ray
and magnetic resonance imaging (MRI) [2]. However, X-ray imaging has limitations
due to the dense nature of breast tissue, leading to misdiagnosis rates as high as 10%
to 30%. Additionally, it can cause damage to human cells through ionizing triggers,
and compression of the breasts during X-ray detection can be painful for the patient [3].
Compared to X-ray imaging, MRI offers high resolution and greater accuracy in tumor
detection. However, it is expensive and not easily accessible, limiting its widespread
application in detection [4]. Electromagnetic microwave imaging (EMI) is an emerging and
promising technique with numerous advantages for early breast tumor detection, including
safety, low cost, non-ionization, and portability [5]. Several teams have reported the
feasibility of their systems developed for microwave breast tumor imaging [6]. EMI can be
performed using ultra-wideband (UWB) microwave imaging approaches and narrowband
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approaches (microwave tomography) [7]. In microwave tomography, a profile of breast
electrical properties is recovered from measurements using near-field tomographic image
reconstruction algorithms. However, a requirement for microwave tomography is to
solve complex inverse scattering problems, which is dependent on numerical analysis
methods that are computationally intensive and slow when applied in imaging [8]. Confocal
microwave imaging (CMI) is an algorithm commonly used for detecting breast cancer using
UWB microwave imaging [9,10]. When a UWB microwave signal wave is directed toward
breast tissues, the tissue properties, such as the dielectric constant and conductivity, cause
different tissues to reflect the scattered wave signal at their boundaries. These scattered
signals are acquired and used by the CMI algorithm for reconstructing images [6]. CMI
does not depend on reconstruction of the media distribution within the entire imaging
area and only on localizing anomalies such as tumors. In this way, the complicated inverse
scattering equation is avoided, and, thus, calculation is simple and imaging rapid [11].
The delay and sum (DAS) algorithm is simple to implement and is one of the most basic
and commonly used imaging algorithms in CMI [12,13]. However, the DAS algorithm
yields images of poorer quality with more clutter [14]. Clutter around the tumor may
mask the presence of multiple other tumors near the investigated tumor, and high-intensity
clutter may be misidentified as a tumor [7]. Therefore, reducing the clutter in images is
important in CMI.

The delay multiply and sum (DMAS) algorithm [7], the coherence factor delay and
sum (CF-DAS) algorithm [15], and the coherence factor delay multiply and sum (CF-
DMAS) algorithm [16] have been proposed to enhance image quality. The DMAS algorithm
introduces a paired multiplication method based on the DAS algorithm, where the signals
from different channels at each focal point are multiplied in pairs after a reverse time delay
and then summed to obtain the intensity of each focal point [17]. However, after the time
delay, at certain focal points where there is no tumor, the peaks of the signals from different
channels are aligned with the peaks and the troughs with the troughs. After pairwise
multiplication and summation by the DMAS algorithm, the intensity of the focal point is
high and, therefore, generates clutter on the image. The CF-DAS and CF-DMAS algorithms
use an adaptive weighting technique [18], introducing a coherence factor (CF) [19] that
reflects the degree of focusing of the signal and using it to weight the intensity values at
each focal point in the image [20,21]. This weighting ensures that intensity values of focus
points with high CF are preserved while suppressing the intensity of focus points with
low CF. However, it is important to note that at some focal points where tumors are not
present, the scattered signals from tumors in different channels do not overlap in time
after reverse time delays. The signal intensity cannot be canceled by summing, resulting
in a high CF value. In addition, in some focal points without tumors, the signal of certain
different channels are aligned peak-to-peak and valley-to-valley, with high coherence
between the signals, and the signal intensity after summing and the CF value are high.
After CF weighting, the intensity of a focal point without a tumor is retained, which can
cause clutter in the image.

To further reduce clutter in the image, in this study, a microwave breast tumor de-
tection system was designed that uses a multiplicative improved coherence factor delay
multiply and sum (MICF-DMAS) algorithm based on the maximum interclass difference
method (OTSU) algorithm [22,23]. OTSU is a nonparametric unsupervised adaptive image
segmentation method in which an image is segmented into different regions by identifying
the appropriate threshold value, through statistical analysis, for minimizing the variance of
intensity values in the same region and maximizing the variance in different regions [24].
In this paper, first, the OTSU algorithm is used to distinguish between the scattering signals
of tumors and other signals in the obtained signals, and the starting and ending moments
of the tumor scattering signals for each channel are then identified to find pairs of tumor
scattering signals that did not overlap in time for different channels. The absolute value
of the signal intensity is taken as the gray value of the image, and the OTSU algorithm
is used to obtain the optimal threshold to divide the signal into two parts with different
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intensity. The first local minimum to the left of the first point in the signal that exceeds the
threshold is used as the starting moment of the tumor signal. The first local minimum to
the right of the last point in the signal that exceeds the threshold is taken as the moment of
termination of the tumor signal. The temporal overlap between tumor scattering signals
from different channels is calculated by comparing the start and stop moments of tumor
signals from different channels. Since the tumor-scattered signals in the signal pairs do
not overlap in time, the coherence from summing the signal pairs is higher and, hence,
the CF value of the signal pairs is also higher. For pairs of signals with non-overlapping
tumor scattering signals, we take the start and end time of the tumor signal received by one
of the channels as the start and end time of the time window and multiply the summed
signal with the corresponding element of the time window. The values of the signals inside
the window remain constant, and the values of the signals outside the window become
0. This reduces the coherence sum of the signal pairs and results in a lower improved
coherence factor (ICF). Then, the ICF of several signal pairs is multiplied to obtain the MICF.
At some focal points where tumors are not present, some of the channels have high signal
coherence and high ICF, while others have low signal coherence and low ICF. The total
MICF is multiplied by a small ICF for each occurrence of a signal pair with low coherence,
which reduces the MICF in focal points without tumors. In this study, we applied the
proposed algorithm to a fabricated tumor model, which was imaged using the imaging
system described in Section 3. By comparing with the results obtained using the DMAS, CF-
DAS, and CF-DMAS algorithms on the same data, it is demonstrated that the MICF-DMAS
algorithm performs better in removing image clutter, with the SCR improved by at least 4
dB and the contrast improved at least six-fold. The images obtained using the MICF-DMAS
algorithm have the least amount of clutter, and MICF-DMAS can clearly distinguish the
location of the tumor by reducing the influence of clutter on tumor determination.

The rest of the paper is structured as follows: The proposed MICF-DMAS algorithm
is introduced in Section 2. Section 3 describes the imaging system and the experimental
setup, and the proposed method is evaluated based on the experimental results. Finally,
the concluding remarks are presented in Section 4.

2. Methods

The microwave breast tumor detection system proposed in this paper, shown in
Figure 1, can be divided into three steps: signal acquisition, pre-artifact removal, and MICF-
DMAS imaging to obtain the image map from the preprocessed signal:

Figure 1. Microwave breast tumor detection system.

The MICF-DMAS algorithm consists of three steps: time delay, computing the MICF,
and multiplying the MICF using the DMAS. First, the distance of the signal from the



Appl. Sci. 2024, 14, 3820 4 of 19

transmitting antenna to the focal point of the imaging region and then to the receiving
antenna is calculated and converted to a time delay. The tumor-scattered signals from
all channels are reverse-delayed and synthesized to focus on a specific focal point of the
imaging region within the breast. In the second step, the ICF of each focal point in the
imaging region is calculated, and multiple ICF values are multiplied to obtain the MICF.
The ICF indicates the coherence between signals, with a higher ICF indicating a higher
coherence between signals. Detecting the start and stop moments of tumor signals in
different channels allows identifying pairs of tumor scattering signals without time overlap
and pairs of signals with tumor scattering signals occurring with time overlap in different
channels. For pairs of tumor scattering signals that do not overlap in time in different
channels, the start and stop times of the tumor signals in either channel are used as the
boundaries of the time window. The signal pairs are then summed and multiplied by
the time window to obtain the ICF. After this, the ICFs of multiple pairs of signals are
multiplied to obtain the MICF. At the tumor focal point, the coherence between signals is
higher, and multiple ICFs of higher values are multiplied. At other focal points, the MICF
is multiplied by one small ICF for each signal pair with low coherence. The MICF has the
advantage of amplifying the weight difference between the tumor focal point and the other
focal points. Finally, the MICF is multiplied by the focal point intensity calculated using
the DMAS algorithm. This reduces the intensity of the less coherent clutter focal points in
the image and maintains the intensity of the more coherent tumor focal points.

2.1. Time Delay

Generally, antennas with very high return loss are ideal for detecting weak reflected
signals. In the signals received by the antenna, the energy of the skin-reflected signal is
about 90 dB higher than that of the tumor signal. The use of antenna arrays in a system
often results in antenna-coupling effects [25,26]. In this study, these antenna couplings and
skin-reflected signals are referred to as pre-artifacts. In this paper, a distance compensation-
based dual adaptive artifact removal (DCAF) algorithm was used to remove pre-artifacts.
In the DCAF algorithm, the reflection coefficients received by the antenna are first converted
to the time domain using discrete inverse Fourier transform [27]. The attenuation effect due
to electromagnetic wave propagation is then compensated for, and the temporal entropy
threshold of the grouped signals is adaptively selected. Finally, the signals are fed into an
adaptive filter with variable filter parameters to reduce the artifacts prior to imaging [28].
After removing the artifacts, the signal received by antenna

⇀
q j transmitting

⇀
q i after pre-

artifact removal is set to si,j(n), where i and j are the antenna index and n denotes the
time series. The position of the antenna is given by

⇀
q0, ...,

⇀
q i, ...,

⇀
q N−1, where N indicates

the number of antennas. The block diagram of the MICF-DMAS algorithm can be seen
in Figure 2. The processed tumor signals are inversely delayed and focused to each focal
point of the breast. The time for propagation of the scattered signal through the breast is
obtained by calculating the path from the transmitting antenna to the scattering point and
to the receiving antenna [14]. The time delay γi,j,e from the transmitting antenna

⇀
q i to the

focal point
⇀
me in the imaging region to the receiving antenna

⇀
q j is [29]

γi,j,e =
(||⇀q i −

⇀
me||+ ||

⇀
q j −

⇀
me||)

v
, (1)

where ||⇀q i +
⇀
me||represents the propagation distance of the signal from the transmitting

antenna to the focal point
⇀
me, where ||⇀q j −

⇀
me|| represents the propagation distance of the

signal from the receiving antenna to the focal point
⇀
me, and where e denotes the index

of the focal point in the imaging region; v = c/
√

ε is the speed of propagation of an
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electromagnetic wave in a breast, and ε is the dielectric constant of normal breast tissue.
The signal after the time delay is denoted as

si,j,e(n) = si,j(n + γi,j,e). (2)

If the presence of multiple reflections and the additional propagation delay caused by
the denser organization inside the phantom are not taken into account [30], the signals have
the same phase at focal points where scatterers are present, with the best focusing quality
between the signals. The signals at locations other than the focal points where scatterers
are present have poorer focusing quality [29].

Figure 2. Block diagram of the MICF-DMAS algorithm for reconstructing the image of position
⇀
me in

the breast phantom.

2.2. Computation of MICF Using Adaptive OTSU Algorithm

The clutter in images is reduced by utilizing the CF for weighting the focal point
intensities [30]. The CF is calculated as follows:

CFe =
(∑n ∑i,j si,j,e(n))

2

∑n ∑i,j (si,j,e(n))
2 , (3)

where (∑n ∑i,j si,j,e(n))
2 denotes the square of the coherent sum between the signals of

different channels, and ∑n ∑i,j (si,j,e(n))
2 denotes the incoherent sum between the signals

of different channels. As shown in Figure 3a, the CF values between the signals are highest
at the focal point where the tumor appears, and the time-delayed signals are aligned peak-
to-peak and valley-to-valley. Multiplying with a high CF value preserves the intensity
value of the tumor focal point. At some focal points without tumors, the time-delayed
signal peaks and valleys are not aligned, as shown in Figure 3b, and the peaks and valleys
cancel out after the signals are summed, so the coherent sum is lower and the CF is lower.
Multiplying with a low CF reduces the intensity value of the tumor focal point. However,
in some focal points without tumors, such as S16 and S23 in Figure 3c, there is no temporal
overlap between the tumor scattering signals to offset the signal intensities by summation,
and the higher values of the coherent sum result in higher values of CF. There is another
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case, in which the focal point has no tumor and the peaks and valleys of some of the signals
are aligned after a time delay, such as for S16, S23, and S37 in Figure 3d, where higher
CF values are also produced. In both cases, the higher CF value multiplied by the focus
intensity results in a higher intensity at the focal point where there is no tumor, creating
clutter on the image.

(a) (b)

(c) (d)

Figure 3. Schematic diagrams of S16, S23, S37, and S62 waveforms with different focal points. The
signal strength is normalized for ease of observation: (a) Focal point of tumor presence. High
coherence of different channel waveforms. (b) No tumor focal point. Low coherence of different
channel waveforms. (c) No tumor focal point. Low coherence of different channel waveforms.
S16 and S23 do not overlap in time. The coherent sum of S16 and S23 is high. (d) No tumor focal
point. S16, S23, and S37 have high coherence.

The first step of the MICF is to find pairs of tumor signals for which there exists a tem-
poral non-overlap. Following pre-artifact removal, signal si,j,e(n) contains high-intensity
tumor scattering signals and other low-intensity residual signals. In this paper, the ab-
solute values of the signal si,j,e(n) were represented as a grayscale histogram, the OTSU
algorithm [23] was used to adaptively select the appropriate threshold value, and the signal
was divided into the tumor signal region and other regions according to the intensity
strength. In order to maintain the integrity of the tumor signal, the first local minimum
before the first point in the signal that exceeds the threshold (point n1 in Figure 4) is used
as the starting moment of the tumor signal. The first local minimum after the last point
in the signal that exceeds the threshold (point n2 in Figure 4) is taken as the moment of
termination of the tumor signal. By comparing the tumor signal regions across different
channels, we determine whether there is a temporal overlap of tumor signals. We assume
that the start and end times of the tumor signal region in signal si,j,e(n) are ni,j,e,start and
ni,j,e,stop. We assume that the intensity values of signal |si,j,e(n)| range from [Amin, Amax].
A f is one of the intensity values in signal |si,j,e(n)|. The number of points with intensity
value A f in signal |si,j,e(n)| is e f . The total number of points of the discrete signal |si,j,e(n)|
is U. The normalized probability of occurrence of A f is b f , which can be expressed as
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b f =
e f

U
. (4)

The absolute values of signal intensity are divided into two groups using the threshold
P: C0 ∈ (Amin, P), C1 ∈ (P, Amax). The probability of each group occurring is

w0 = P(C0) = ∑
A f∈C0

b f , (5)

w1 = P(C1) = ∑
A f∈C1

b f . (6)

The mean value within the group is

µ0 = ∑A f∈C0
A f

b f

w0
, (7)

µ1 = ∑A f∈C1
A f

b f

w1
. (8)

The overall mean is
µT = ∑

A f∈[Amin,Amax]

g f b f . (9)

The within-group variances for the two groups are

σ0
2 = ∑A f∈C0

(A f − µ0)
2 b f

w0
, (10)

σ1
2 = ∑A f∈C1

(A f − µ1)
2 b f

w1
. (11)

The between-class variance is

σT
2 = w0(µ0 − µT)

2 + w1(µ1 − µT)
2. (12)

The threshold P is a function of σT
2. The optimal threshold P∗ can be determined by

maximizing σT
2 [23]

σ2
T(P∗)maxP∈[Amin,Amax]σ

2
T(P). (13)

The time window in which the tumor-scattered signal exists is [ni,j,e,start, ni,j,e,stop]. The
first local minimum before the first point in the signal that exceeds the threshold P∗ is
used as the starting moment ni,j,e,start (point n1 in Figure 4) of the tumor signal. The first
local minimum after the last point in the signal that exceeds the threshold is used as the
termination moment ni,j,e,stop (point n2 in Figure 4) of the tumor signal. If signals si,j,e(n)
and sm,l,e(n) have no time overlap, then ni,j,e,stop < nm,l,e,start or ni,j,e,start < nm,n,e,stop.

In the second step, for pairs of tumor scattering signals with no temporal overlap in
different channels, the start and stop times of the tumor signals in one of the channels are
used as the boundaries of the time window. The signals are summed, the corresponding
element of the signal is multiplied by the corresponding element of the time window,
and the coherent sum is then obtained by integrating the squares of the signals. The ICF
can be expressed as

ICFij,ml,e =



(∑n (win(n)i,j × (si,j,e(n) + sm,l,e(n)))
2

∑n (si,j,e(n)
2 + sm,l,e(n)

2)
, no time overlapping

∑n (si,j,e(n) + sm,l,e(n))
2

∑n (si,j,e(n)
2 + sm,l,e(n)

2)
, others

(14)
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where

win(n)i,j =

{
1, (ni,j,e,start < n < ni,j,e,stop)

0, others
(15)

Figure 4. Determination of the starting and ending moments of the tumor scattering signal using
the OTSU algorithm. The dashed line is the optimal threshold. The yellow shaded area is the tumor
scattering signal; n1, n2 denote the start and the stop moments of the tumor signal.

Figure 5 indicates the extent of the time window. From (14), it can be seen that
upon multiplying the summed signals with the time window the value of the numerator
(the coherent sum of the signal pairs) is reduced, while the denominator (the incoherent
sum of the signals) remains unchanged. As a result, the ICF value obtained is lower than
the CF value not multiplied by the time window. The signals from the different transceiver
antennas (s1,2, s2,3, s3,4, ..., sN−1,N) already contain all the tumor information. To minimize
calculation, the total MICFe is obtained by multiplying ICFij,mn,e of the different signals of
the transceiver antennas:

MICFe = ∏
i,j,m,n

ICFij,mn,e. (16)

At a focal point where there is no tumor, the MICF of each pair of low-coherence
signals is multiplied by a small factor. On the other hand, at a focal point with a tumor,
the MICF is multiplied by a larger factor. Compared to the CF, the MICF shows a greater
difference between the tumor focal point and the other focal points.

Figure 5. The start and end points of the window function in (15). The yellow shaded area is the
range of the time window.
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2.3. MICF Multiplied by DMAS

Finally, the MICF is multiplied by the focal point intensity value of the DMAS-derived
image, and the MICF is utilized to suppress the less coherent clutter in the image, resulting
in better image quality. Arranged in the order of the antennas, si,j,e(n) is denoted as sp,e(n)
where p is the antenna index. The synthesized wave of focus

⇀
me in the breast is expressed as

Ie = MICFe × ||∑
p

∑
q

sp,e(n)×sq,e(n)||(p 6= q). (17)

The above process is repeated for each focal point in the breast to generate the energy map.

3. Experiment
3.1. Experimental Setup

In this paper, an ultra-wideband microwave breast cancer detection system was
proposed for testing the proposed algorithm. As shown in Figure 6, the system consisted of
six small ultra-wideband Vivaldi antennas arranged in an antenna array, a Keysight P5023B
multi-port vector network analyzer (VNA) with a frequency range of 9 KHz–14 GHz,
a laptop computer, and a circular plastic mount for securing the antennas. The VNA
and the ultra-wideband antenna were connected via six coaxial cables to transmit and
receive signals. The breast phantom was exposed to an ultra-wideband microwave signal
covering the frequency band from 2.5 to 8 GHz, striking a balance between penetration
depth and image resolution [31]. In this study, the number of sampling points was set to
1001, which increased the calculation workload but also expanded the scanning distance
of the VNA [28]. The VNA had an output power of 10 dBm. Ultra-wideband microwave
signals were sequentially transmitted from one port of the VNA through the antenna to the
experimental model, while the remaining ports collected the scattered signals. The received
signals were stored in a laptop, and the images were then reconstructed using the proposed
MICF-DMAS algorithm.

Figure 6. Microwave imaging system.

The system utilized a three-dimensional section of the breast, facing the center of
the breast, for imaging purposes. To achieve this, a 3-D antenna array was employed in
the Z-direction to scan the breast slices [25]. A circular support made of an acrylic plate
with a diameter of 50 cm was used to hold six small ultra-wideband Vivaldi antennas [32]
forming the antenna array. The antennas were spaced at 60° intervals, ensuring mutual
coupling between them was less than −20 dB. The center of the antenna array aligned
with the center of the breast model, and each antenna was positioned 5 mm away from the
outer surface of the breast model. Using such an arrangement allowed avoiding the use
of high-intensity microwaves [25]. Each antenna, measuring 45 mm × 40 mm × 1.2 mm
(Figure 7), was printed on a Fr4 substrate and had a bandwidth of 2.5 GHz–10 GHz. Signal
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transmission was carried out sequentially, with one antenna transmitting at a time while
the rest received the signal. This process was repeated until each of the six antennas had
transmitted a signal.

(a) (b)

Figure 7. The antenna used in the imaging system: (a) Top view. (b) Bottom view.

3.2. Experimental Model

In this study, three realistic breast phantoms were utilized to evaluate the imaging
performance of the system on breast tumors. The fabrication and measurement of each
breast prosthesis was conducted following the methodology described in references [33,34].
Phantom (I) was a homogeneous phantom consisting of a single medium, as shown in
Figure 8a. The materials and proportions are listed in Table 1. In homogeneous media,
after a reverse time delay, the signal at the focal point where a tumor is present has
higher coherence. The model consisted of a 50 mm hemisphere filled with a homogeneous
medium simulating normal breast tissue. Based on the clinical investigation and analysis
of patients with early breast tumors, it has been found that the diameter of breast tumors
can range from 9 to 58 mm with an average diameter of 22.1 mm [35]. Additionally, it
has been observed that the closer the tumor is to the skin, the higher the likelihood of
lymph node metastasis, and the rehabilitation outcomes tend to be relatively poor [28].
Therefore, a cylindrical medium with a diameter of 10 mm and a thickness of 10 mm was
inserted at appropriate coordinates (X = 17 mm, Y = −23 mm, Z = 45 mm) for simulating
a near-skin tumor. Phantom (II) used a three-layer skin–fat–tumor structure to simulate
a heterogeneous phantom that more closely resembled a real human breast (Figure 8b).
The materials and proportions are listed in Table 2. The outer surface of the model was
a hemispherical hollow medium for simulating the skin layer, and the interior was filled
with a hemispherical medium for simulating the fat layer. It was noted in a previous
clinical study that the uneven thickness of a patient’s skin can greatly affect the detection
of suspicious areas within the breast [36]. Therefore, we set the simulated skin media
thickness to 9–12 mm to simulate uneven skin thickness. The phantom diameter and
the tumor diameter and location were the same as for phantom (I). Phantom (III) had
an additional 10 mm in tumor diameter compared to phantom (II) and was located at
(X = −25 mm, Y = 18 mm, Z = 45 mm) to simulate the case of multiple targets (Figure 8c).
The presence of multiple targets can result in multiple internal reflections that may affect
the imaging system.
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(a) (b)

(c) (d)

Figure 8. (a) Single-tumor homogeneous phantom (I). (b) Single-tumor heterogeneous phantom (II).
(c) Two-tumor heterogeneous phantom (III). (d) The profile of phantom (III).

Table 1. Phantom (I) composition: materials and scale.

Material Normal Tissue Tumor Purpose

distilled water (mL) 420 420 solvent
polyethylene powder (g) 480 430 adjusts the dielectric constant

agar (g) 20 20 maintains model shape
NaCl (g) 6.8 28.3 increases electrical conductivity

xanthan gum (g) 6.25 6.25 thickening agent
sodium dehydroacetate (g) 0.25 0.25 preservative

Table 2. Phantom (II) composition: materials and scale.

Material Skin Fat Tumor Purpose

distilled water (mL) 420 420 420 solvent
polyethylene powder (g) 450 500 430 adjusts the dielectric constant

agar (g) 20 20 20 maintains model shape
NaCl (g) 20 2.3 28.3 increases electrical conductivity

xanthan gum (g) 6.25 6.25 6.25 thickening agent
sodium dehydroacetate (g) 0.25 0.25 0.25 preservative
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3.3. Evaluation Indicators

The performance of the algorithms was assessed using four metrics: contrast ratio CR;
signal-to-clutter ratio SCR; the coordinate X of the point with the highest intensity value in
the image; and the tumor diameter D. CR measures the ratio of the mean intensities of the
tumor site to the breast tissue, while SCR compares the maximum intensities of the tumor
site to the corresponding region of healthy tissue, and D is the diameter of the area within
40% of the intensity range around the highest intensity point in the image [37]. CR and
SCR are denoted as

CR =
mean(It)

mean(Ib)
, (18)

SCR = 10log10(
max(It)

max(Ib)
), (19)

where It and Ib are the intensity of the tumor region and the intensity of other tissues.
A higher value of CR indicates a greater contrast between the tumor and normal portions
of the image. A higher SCR value indicates there is less clutter in the image.

3.4. Dielectric Constant Measurement

The imaging algorithm in this study utilizes signal time delay to achieve focused
imaging. The time delay γ of the imaging point relative to each antenna is first calculated,
then the signal is shifted using γ, and, finally, multiple signals are focused for imaging:

γ =
d

c/
√

ε
(20)

where d denotes the relative permittivity of the medium, ε denotes the propagation distance,
and c denotes the speed of light. When the signal propagates the same distance in different
biological tissues, the propagation delay γ is related only to the dielectric constant of
biological tissue, and an accurate dielectric constant will improve imaging quality [27].
The dielectric constant of the phantom was measured using a Keysight coaxial probe kit
(Keysight N1501A), as shown in Figure 9. Figure 10 shows the measured and target values
of the dielectric constant and conductivity relative to the frequency of tumor, skin, and fat
materials. The dielectric constant and conductivity of the homogeneous phantom (I) in
Figure 10a,b were identical to the target curves. Figure 10c,d show the dielectric constant
and conductivity of each material (skin, fat, and tumor) in the heterogeneous phantoms (II)
and (III). The values of the dielectric constants of the three substances generally decreased
at different slopes as the frequency increased. Tumor had the highest value of dielectric
constant, followed by skin, and fat had the lowest [34]. The data of this experimental model
satisfied the experimental requirements.

Figure 9. Dielectric constant measurement.
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(a) (b)

(c) (d)

Figure 10. (a) Dielectric constants and (b) conductivity of tumor and normal tissue in phantom (I).
(c) Dielectric constants and (d) conductivity of tumor, fat, and skin in phantoms (II) and (III).

3.5. Experimental Results

We used phantom (I) for imaging toward verifying that the images obtained using
the MICF-DMAS algorithm on a homogeneous phantom had less clutter. Phantom (I)
was a homogeneous phantom consisting of a single medium, and the tumor, measuring
10 mm in diameter, was situated at coordinates (17 mm, −23 mm). Figure 11 shows the
imaging results obtained for phantom (I) using the four algorithms DMAS, CF-DAS, CF-
DMAS, and MICF-DMAS. All the images were normalized based on the maximum intensity
value in the reconstruction plane, with yellow representing the highest value and blue
representing the lowest. The images obtained using the DMAS and CF-DAS algorithms
contain more low-intensity clutter. There is reduced clutter in the image obtained by the
CF-DMAS algorithm, but some clutter is still present. There is almost no clutter in the
image obtained using the MICF-DMAS algorithm. Table 3 presents the SCR, CR, X, and D
values. SCR and CR were used to assess the level of clutter in the image and the contrast
between the tumor and normal tissue. A higher SCR value indicates reduced clutter and
improved imaging clarity, while a higher CR value suggests an increased image contrast
ratio. Compared with the other three algorithms, the MICF-DMAS algorithm improved the
SCR by at least 4 dB and the CR at least four-fold. Similar coordinates X for the point of
maximum intensity in the images were obtained using the four algorithms. D represented
the diameter of the tumor. The DMAS, CF-DAS, CF-DMAS, and MICF-DMAS algorithms
yielded images with D of 11.3 mm, 10.7 mm, 9.6 mm, and 8.1 mm. The diameter of the
tumor obtained by the MICF-DMAS algorithm was smaller compared to the true value
(10 mm). The reason is that the MICF-DMAS algorithm suppressed the intensity of the
focus near the tumor.
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(a) DMAS (b) CF-DAS

(c) CF-DMAS (d) MICF-DMAS

Figure 11. Imaging results of the four algorithms for the homogeneous single-tumor phantom (I)
(Z = 45 mm).

Table 3. Evaluation indicators of the four algorithms for the homogeneous single-tumor phantom (I)
imaging results.

Method D (mm) X (mm) SCR (dB) CR

MICF-DMAS 8.1 (18,−25) 14.72 23.14
CF-DAS 10.7 (18,−25) 5.52 11.46
DMAS 11.3 (19,−24) 6.09 11.92

CF-DMAS 9.6 (19,−25) 10.61 17.68

We used phantom (II) for imaging toward verifying that the MICF-DMAS algorithm
minimized clutter when imaging individual tumors in a heterogeneous model that more
closely resembled a real breast. Phantom (II) was a non-homogeneous model consisting
of three layers of skin, fat, and tumor, and the tumor, measuring 10 mm in diameter, was
situated at coordinates (17 mm, −23 mm) with skin thickness of 9–12 mm. Figure 12
shows the imaging results obtained for phantom (II) using the four algorithms. Due to
the inhomogeneous media and skin thickness, the images of Figure 12 show more clutter
compared to those of Figure 11 in addition to a larger tumor localization error of about
6 mm. The results obtained using the DMAS and CF-DAS algorithms are depicted in
Figure 12a,b, showing that the images contain a large amount of clutter. Notably, there
is high-intensity clutter at coordinates (−23 mm, −20 mm) that could be mistaken for a
tumor. As can be seen in Figure 12c, there is less clutter in the image obtained by the
CF-DMAS algorithm, but the high-intensity clutter at (−23 mm, −20 mm) is still present.
Figure 12d shows the image obtained using the MICF-DMAS algorithm, clearly showing
a tumor, and the intensity and instances of clutter are reduced. The high-intensity area
around the tumor is minimal. The high-intensity clutter located at (−23 mm, −20 mm) was
also suppressed to a low intensity. Table 4 presents the SCR and CR of the images acquired
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using the four algorithms. The MICF-DMAS algorithm has an SCR of 13.94 dB and a CR of
20.32. The SCR of the image obtained using the MICF-DMAS algorithm is about 6 dB higher
than that of the images obtained using the CF-DMAS algorithm. In addition, the CR values
also indicate better performance, with a higher percentage of intensity values focused on
the tumor and less clutter.

(a) DMAS (b) CF-DAS

(c) CF-DMAS (d) MICF-DMAS

Figure 12. Imaging results of the four algorithms for the heterogeneous single-tumor phantom (II)
(Z = 45 mm). The portion circled by the red circle indicates high intensity clutter.

Table 4. Evaluation indicators of the four algorithms for the heterogeneous single-tumor phantom
(II) imaging results.

Method D (mm) X (mm) SCR (dB) CR

MICF-DMAS 8.5 (21,−20) 13.64 21.32
CF-DAS 10.9 (22,−20) 5.03 9.41
DMAS 11.4 (21,−21) 5.36 10.39

CF-DMAS 10.2 (21,−20) 7.93 15.51

We used phantom (III) for imaging to validate the imaging performance of the MICF-
DMAS algorithm for multiple targets. The tumors had a diameter of 10 mm each, with tu-
mor 1 located at (17 mm, −23 mm) and tumor 2 located at (−25 mm, 20 mm). As shown
in Figure 13, the presence of multiple targets led to multiple internal reflections, result-
ing in more clutter in the images obtained by the four algorithms [30]. The DMAS and
CF-DAS algorithms produced images with a significant amount of high-intensity clutter.
More clutter is also present in the images obtained by the CF-DMAS algorithm. More
high-intensity clutter may be mistaken for tumors, which may have certain effects on tumor
localization. The intensity and instances of clutter are significantly improved upon in the
images obtained by the MICF-DMAS algorithm. Table 5 presents the results, indicating
that the MICF-DMAS algorithm achieved the highest SCR and CR. Since there were two
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tumors in phantom (III), X took the coordinates of the two points with the highest intensity
of the focal points, and D also took the portion of high intensity around these two points.
Similar coordinates of highest intensity for the two points were obtained within the images
using the four methods, with the smallest D obtained by the MICF-DMAS algorithm and a
larger D obtained using the CF-DAS and DMAS algorithms.

(a) DMAS (b) CF-DAS

(c) CF-DMAS (d) MICF-DMAS

Figure 13. Imaging results of the four algorithms for the heterogeneous two-tumor phantom (III)
(Z = 45 mm).

Table 5. Evaluation indicators of the four algorithms for the heterogeneous two-tumor phantom (III)
imaging results.

Method MICF-DMAS CF-DAS DMAS CF-DMAS

D1 (mm) 8.1 9.7 10.1 9.6
D2 (mm) 9.2 12.1 12.6 11.6
X1 (mm) (22,−20) (22,−20) (21,−20) (22,−21)
X2 (mm) (−19,17) (−19,18) (−19,18) (−19,17)
SCR (dB) 10.26 4.03 4.21 5.91

CR 19.4 10.46 10.92 18.35

3.6. Discussion

In some lesions without tumors and after time delay, the signals of certain channels
are highly coherent, or the signals of certain channels appear at non-overlapping times.
The intensity of these signals remains high after pairwise multiplication and summation
by the DMAS algorithm. Therefore, the image obtained using the DMAS algorithm has
more clutter, and the coherent sum of these signals is high, which leads to high CF values.
As a result, the images obtained using the CF-DAS and CF-DMAS algorithms also have
some clutter. The MICF-DMAS algorithm retains the coherence of the DMAS algorithm
and improves upon it using MICF weighting. In MICF, an ICF of lower weight is first
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obtained by adding a time window to signals that do not overlap in time. The ICF values
for multiple pairs of signals are then multiplied together to obtain the MICF. For each pair
of signals with low coherence in the clutter focus, the MICF is multiplied by a factor of
low value, which reduces the weight of the clutter focus. Compared to the original CF,
the focus points of the improved MICF have lower weights in cases of clutter. As shown in
Figure 12, high-intensity clutter is exhibited at (−23 mm, −20 mm) in the images acquired
using the CF-DAS and CF-DMAS algorithms but not the MICF-DMAS algorithm. As a
result, the MICF-DMAS algorithm yields images with less clutter and the highest SCR and
CR. The MICF-DMAS algorithm does not change the focus of the signal, so the coordinates
corresponding to the highest pixel value in the image are similar to those of the other three
algorithms. The MICF is obtained by multiplying multiple ICF values and is more sensitive
to signal coherence. Focused signals around the highest intensity point in the image are
less coherent and have smaller MICF values. The focused intensity obtained after MICF
weighting is small. The MICF-DMAS algorithm yields images with the smallest diameter
of the high-intensity region around the point with the highest pixel value.

4. Conclusions

In this paper, we propose an MICF-DMAS algorithm based on maximum interclass
difference to reduce clutter. This algorithm, which is an improvement of the original CF
algorithm, can adaptively detect signal pairs without temporal overlap and add time win-
dows to the numerator of its CF to obtain ICF values. The ICF values of multiple pairs
of signals are then multiplied to reduce the weight of clutter focal points and improve
the image quality. The MICF-DMAS algorithm was compared with the DMAS, CF-DAS,
and CF-DMAS algorithms through multi-objective experiments. The results for the evalua-
tion metrics show that the MICF-DMAS algorithm performs better overall than the other
algorithms. It effectively removes clutter and improves the image quality, with the SCR
being at least 4 dB better, and the contrast is at least six-fold higher than that of the existing
algorithms. Since this research is still in the laboratory stage, some shortcomings need to be
addressed. There is still room to improve the localization accuracy of the proposed method,
and advanced machine learning algorithms will be utilized together with convolutional
neural networks and multimodal methods in future work toward improving the accuracy
of the microwave imaging system, further improving the SCR and the CR [38–40].
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