
Citation: Bai, Y.; Sun, M.; Zhang, L.;

Wang, Y.; Liu, S.; Liu, Y.; Tan, J.;

Yang, Y.; Lv, C. Enhancing Network

Attack Detection Accuracy through

the Integration of Large Language

Models and Synchronized Attention

Mechanism. Appl. Sci. 2024, 14, 3829.

https://doi.org/10.3390/

app14093829

Academic Editors: Sin Gee Teo,

Rongxing Lu and Ruitao Feng

Received: 7 April 2024

Revised: 25 April 2024

Accepted: 26 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Enhancing Network Attack Detection Accuracy through the
Integration of Large Language Models and Synchronized
Attention Mechanism
Yuzhe Bai †, Min Sun †, Liman Zhang †, Yinong Wang, Sihan Liu, Yanqiu Liu, Jingling Tan, Yingqiu Yang
and Chunli Lv *

China Agricultural University, Beijing 100083, China; byz@cau.edu.cn (Y.B.); 2021308160227@cau.edu.cn (M.S.);
2020308130508@cau.edu.cn (L.Z.); wangyinong@cau.edu.cn (Y.W.); liusihan@cau.edu.cn (S.L.);
2023311320326@cau.edu.cn (Y.L.); 2022308250124@cau.edu.cn (J.T.); yyq@cau.edu.cn (Y.Y.)
* Correspondence: lvcl@cau.edu.cn
† These authors contributed equally to this work.

Abstract: In this study, we propose a novel method for detecting cyberattack behaviors by leveraging
the combined strengths of large language models and a synchronized attention mechanism. Extensive
experiments conducted on diverse datasets, including server logs, financial behaviors, and comment
data, demonstrate the significant advantages of this method over existing models such as Transformer,
BERT, OPT-175B, LLaMa, and ChatGLM3-6B in key performance metrics such as precision, recall,
and accuracy. For instance, on the server log dataset, the method achieved a precision of 93%, a
recall of 91%, and an accuracy of 92%; on the financial behavior dataset, it reached a precision of
90%, a recall of 87%, and an accuracy of 89%; and on the comment data dataset, it excelled with
a precision of 95%, a recall of 93%, and an accuracy of 94%. The introduction of a synchronized
attention mechanism and a newly designed synchronized loss function proved especially effective,
enhancing the method’s ability to process multi-source data and providing superior performance
in identifying complex cyberattack patterns. Ablation experiments further validated the crucial
roles of these innovations in boosting model performance: the synchronous attention mechanism
substantially improved the model’s precision, recall, and accuracy to 93%, 89%, and 91% respectively,
far exceeding other attention mechanisms. Similarly, the synchronized loss showcased a significant
advantage, achieving the best performance across all tested metrics compared to traditional cross-
entropy loss, focal loss, and MSE. These results underscore the method’s ability to deeply mine and
analyze semantic information and contextual relationships within text data as well as to effectively
integrate and process multimodal data, thereby offering strong technical support for the accurate and
efficient detection of cyberattack behaviors.

Keywords: network attack detection; large language models; synchronized attention mechanism;
deep learning in cybersecurity; cross-domain application of NLP

1. Introduction

With the rapid development of the internet and the widespread use of social media [1],
online platforms have become crucial venues for information exchange, life sharing, and
opinion expression. However, these platforms also serve as breeding grounds for cyberat-
tack behaviors, including cyberbullying [2], malicious speech dissemination [3], phishing
attacks [4], and more. Such behaviors not only harm individuals’ mental health but threaten
the security and harmony of the online environment; consequently, the development of
effective detection mechanisms to identify and prevent these attack behaviors has become
an important task in the field of cybersecurity.

Traditional attack behavior detection methods primarily rely on rule matching [5] and
keyword filtering. However, these methods often lack flexibility and struggle to adapt to

Appl. Sci. 2024, 14, 3829. https://doi.org/10.3390/app14093829 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093829
https://doi.org/10.3390/app14093829
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14093829
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093829?type=check_update&version=1

Appl. Sci. 2024, 14, 3829 2 of 28

the increasingly complex and diversified cyberattack methods. Rezaimehr Fatemeh and
colleagues [6] analyzed 25 collaborative filtering recommendation system (CFRS) research
samples from 2009 to 2019, finding that many studies merely attempt to detect attacks,
while the models are lacking in robustness and fail to integrate implicit features and social
information for the detection of malicious users.

In recent years, with the advancement of deep learning technology, textual analysis
methods based on these technologies have been widely applied to the automatic detection
of attack behaviors [7], achieving a certain effectiveness. However, these methods continue
to face challenges in understanding the deep meaning and context of texts; especially
when dealing with complex language features such as sarcasm, puns, or metaphors, their
effectiveness remains limited. For instance, Alshehri Abdullah and colleagues [8] used
machine learning and user behavior analysis to detect cyberattacks, with their experimental
results showing that RNN-LSTM achieved the highest accuracy of 97%; yet, their model’s
accuracy was affected when detecting internal attacks. In response, Elnakib Omar and
colleagues [9] proposed an enhanced anomaly-based intrusion detection deep learning
multi-class classification model to detect Internet of Things (IoT) intrusions. They classified
fifteen behaviors, including fourteen types of attacks, achieving 95% accuracy; however,
the model’s accuracy and complexity came at the cost of increased time. Meddeb Rahma
and colleagues [10] proposed a stacked autoencoder approach for intrusion detection
systems (IDS) in Mobile Ad Hoc Networks (MANET), with empirical experiments showing
that Stacked-IDS (a DNN with a stacked auto-encoder) exhibited higher accuracy than
Deep-IDS (a DNN with a deep auto-encoder) in detecting malicious nodes. The authors
noted that the complexity of attacks and imbalanced datasets require further research for
validation. Elsaeidy Asmaa A and colleagues [11] developed a deep learning-based model
for replay attack detection in smart cities. The model featured four hidden layers, a global
average pooling layer, and an output layer, and achieved satisfactory performance in soil
management and environmental monitoring. Modeling for environmental monitoring
posed more challenges than soil management due to the complex nature of environmental
monitoring datasets, testing the overall performance of the model. Moreover, in the
financial sector, Nicholls Jack and colleagues [12] discussed various fraud methods by
investigating the financial cybercrime ecosystem, including how graph-based techniques
and neural network models can be used to counter financial cybercrime.

Large language models, such as OpenAI’s GPT (Generative Pre-training Transformer)
series [13], have demonstrated their powerful capabilities in understanding and generating
text through pretraining on large-scale textual data. These models can capture the deep
semantics and rich contextual information present in text, offering the possibility of deeply
understanding human language. Hu and colleagues [14] applied large language models
to construct knowledge graphs from unstructured open-source threat intelligence, with
their proposed LLM-TIKG method showing good results in named entity recognition and
TTP classification, achieving accuracies of 87.88% and 96.53%, respectively. Xu and col-
leagues [15] introduced AutoAttacker, a large language model-guided system for automatic
cyberattack detection; yet, synchronizing information remains a challenge.

Furthermore, the attention mechanism [16], an important technique in deep learning,
allows models to “focus” on different parts by assigning different “attention” to them,
thereby enhancing the model’s ability to focus on the most relevant information in text
and improving the ability to process complex language features. For example, An and
colleagues [17] proposed a financial system attack detection model called Finsformer
based on a transformer and synchronized attention mechanism. The experimental results
showed that their model significantly outperformed traditional models such as RNN and
LSTM, achieving an accuracy of 97%; however, the model’s computational efficiency was
low, affecting accuracy and inference speed when dealing with large datasets. Wang and
colleagues [18] combined transformer and expert systems and evaluated the resulting
model on real phishing websites, showing that even after three months, it maintained an
accuracy of 96%; however, deploying the model on edge devices posed a challenge.

Appl. Sci. 2024, 14, 3829 3 of 28

The difficulty of detecting network attack behaviors lies in the need to accurately
understand the meaning of texts and their context, especially when attack methods use
language with obscure or double meaning. Additionally, the diversity and complexity of
network attack behaviors demand highly flexible and adaptable detection methods. To
address these challenges, we utilized the latest large language models as a foundation,
leveraging their ability to pretrain on large-scale text data in order to capture subtle semantic
differences and rich contextual information. Concurrently, the introduction of synchronized
attention mechanisms enables models to adaptively focus on the most critical information
for attack behavior detection, thereby enhancing the accuracy and efficiency of detection.

In this context, the present paper proposes a novel approach that combines large
language models with synchronized attention mechanisms. This approach is specifically
designed to enhance accuracy and efficiency when detecting cyberattack behaviors. This
innovative integration marks the first time that large language models have been coupled
with synchronized attention mechanisms, providing a robust solution for identifying
a wide range of complex and covert attack behaviors more effectively than traditional
methods. The synchronized attention mechanism is a key innovation that enables a dynamic
and holistic integration of data features across different layers of the language model,
facilitating a deeper understanding of complex interactions within data. This approach
significantly enhances the ability to detect nuanced or obscured cyberthreats. Additionally,
the introduction of a synchronized loss function further optimizes our model’s ability
to handle multi-source data, significantly improving detection capabilities across diverse
cyber-environments such as server logs, financial transactions, and social media interactions.
Extensive experimental validation across these varied datasets demonstrates the superior
performance of our method over existing models, underscoring its effectiveness in practical
applications. This introduction sets the stage with a background on cybersecurity and the
challenges involved in detecting attack behaviors, then reviews related work, including
the deployment of large language models and attention mechanisms in text analysis, and
highlights the limitations of current detection techniques. Our proposed method, which
integrates large language models with a novel synchronized attention mechanism and
synchronized loss function, covers comprehensive aspects such as the model architecture,
data processing, experimental design, and evaluation metrics. This approach is theoretically
innovative and has been empirically validated, proving its effectiveness and superiority in
practical applications.

2. Background and Related Work
2.1. Large Language Models

In recent years, the development of Large Language Models (LLMs) [19] has garnered
widespread attention in the field of artificial intelligence, as shown in Figure 1.

This attention stems from their remarkable achievements in Natural Language Process-
ing (NLP) tasks, ranging from basic text classification [20] to complex question-answering
systems [21] and natural language understanding [22]. These achievements are built on the
foundation of the Transformer architecture [23], proposed by Vaswani et al. in 2017, which
rapidly became the dominant technology for NLP tasks [24]. The core of the Transformer
architecture is the self-attention mechanism, allowing models to focus on different parts
of the sequence data. The mathematical expression of the self-attention mechanism is
as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V. (1)

Here, Q, K, and V represent the matrices for Query, Key, and Value, respectively,
with dk denoting the dimension of the key vectors. This formula calculates the output by
computing the similarity between the queries and keys, then using these softmax scores to
weight the values. By stacking multiple attention layers and incorporating feed-forward
neural networks, residual connections, and layer normalization in each layer, Transformer
models build deep architectures. The advantage of this architecture lies in its strong

Appl. Sci. 2024, 14, 3829 4 of 28

parallel processing capabilities, ability to capture long-distance dependencies, and flexible
adjustment of model parameters through layer and width expansion. BERT (Bidirectional
Encoder Representations from Transformers) is a Transformer-based model introduced by
Google in 2018 [25], as shown in Figure 2.

2019

T5

2020

GPT-3

GShard

2021

mT5

PanGu-α

PLUG Jurassic-1
HyperCLOVA
LaMDA
CPM-2

Ernie 3.0

Codex
BLOOM MT-NLG

T0

FLAN
Yuan 1.0

Gopher
GLaMWebGPT

Ernie 3.0 Titan 2022
AlphaCode
Chinchilla
PanGuInstructGPT

GPT-NeoX-20B
CodeGen PaLM

UL2

Tk-Instruct
OPT

2023

Sparrow
Flan-T5

Flan-PaLM
GLM

AlexaTM

ChatGPT

mT0
BLOOMZ

Galatica
OPT-IML

GPT-4

Bard
ERNIE Bot

LLaMA

Open-Source

Figure 1. The depiction illustrates the development trajectory of Large Language Models (LLMs)
from 2019 to 2023, meticulously documenting the introduction of significant models and technologies
during this period. This includes the launch of models, from T5 and GPT-3 to the latest GPT-4,
LLaMA, demonstrating the continual progress and evolution of large language models in the field
of Natural Language Processing (NLP). Moreover, the illustration includes models optimized for
specific domains and tasks, such as Codex, AlphaCode, reflecting the expansion and deepening of
large language model technology in multiple directions.

NSP Mask LM Mask LM

𝐂 𝐓𝟏 ⋯ 𝐓𝐍 𝐓[𝐒𝐄𝐏] 𝐓𝟏’ ⋯ 𝐓𝐌’

𝐄[𝐂𝐋𝐒] 𝐄𝟏 ⋯ 𝐄𝐍 𝐄[𝐒𝐄𝐏] 𝐄𝟏’ ⋯ 𝐄𝐌’

BERT

[𝐂𝐋𝐒] 𝐓𝐨𝐤𝟏 ⋯ 𝐓𝐨𝐤𝐍 [𝐒𝐄𝐏] 𝐓𝐨𝐤𝟏 ⋯ 𝐓𝐨𝐤𝐌

Masked Sentence A Masked Sentence B

Figure 2. The depiction reveals the fundamental architecture of the BERT model, which encompasses
the Masked Language Model (MLM) and Next Sentence Prediction (NSP) pretraining tasks. It can be
seen that Sentence A and Sentence B are connected through the special tokens [CLS] and [SEP], along
with the process of certain vocabulary being masked, with the aim of training the model to capture
deep linguistic features and understand the relationships between sentences.

Appl. Sci. 2024, 14, 3829 5 of 28

Its innovation lies in the use of a bidirectional Transformer encoder. BERT’s training
process includes two stages: pretraining and fine-tuning. During the pretraining stage,
BERT learns deep representations of language through the Masked Language Model (MLM)
and Next Sentence Prediction (NSP) tasks. The MLM task involves predicting randomly
masked tokens, while the NSP task predicts whether two sentences are consecutive. Unlike
BERT, GPT adopts a pretraining plus fine-tuning framework [26]; however, as an autore-
gressive model, it uses all previous words as context when generating each word. The key
to GPT is its extensive pretraining on a large corpus, followed by fine-tuning on specific
tasks, leading to significant generalization capabilities.

Large language models such as BERT and GPT learn rich linguistic features and
knowledge information by pretraining on large-scale text data [27]. These models can
understand semantic information in text data and capture complex contextual relationships,
offering potential for in-depth analysis of network attack behaviors. Specifically, large
language models have shown unique advantages in the network attack behavior detection
application. For instance, in the analysis of malicious software codes, large language
models can conduct an in-depth semantic analysis of the code, effectively identifying
hidden malicious behavior patterns [28]. Traditional malware detection methods often
rely on specific feature codes or behavior patterns, which may fail when malware authors
modify the code through obfuscation, encryption, or variation techniques. In contrast,
large language models, by learning the semantic differences between malicious and normal
codes, can identify even highly mutated malware. For example, by comparing the structure
and semantic features of malicious and normal codes, models can effectively distinguish
and label potential malicious codes, even those disguised through complex transformation
and obfuscation techniques. Similarly, in the analysis of network traffic and logs [29], large
language models demonstrate strong application potential. Attacks such as DDoS and
phishing attacks [30] often leave abnormal behavior patterns in network traffic or server
logs. By conducting deep learning and semantic analysis on these log data, large language
models can quickly identify key information related to attack behaviors from massive data,
such as abnormal access frequencies and suspicious request parameters. This deep learning-
based approach is more flexible and effective than traditional rule-based detection methods,
adapting to the rapid changes and evolution of network attack behaviors. Additionally, for
specific types of network attacks such as SQL injection [31] and cross-site scripting (XSS)
attacks [32], large language models can provide technical support for precise detection
and defense by learning the characteristics and patterns of these attacks. For example, in
detecting SQL injection attacks, models can identify illegal SQL operations by analyzing
the SQL statements in query logs, effectively blocking malicious database access requests.
This method improves detection accuracy while significantly reducing false positives.

These applications demonstrate the potential and value of large language models
in detecting network attack behaviors, offering more fine-grained in-depth analysis than
traditional methods. However, applying large language models to network attack behavior
detection faces challenges. On one hand, data in the cybersecurity field typically exhibit
high specificity, requiring models to adapt to specific application scenarios; on the other,
the constantly changing patterns of network attacks require that models be able to adapt to
new attack methods in a timely fashion.

A key step in applying large language models to network attack behavior detection is
designing appropriate input representations and pretraining tasks that meet specific detec-
tion needs. Different detection scenarios necessitate different forms of input representation.
For example, in analyzing malicious codes, the input might be a token sequence of the
source code, while for log file analysis the input could be a text sequence of log records.
In order to adapt these inputs for model processing, they first need to be converted into
vector forms understandable by the model, typically achieved through word embedding
techniques. The process of word embedding can be mathematically expressed as folows:

E = Embedding(X). (2)

Appl. Sci. 2024, 14, 3829 6 of 28

Here, X represents the input sequence and E denotes the vector representation after
word embedding. Designing appropriate pretraining tasks is crucial in order for large
language models to learn valuable knowledge for attack behavior detection. Self-supervised
learning tasks such as the MLM task are a common and effective choice:

LMLM = − ∑
i∈M

log p(xi|x\i; Θ). (3)

Here, M is the index set of tokens selected for masking, xi represents the i-th token
in the sequence, x\i denotes the other tokens excluding xi, and Θ refers to the model
parameters. The MLM task promotes the model’s ability to capture and learn the deep
semantic information of text by predicting the masked tokens in the sequence. After
the pretraining stage, fine-tuning the model on specific attack behavior detection tasks
is a necessary step. The fine-tuning process mainly involves optimizing the following
loss function:

L = − ∑
(x,y)∈D

log p(y|x; Θ′). (4)

Here, (x, y) represents the labeled sample pair, D is the training dataset, y is the
label of the sample, indicating whether the sample is “normal” or “attack” behavior, and
Θ′ are the fine-tuned model parameters. Through this step, the model learns how to
predict the corresponding label y based on the input data x, thereby achieving accurate
detection of network attack behaviors. As discussed, applying large language models to
network attack behavior detection requires careful design of input representations and
pretraining tasks as well as effective fine-tuning on specific detection tasks [33]. These steps
collectively ensure that the model can fully leverage its language understanding capability
to accurately identify and analyze potential network attack behaviors. To overcome these
challenges, researchers must meticulously adjust the model’s pretraining and fine-tuning
strategies to ensure that it captures the specific knowledge and language patterns of the
cybersecurity field. Additionally, incorporating domain experts’ knowledge into model
training and evaluation is key to enhancing model performance. Lastly, in light of the
severity of cybersecurity incidents, the interpretability and trustworthiness of models are
non-negligible factors. Researchers need to develop new methods to ensure that the model’s
decision-making process is transparent and can provide reliable evidence to support its
detection results.

In summary, the development of large language models offers new technical means
and research directions for network attack behavior detection. By delving into these
models’ potential and continuously adapting to the specific needs of the cybersecurity
field, detection capabilities with respect to network attack behaviors can be effectively
enhanced, making a significant contribution to maintaining network security. As model
design, training strategies, and application methods continue to innovate and optimize,
future large language models will have even broader prospects in the field of network
attack behavior detection.

2.2. U-Net

The U-Net model was initially introduced by Olaf Ronneberger, Philipp Fischer, and
Thomas Brox in their 2015 paper on biomedical image segmentation [34]. Renowned for
its unique symmetry and the use of skip connections, this model has achieved remark-
able success across various fields, particularly in medical image processing. The core
design principle of U-Net involves an intricate upsampling process and the incorpora-
tion of high-resolution features from previous layers through skip connections, ensuring
that information is preserved in the deeper layers of the network, which is crucial for
precise segmentation of detail-rich areas within images. The U-Net architecture features
a symmetric “U” shape, divided into two parts: the contraction path and the expansion
path. The contraction path, also known as the encoder, progressively reduces the spatial
dimensions of the input image while increasing the number of feature channels. This

Appl. Sci. 2024, 14, 3829 7 of 28

process involves convolutional layers and max pooling steps, aimed at capturing abstract
features of the image and reducing computational complexity. Conversely, the expansion
path, or decoder, gradually restores the spatial dimensions through transposed convolution
(upsampling) while decreasing the number of feature channels. Each upsampling step is
accompanied by skip connections from corresponding downsampling steps, allowing the
network to combine high-resolution features with upscaled features, thereby effectively
restoring details and local structures of the image.

A key advantage of the U-Net model is its ability to achieve highly precise results
with limited data. This is particularly important for medical image segmentation tasks [35],
where high-quality annotated data are often scarce. U-Net addresses data scarcity by
effectively utilizing data augmentation techniques such as rotation, scaling, and elastic
deformations, significantly enhancing the model’s generalization capabilities. Addition-
ally, U-Net excels in handling multi-task learning and multimodal inputs; for example,
in processing MRI and CT images, U-Net can integrate information from diverse sources
and output precise segmentation through a unified framework. This capability means that
U-Net is not limited to medical image processing; for instance, it has found applications
in satellite imagery, road detection, and plant disease detection in agriculture. Although
initially designed for image segmentation, U-Net’s powerful feature extraction and informa-
tion restoration capabilities make it suitable for a broader range of applications, including
detecting cyberattack behaviors. In such tasks, U-Net can assist models in learning and
identifying complex patterns in network traffic data or log files, which are often related to
anomalous behaviors. By transforming dispersed unstructured data from network logs into
meaningful feature representations, U-Net plays a crucial role in the early identification
of potential network threats. In the field of network security, the application of U-Net
introduces a novel approach, namely, leveraging its validated structure in the domain of
imagery to parse and understand network behavior data akin to “images”. For instance,
time series data of network traffic can be treated as “images” and processed by U-Net to
identify and classify various types of network attacks, such as DDoS and SQL injection.
This approach can enhance detection precision while maintaining high computational
efficiency and low false positive rates when handling complex data.

2.3. Attention Mechanism

The proposal of the attention mechanism in the deep learning field was inspired by
the human visual attention mechanism [36]. The basic idea is that the model can pay more
attention to the important parts of the input data while paying less attention to the less
important parts during information processing. This mechanism enables the model to
dynamically adjust its focus on the input data, thereby improving processing efficiency and
enhancing model performance and accuracy. In deep learning models, especially when
processing sequence data, the attention mechanism is implemented by calculating the
mutual weights between input features to reflect their importance. The initial attention
mechanism can be expressed as shown in Equation (1) and Figure 3.

One of the key challenges in detecting network attack behaviors is accurately and
quickly identifying attack activities from vast amounts of network data [37]. These data
include, but are not limited to, server logs, network traffic, and user behavior data, which
contain both normal business activity information and potential malicious attack informa-
tion. The attention mechanism, by providing models with the ability to filter and focus
on key information, greatly enhances detection accuracy and efficiency. For instance, in
analyzing network traffic data models need to identify which traffic patterns are normal
and which may belong to DDoS attacks [38]. By incorporating an attention mechanism,
models can focus more on key features such as abnormal access frequency and request
sources, thereby improving their identification accuracy. Specific attention models can be
designed for scenarios involving network attack behavior detection; for example, models
employing self-attention mechanisms [39] are particularly suitable for processing sequence
data such as log files. In this scenario, Q, K, and V might represent different representations

Appl. Sci. 2024, 14, 3829 8 of 28

of the same log data sequence, allowing the model to learn internal dependencies in the
sequence in order to identify potential attack patterns. Furthermore, for complex attack
behavior detection tasks, multi-head attention mechanisms can be designed to further
enhance model performance:

Multi-Head(Q, K, V) = Concat(head1, head2, . . . , headn)WO, (5)

where headi = Attention(QWQ
i , KWK

i , VWV
i). (6)

Figure 3. The depiction presents the core mechanism of the Transformer model structure with Scaled
Dot-Product Attention. Detailed here is the flow of information through linear transformation layers,
processing by the attention mechanism’s weighted sum, followed by concatenation and another
linear layer, culminating in the transformation of the input information. This structure forms the
basis for the Transformer model’s ability to capture the complex relationships between elements
within a sequence.

Here, WQ
i , WK

i , WV
i are different weight matrices used to project Q, K, V into different

representation spaces, with WO being the weight matrix of the output layer. Through this
method, the model can learn different aspects of the input data in parallel in multiple
representation spaces, capturing richer information to improve detection accuracy and
the ability to identify complex attack behaviors. The attention mechanism shows strong
application potential in detecting specific types of network attacks, such as SQL injection
and XSS attacks [40,41]. Through deep learning of the characteristics of attack behaviors,
models can accurately identify key operations and patterns in attacks. For example, when
detecting SQL injection attacks, models can identify atypical query patterns or structurally
abnormal query statements by learning the differences between normal and malicious
SQL queries, thereby effectively identifying and blocking SQL injection attacks. More-
over, models can accurately identify attack behaviors in more complex scenarios, such as
phishing and malware dissemination, as the attention mechanism dynamically adjusts
the model’s focus to accurately identify traces of attack behaviors from extensive network
communication data [42,43]. For instance, in phishing email detection, models can focus
on deceptive vocabulary or sentence structures in email content to effectively identify and
intercept phishing emails.

The introduction of the attention mechanism provides a highly efficient, flexible, and
powerful technical means for detecting network attack behaviors. By dynamically adjusting
focus, such models have improved accuracy when recognizing network attack features
and are able to adapt to the continuous evolution and changes in network attack methods.
In the future, network attack behavior detection methods based on attention mechanisms
can be expected to demonstrate even more outstanding performance, contributing greater
strength to network security protection.

3. Materials and Method
3.1. Dataset Collection

In this study, a multi-source dataset approach was adopted to support the effective
detection of various network attack behaviors. The collection of these datasets encompassed
data from web crawls, server logs, financial transaction behavior data, and comments from

Appl. Sci. 2024, 14, 3829 9 of 28

social media and forums, aiming to construct a comprehensive multi-dimensional data
foundation for more accurate identification and prediction of network attack behaviors.

A self-developed crawler program was utilized to systematically collect a large amount
of publicly available online data within a specific time window. Primarily, these data in-
cluded contents from malicious websites and malware distribution sites. The intention was
to capture information related to phishing and malware dissemination. Data collection
spanned from January to June 2023, with the collection devices being servers equipped
with the Linux operating system and the crawler program mainly developed in Python
3.8. Through collaboration with multiple partners, access logs from their servers were
obtained. These logs recorded server access information from January to June 2023, in-
cluding access times, IP addresses, and request contents, and were used for training and
testing the model’s performance in detecting server attacks such as SQL injection and
cross-site scripting attacks. Financial transaction data from internet finance platforms were
acquired, including transaction times, amounts, and types of transactions. These data
were primarily used for identifying and detecting financial fraud behaviors such as credit
card fraud. Data collection covered the entire year of 2023, aiming to capture potential
fraudulent transactions. Comments from various social media platforms and forums were
also collected, reflecting user interactions and expressions in the online environment; spe-
cial attention was paid to comments containing malicious content, such as cyberbullying
and hate speech. The collection period for comment data was from January to June 2023,
with batch downloading and storage facilitated by self-developed data collection tools.
To specifically illustrate the scale and distribution of the data, Table 1 displays the basic
information of each type of dataset:

1. Server Log Dataset: The server log dataset included detailed records of server accesses,
which were primarily utilized for the detection of server attacks such as SQL injections
and Cross-Site Scripting (XSS) attacks. Access logs from servers have been obtained
through collaboration with multiple partners.
SQL Injection: Attempts by attackers to gain database privileges by entering SQL
commands or modify database information, for example, “105 OR 1 = 1′′.
Cross-Site Scripting (XSS): Malicious scripts are injected into web pages by attackers.
When other users visit these web pages, the scripts are executed, for example, “ <
script > alert(′XSS′);< /script >′′.

2. Financial Behavior Dataset: Data collected from internet financial platforms, includ-
ing transaction times, amounts, and types, were primarily used to identify and detect
financial fraud such as credit card fraud.
Credit Card Fraud: Unlawful transactions are carried out by criminals who have
stolen credit card information, shown by transaction records indicating that a card
was used for high-value transactions in different countries within a short time.

3. Social Media Comment Dataset: Comments were collected from various social media
platforms and forums, with a particular focus on those containing malicious content
such as cyberbullying and hate speech.
Cyberbullying: Malicious attacks on individuals via social media comments were
identified, for example, “Youarereallystupid!′′.
Hate Speech: Comments that exhibit racial or gender discrimination, for example,
“Wedonotwelcomeyourkindhere!′′.

Table 1. Details of dataset collection.

Data Type Amount Characteristics

Web Crawl
Data 100,000 Including malicious website contents, malware distribution sites, etc.

Server Logs 500,000 Records server access information, used for detecting server attacks.
Financial
Behavior 200,000 Transaction times, amounts, types, used for detecting financial fraud.
Comment
Data 300,000 User comments from social media and forums.

Appl. Sci. 2024, 14, 3829 10 of 28

3.2. Dataset Annotation and Preprocessing

Standardization and vectorization of data are key steps to ensure effective learning
by the model. All collected data underwent appropriate preprocessing to convert them
into forms suitable for processing by deep learning models. For text data, in addition to
preprocessing steps, advanced word embedding techniques were employed to convert text
into dense vectors, capturing the deep semantic information of the text:

vtext = WordEmbedding(Preprocessing(Text)). (7)

For numerical and categorical data, one-hot encoding and standardization were ap-
plied to ensure unbiased information learning from each feature by the model. By collecting
data from multiple channels and meticulous preprocessing and standardization, a com-
prehensive and multi-dimensional dataset was constructed, providing a solid foundation
for detecting network attack behaviors. This process focused on the accumulation of data
volume as well as on enhancing data quality and deep mining of data features with the aim
of effectively improving the accuracy and efficiency of network attack behavior detection
through a data-driven approach.

3.2.1. Dataset Annotation

Before the start of the annotation work, all team members underwent a training series
which included the use of annotation tools, understanding annotation rules, and practice
with actual annotation operations. This training process ensured that each annotator
could accurately understand the requirements of the annotation task and how to apply the
annotation rules. To ensure the accuracy and consistency of data annotation, a detailed set
of annotation rules was established. These rules were based on the best practices and latest
research findings in the field of cybersecurity, covering scenarios from simple network
access behaviors to complex financial fraud and malicious software attacks. For example,
any abnormal access pattern in server log data, such as a large number of requests in a short
time or abnormal request paths, was marked as an “attack”. For financial behavior data,
transactions were judged as “credit card fraud” based on transaction frequency, amount,
and location. In the actual annotation process, each piece of data was independently
reviewed and annotated by at least two annotators in order to reduce subjective bias and
improve annotation accuracy. The annotation results were determined by majority vote,
that is, when the majority of annotators’ results were consistent, that result was determined
as the final annotation. To ensure consistency and accuracy of the annotation standards,
the following measures were taken:

1. Regular Review: Annotation teams held regular review meetings to discuss and
resolve issues and disagreements encountered during the annotation process. This
helped to continuously refine the annotation rules, ensuring a unified understanding
of the annotation standards among all personnel.

2. Double-Blind Annotation: A double-blind mechanism was implemented during
the annotation process, meaning that each annotator could not see the results of
others, reducing mutual influence and ensuring the objectivity and independence of
the annotation.

3. Quality Control: A quality control step was introduced in which annotation results
were regularly evaluated through random checks. Problems identified during checks
were corrected and feedback was provided promptly, ensuring annotation quality.

3.2.2. Dataset Preprocessing

For the study of detecting network attack behaviors, data preprocessing is a crucial
step that directly impacts the efficiency of model training and the final performance of
the model. The purpose of data preprocessing is to convert raw data into formats more
suitable for machine learning models while improving data quality and minimizing noise
interference. Data cleaning primarily involves removing irrelevant, erroneous, or duplicate

Appl. Sci. 2024, 14, 3829 11 of 28

data from the dataset. For example, server logs may contain a large amount of normal access
records that are not helpful for attack behavior detection and need to be removed. For text
data, preprocessing steps include tokenization and removal of stop words. Tokenization
refers to the process of splitting continuous text strings into sequences of tokens, which
is foundational for text processing. The removal of stop words eliminates common but
meaningless words from the text, such as “the” and “is”. The aim of these steps is to reduce
data dimensionality and alleviate the burden on the model. Subsequently, the TF-IDF
(Term Frequency-Inverse Document Frequency) technique is employed to convert text into
vector form. TF-IDF is a statistical method used to evaluate the importance of a word
to a document in a corpus. Term Frequency (TF) indicates the frequency of a word in a
document, while Inverse Document Frequency (IDF) is a measure of the general importance
of the term. The TF-IDF value can be calculated using the following formula:

TF-IDF(t, d) = TF(t, d)× IDF(t) (8)

where t is a term and d is a document.

TF(t, d) =
Number of occurrences of term t in document d

Total number of terms in document d
(9)

IDF(t) = log
Total number of documents in the corpus

Number of documents containing term t + 1
(10)

By calculating TF-IDF values, text data can be converted into vector form, where each
dimension represents the TF-IDF value of a term, providing input data for subsequent
deep learning model training. Standardization is an essential step for numerical data
such as financial transaction amounts and server access frequencies. The purpose of
standardization is to transform numerical data of different scales into a uniform scale,
making it more suitable for model processing. The standardization method used in this
paper is Z-score standardization, with the formula as follows:

Z =
(X − µ)

σ
(11)

where X is the original data, µ is the mean, σ is the standard deviation, and Z is the
standardized data. This method adjusts the scale and distribution of the data, making it
more suitable for processing by machine learning models. For categorical data such as
transaction types and request methods, vectorization is necessary to convert the categorical
data into numerical data recognizable by models. The method used in this paper is one-hot
encoding, which converts each category value into a binary vector, with only one position
in the vector having a value of 1 and the rest having values of 0. The vectorization process
of one-hot encoding can be mathematically represented as

One-Hot(xi) = [0, . . . , 1, . . . , 0], (12)

where xi is the original categorical data and One-Hot(xi) is the vector after one-hot encod-
ing, with the position of 1 indicating the category. After completing data preprocessing, it
is necessary to divide the dataset into training, validation, and test sets. This step is taken
to evaluate model performance and prevent model overfitting. Dataset division typically
relies on random sampling methods to ensure consistency in data distribution.

3.3. Proposed Method
3.3.1. Overview

In this study, a novel method for detecting network attack behaviors based on LLMs
and synchronized attention mechanisms is proposed. The aim is to enhance the accuracy
and efficiency of detecting network attack behaviors by delving into the deep semantic
information and contextual relationships within text data. The method is grounded on
the utilization of LLMs and synchronized attention mechanisms, as illustrated in Figure 4.

Appl. Sci. 2024, 14, 3829 12 of 28

In the presented methodological framework, the data flow initiates with data input, pro-
gresses through various processing levels, and culminates in the output. Initially, data
are input into the layers representing text and images, processed via the synchronized
attention mechanism, and subsequently refined and integrated through a denoising U-Net
to yield the final output. Large Language Models (LLMs) are tasked with processing and
understanding textual data. This segment transforms textual data into a format that can
be input to neural networks. The core process of the presented method comprises the
following steps:

𝒙 𝝐

𝒙" 𝑫

Pixel Space

𝒛

𝒛 𝒛𝑻 − 𝟏

×(𝑻 − 𝟏)

Q
K	V

Q
K	V

Q
K	V

Q
K	V

𝒛𝑻

Denoising U-Net

Diffusion Process
Latent Space

𝒛𝑻

Different Modes

Text

Representations

Images

denosing step

Q
K	V

crossattention

switch skip connection

concat

Normalization

Result

Attack

or

Normal

𝒛: data representation at different
time-step in the diffusion process;
𝑻: time-step in the diffusion process;
𝒛𝑻: data representation (time-step = T);

x: raw data;
𝒙(: normalized data;
D: normalized dataset;
𝝐: noise;
𝝉𝜽: data augmentation;

𝝉𝜽

Q
K	V

𝑵×

Linear

Softmax

Transformer

Figure 4. This figure displays an overall schematic of the model framework proposed in this paper,
including the input processing of multimodal data, the application of the synchronized attention
mechanism, and the integration of the denoising U-Net architecture. Initially, the raw data are
enhanced (denoted as τθ in the figure), then subjected to regularization and noise addition processes
(represented by x̄ and ϵ in the figure), forming the model’s input. The noised data z undergo
processing through the diffusion process to obtain zT (where T represents the time steps in the
diffusion process); subsequently, data zT are processed through the U-Net network for T steps of
denoising to yield z′; finally, the regularized data x̄ and z′ are fed into the transformer for classification
to produce the final result, which is the model’s output.

1. Data preprocessing and vectorization: Collected multisource data undergo prepro-
cessing, including data cleaning, deduplication, tokenization, etc., followed by trans-
formation of text into vector form through advanced word embedding techniques,
providing suitable input data for subsequent model training.

2. Application of large language models: Pretrained large language models are employed
for deep feature extraction from vectorized data. These models comprehend the
profound meanings and complex contextual relations in the text, offering robust
technical support for detecting network attack behaviors.

3. Synchronized attention mechanism: The synchronized attention mechanism proposed
in this paper enhances the model’s focus on the characteristics of network attack
behaviors by synchronously processing information within data blocks (intra-block)
and across data blocks (inter-block). This mechanism allows the model to capture
key information while considering the interactions and dependencies among the
information, thereby improving the accuracy of detection.

4. Synchronized loss function: To further optimize the model’s training process and en-
hance detection performance, a synchronized loss function is designed. This function
synchronously considers the model’s performance across different tasks to optimize
and update the model parameters.

In Figure 4, “Diffusion” denotes a diffusion model, a generative model primarily
utilized during the data generation process to restore the details and structure of signals by
progressively reducing noise. Within the methodological framework of this study, diffusion
models are incorporated to enhance the performance of detecting network attack behaviors,
especially when addressing highly nonlinear and complex data features. The roles played
by diffusion models in this framework are as follows. Data Enhancement and Recovery:

Appl. Sci. 2024, 14, 3829 13 of 28

In the field of network security, attack data often appear sparse and incomplete; diffusion
models, through their generative process, can simulate and augment real attack behavior
data. By introducing controlled noise into the data and progressively reducing this noise
throughout the generation process, the models learn to fill in missing portions of the data,
thereby restoring attack behavior features more completely. Feature Extraction: During the
feature extraction phase, diffusion models are applied to high-dimensional data, aiding
in the capture of deep (often unobservable) features. This level of feature extraction is
crucial for understanding complex attack patterns and behaviors, providing more precise
information than traditional deep learning models. Denoising and Anomaly Detection:
Noise data or false alarms are frequent issues in network attack detection. Diffusion models
exhibit superior performance in denoising, effectively distinguishing and isolating the
differences between real attack actions and noise through the model’s reverse generation
steps (transitioning from noisy data back to original data). Generating Adversarial Attack
Samples: To enhance the model’s robustness and defensive capabilities, diffusion models
are also employed to generate adversarial attack samples. These samples simulate unseen
and potential attack methods, aiding in training the model to predict and counter these
potential new threats. The detailed operational procedures are as follows:

1. Initialization: An appropriate noise distribution is selected (represented by ϵ in the di-
agram) to serve as the starting point for the model (typically a Gaussian distribution).

2. Forward process: Noise is incrementally introduced into the actual data at each step,
with each addition of noise calculated to ensure reversibility. This process generates a
series of data states transitioning from entirely real to completely noisy.

3. Reverse process: Starting from the noisy data state, the model’s learned inverse
transformations are progressively applied, recovering increasingly clearer data states
until a state close to the original data is reached.

During the application of this process, precise control over the amount and qual-
ity of noise at each step is essential if useful information is to be recovered from noisy
data. Through this method, diffusion models enhance the accuracy of detection models,
providing deeper insights and greater adaptability when dealing with complex data and
attack patterns.

3.3.2. Large Model for Attack Behavior Detection

A model integrating synchronous attention mechanisms and a denoising U-Net ar-
chitecture was developed to enhance the detection capabilities for complex cyberattack
behaviors. Designed with multimodal inputs, this model is capable of processing vari-
ous data types, including text and images, to utilize multisource information for attack
detection comprehensively. The core components are as follows:

1. Input layer: The model accepts preprocessed multimodal data, such as text sequences
transformed into vectors via word embedding and image data standardized.

2. Synchronous attention layer: Text data are processed using a self-attention mecha-
nism, while image data are handled through a denoising U-Net architecture. The
introduction of a synchronous mechanism is crucial, enabling the model to consider
information from other modalities while processing one type of data modality. For
instance, the text processing component relies on its sequence information as well as
on relevant features from image data:

SA(Q, K, V) = softmax
(

QKT
√

dk
+ S

)
V (13)

where Q, K, V represent the query, key, and value matrices, respectively, dk denotes the
dimension of the key vectors, and S is the synchronous signal from other modalities.

3. Denoising U-Net architecture: Image data undergo feature extraction and denoising
using the U-Net structure, in which skip connections maintain the spatial information

Appl. Sci. 2024, 14, 3829 14 of 28

of image features. The denoising step removes irrelevant noise, preserving key
features of attack behaviors.

4. Fusion and classification layer: Processed text and image features are fused and then
classified through a fully connected layer to determine the type of attack behavior.

The introduction of a synchronous attention mechanism enables the model to fully
leverage complementary information from other modalities while processing one type
of data, enhancing the detection capabilities for complex attack behaviors. The use of a
denoising U-Net architecture capitalizes on its advantages in feature extraction and spatial
information retention. Denoising further improves the model’s feature quality and gener-
alization capability. This model emphasizes synchronous processing of multimodal data
and denoising, addressing aspects not covered by models that focus on a single modality
or lack a synchronous processing mechanism. By combining synchronous attention with
the denoising U-Net, the model is able to processes complex semantic information within
textual data while efficiently utilizing spatial features from non-textual data, significantly
enhancing its detection accuracy and robustness. Furthermore, adjusting the weight of the
synchronous signal S allows for more effective integration of information from different
modalities, improving recognition precision for attack behavior characteristics.

In summary, the large model proposed in this study demonstrates significant perfor-
mance advantages on the task of network attack behavior detection, particularly through
its unique design in synchronous processing of multimodal data and efficient denoising
of image data. The application of these design concepts and methodologies enhances
the model’s effectiveness in the field of cybersecurity and provides valuable insights for
handling other complex multimodal data analysis tasks.

3.3.3. Synchronous Attention Mechanism

The synchronous attention mechanism comprises two main parts, namely, intra-
block attention and inter-block attention. These components work together to enable
the model to simultaneously consider the association information with other data blocks
while processing a single data block, such as text segments or image areas, as illustrated
in Figure 5.

𝐢 𝑸 ∈ 𝑹𝒏×𝒅

𝐢 𝑲 ∈ 𝑹𝒏×𝒅

𝐢

Copy Block
to synchronize

𝑶𝒊𝒏𝒕𝒓𝒂 = 𝑸𝒊𝑲𝒊
𝑻						𝑴	 𝑽𝒊

Intra block

𝑶𝒊𝒏𝒕𝒆𝒓 = 𝑨𝑸𝒊) 𝑲𝑽	

Inter block

𝑶𝒊 = 𝑶𝒊𝒏𝒕𝒓𝒂 +𝑶𝒊𝒏𝒕𝒆𝒓
𝑲𝑽 = 𝝑𝑩𝑲𝑽 + 𝝑𝑩)𝟏𝝏)𝟏𝑲𝒊

𝑻𝑽𝒊

Output
to synchronize

𝐢 𝑶 ∈ 𝑹𝒏×𝒅

Figure 5. The depiction elaborates on the structure of the synchronized attention mechanism proposed
in this paper, including the information processing flows within (intra-) and across (inter-)blocks. It
demonstrates how the combination of self-attention operations within internal blocks and synchro-
nized strategies across blocks enables the model to capture the characteristics of a single data block
while integrating information from other blocks, thereby optimizing the detection performance of
network attack behaviors.

Appl. Sci. 2024, 14, 3829 15 of 28

Intra-block attention is primarily focused on the processing of information within
a single data block. This mechanism employs a traditional self-attention mechanism to
analyze and understand the relationships of features within the data block. Each data
block is considered a subset of the input data, where the intra-block mechanism determines
the importance of each element for the output by calculating the interactions among the
elements within the data block. This usually involves calculating the dot product of the
query and the key followed by normalization using the softmax function. This mechanism
aids in capturing complex internal features such as local semantic relationships in textual
data. The mathematical expression can be described as follows:

Intra-Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (14)

where Q, K, and V respectively represent the query, key, and value matrices and dk is the
dimension of the key vectors.

Inter-block attention, unlike intra-block attention, is designed to enable the model
to consider information from other data blocks while processing a particular data block.
This mechanism assumes that there may be associations between different data blocks; if
these associations are effectively utilized, they can greatly enhance the model’s information
processing capacity and decision accuracy. Inter-block mechanisms achieve this by transfer-
ring and synchronizing information between different data blocks, such as by weighted
merging of feature representations from different blocks. The mathematical expression can
be described as follows:

Inter-Attention(Q, K, V) = softmax
(

Q(K + S)T
√

dk

)
V (15)

where S represents the synchronization signal from other data blocks, which can be the
feature representation of another block or specially processed information. Such attention
mechanisms have the following advantages:

1. They enhance the model’s global understanding ability. By synchronizing information
between different data blocks, the model can achieve a more in-depth understand-
ing on a global level, especially for processing cross-modal or cross-domain data,
significantly improving the model’s comprehensive performance.

2. They enhance the model’s ability to capture complex data patterns. Complex cyberat-
tack behaviors often involve multiple types of data and interactions at various levels.
The synchronous attention mechanism helps the model to capture these complex data
patterns and relationships, improving detection accuracy.

3. They improve the model’s adaptability and flexibility. The mechanism allows the
model to flexibly adjust the focus of attention and optimize the information processing
flow based on task requirements and data characteristics, enhancing the model’s
adaptability and applicability in different scenarios.

Single block and parameter design: In the specific network design, the basic pro-
cessing unit for each data block is implemented through a multi-layer stacked transformer
network structure. Each transformer layer contains a multi-head self-attention mechanism
and a feed-forward neural network, with these layers stacked in sequence to enhance the
model’s representational power. In our model, typically 6 to 12 layers of transformers
are stacked, with the specific number of layers adjustable based on the complexity of the
task and characteristics of the data. For specific settings of each transformer layer, the
dimension of the model’s hidden layers is usually set to 512, and the number of heads in the
multi-head attention mechanism is set to 8, meaning that each head processes a dimension
of 64. Furthermore, the inner dimension of the feed-forward networks is typically four
times that of the hidden layer dimensions, i.e., 2048. This design ensures that the model
has sufficient capability to capture and process complex data features.

Appl. Sci. 2024, 14, 3829 16 of 28

3.3.4. Synchronous Loss Function

In deep learning and NLP tasks, the loss function is a crucial part of model training
that defines the discrepancy between the model’s output and the true labels. For models
based on the transformer architecture, the cross-entropy loss is a common loss function
that is widely applied in classification tasks. However, for specific tasks, including cyberat-
tack behavior detection, more specialized loss functions are designed to improve model
performance. The synchronous loss function described here aims to optimize the model’s
processing capability for complex tasks by synchronizing the loss incurred when process-
ing multisource data. Compared to the cross-entropy loss, the synchronous loss function
incorporates additional terms to harmonize the information processing and model learning
synchronization between different data sources. Assuming that the model’s predicted
output is ŷ and that the true label is y, the traditional cross-entropy loss is expressed as

LCE = −∑
i

yi log(ŷi), (16)

where i represents the index of categories and yi and ŷi are the probabilities of the true label
and predicted output for the ith category, respectively. Building on this, the synchronous
loss function introduces an additional synchronization term Lsync to enhance the model’s
synchronicity and coordination when processing different data sources. The design of
the synchronization term is based on the consistency between the model output and the
cross-data source synchronization signals, specifically expressed as follows:

Lsync = ∑
j
∥F(ŷj)− Sj∥2

2 (17)

where j represents the index of different data sources, F(ŷj) is the synchronization signal
generated based on the model output ŷj, Sj is the actual synchronization signal from
other data sources, and ∥·∥2

2 denotes the L2 norm. Therefore, the total expression for the
synchronous loss function is

Ltotal = LCE + λLsync, (18)

where λ is a tuning parameter used to balance the impact of the cross-entropy loss and
the synchronization term. The design of the synchronous loss function is based on the
following considerations:

1. It improves the model’s synchronicity when processing multisource data. In complex
tasks such as cyberattack behavior detection, different data sources may have inherent
connections and complementary information. The Lsync term encourages the model
to maintain consistency and coordination when processing different data sources,
allowing it to make better use of cross-data source information.

2. It enhances the model’s generalization ability by promoting consistency between
the model output and cross-data source synchronization signals. This helps the
model to capture the commonalities between different data sources, improving its
generalization ability for unseen data.

Overall, the design of the synchronous loss function aims to enhance the model’s
capability to process complex multisource data, which is particularly suitable for tasks such
as cyberattack behavior detection that require comprehensive utilization of various data
sources. By introducing a synchronization term into the loss function, the model can better
coordinate and synchronize the information processing of different data sources during
learning, improving its detection accuracy and efficiency.

Appl. Sci. 2024, 14, 3829 17 of 28

3.4. Experimental Design
3.4.1. Hardware and Software Platform

In this study, constructing a high-performance experimental environment was deemed
crucial, as the training and testing of models for detecting cyberattack behaviors demands
extensive computational resources and data processing capabilities. Consequently, a platform
combining hardware and software was established to provide robust support tailored to the
requirements of developing deep learning models. The hardware platform was based on a
high-performance computing system, at the core of which lay multiple Intel Xeon processors
(Intel, Beijing, China). These processors, known for their high core count, are capable of
parallel processing of large datasets, offering strong support for complex computational tasks.
Additionally, NVIDIA Tesla V100 (Nvidia, Beijing, China) graphic processing units (GPUs) were
equipped. Renowned in the deep learning domain for their exceptional computational power,
these GPUs significantly accelerate the training process, especially for deep neural network
models characterized by complex structures and numerous parameters. The memory was
configured to 256 GB RAM, allowing the system to efficiently handle large datasets without
encountering data swapping issues due to insufficient memory, ensuring smooth data processing
and model training. For the storage system, SSD drives were chosen as the data storage solution,
as their rapid data read and write capabilities ensure efficient data processing, particularly
during extensive input/output operations, significantly reducing waiting times.

On the software side, the experimental environment was installed with the Python 3.8
programming language. Python, favored in deep learning research for its concise syntax,
powerful library support, and extensive community resources, became the language of choice.
To support the development and training of complex models, TensorFlow 2.1.5 and PyTorch
1.8, two deep learning frameworks, were deployed in the environment. Developed by Google,
TensorFlow is widely acclaimed in both industry and academia for its flexible architecture
and robust ecosystem. PyTorch, favored for its intuitive API and dynamic computation graph
feature, is particularly suitable for rapid prototyping and experimentation. These frameworks
offer a wealth of tools for model construction and training; in addition, they support GPU
acceleration, making full use of the computational resources of our hardware platform. For
text data processing, two natural language processing libraries, NLTK (Natural Language
Toolkit) and Spacy, were selected. NLTK, a powerful natural language processing toolkit for
Python, provides a wide range of text processing libraries and data resources suitable for
linguistic research and teaching. Spacy is widely used in the industrial and research sectors
for its efficient text processing capabilities, especially excelling in text analysis and entity
recognition. By integrating these software libraries and tools, efficient completion of tasks
such as text data preprocessing and feature extraction was facilitated, providing a solid data
foundation for model training. In summary, through meticulous hardware configuration and
software selection, the experimental environment of this study offers robust support for deep
learning research in detecting cyberattack behaviors, providing an efficient and stable platform
for the current research task while reserving ample space and possibilities for future research
exploration. Through such experimental design, it is anticipated that research progress in
the field of cybersecurity will be propelled, contributing to the construction of a more secure
cyber-environment.

3.4.2. Training Strategies

In this study, to ensure optimal training efficiency and effectiveness of the model for
cyberattack behavior detection, a series of training strategies were employed encompassing
aspects such as hyperparameter settings and model evaluation methods. Through system-
atic experimental design and parameter optimization, the aim was to explore the model’s
full potential, thereby enhancing its accuracy in detecting cyberattack behaviors. Regarding
hyperparameter settings, the complexity of model training and the characteristics of the
data were fully considered, employing various methods including grid search and cross-
validation to find the optimal hyperparameter configuration. Tuning hyperparameters is
crucial for the speed of model training, and directly impacts the model’s generalization abil-

Appl. Sci. 2024, 14, 3829 18 of 28

ity and final performance; hence, detailed research and experimentation were conducted
on key hyperparameters of the model, including but not limited to the learning rate, batch
size, and the number of units in the hidden layers, to ensure that the most suitable model
configuration for this research task was found.

The learning rate, a critical parameter controlling the speed of model weight updates,
directly affects the stability and convergence speed of model training. Preliminary experi-
ments were conducted around several candidate values, including 0.001, 0.01, and 0.1. By
observing the change in the model’s loss function during training and its performance on
the validation set, it was found that a learning rate of 0.001 allowed the model to converge
more smoothly while avoiding the risk of overfitting. The choice of batch size is equally
crucial, as it impacts both the training speed and the final performance of the model. After
several rounds of experiments, it was determined that a batch size of 64 achieved a good
balance between training efficiency and model performance with the current hardware
configuration and data scale. For the number of units in the hidden layers, another im-
portant parameter determining model complexity, we experimented with configurations
including 256, 512, and 1024. By comparing the performance of the model under different
configurations, 512 units were ultimately chosen for the hidden layers, providing sufficient
learning capacity for the model while avoiding overfitting caused by excessive complex-
ity. For model evaluation, cross-validation was utilized to comprehensively assess the
model’s performance. Specifically, five-fold cross-validation was employed, meaning that
the dataset was divided into five subsets, with each subset being used once as the test set
while the remaining four subsets were used for training. This process was rotated five
times, yielding five performance evaluation results. By calculating the average of these
five evaluations, the final performance metric of the model was obtained. This evaluation
method makes full use of limited data resources while effectively reducing the randomness
of the model evaluation results, increasing the accuracy and reliability of the assessment.

Through the implementation of the aforementioned training strategies, the scientific
and systematic nature of the model training process was ensured, laying a solid foundation
for the effective detection of cyberattack behaviors. In subsequent experiments, we will
continue with further exploration into additional parameter optimization techniques and
evaluation methods to enhance model performance. Additionally, close attention will
be paid to various indicators during the model training process, such as the trend of the
loss function and performance on the validation set, to ensure that the model completes
training in the best possible state. For issues that may arise during model training, such as
overfitting or underfitting, effective solutions will be sought through adjusting the model
structure, introducing regularization techniques, and adjusting the learning rate. The
generalization ability of the model was emphasized during the experimental process. To
prevent a decline in generalization performance due to the model being overly dependent
on the training set data, techniques such as early stopping were employed. In order to
avoid overfitting, training was halted when the model’s performance on the validation set
ceased to improve or even began to decline after a certain number of training epochs. This
method effectively preserves the model’s generalization ability, ensuring good performance
on unseen data.

3.4.3. Performance Metrics

In this research, a comprehensive evaluation of the model’s performance in detecting
cyberattack behaviors was conducted by selecting and applying a series of key performance
metrics, including Precision, Recall, and Accuracy. These metrics assess the model’s
performance from different dimensions, reflecting not only the accuracy of the model in
detecting attack behaviors but also its ability to recognize true attack actions. Precision,
also known as positive predictive value, is an important metric measuring the accuracy of
the model’s predictions. It indicates the proportion of samples correctly identified as attack
behaviors out of all samples identified as such by the model. The formula for Precision is
as follows:

Appl. Sci. 2024, 14, 3829 19 of 28

Precision =
TP

TP + FP
(19)

where TP (True Positives) denotes the number of true positive cases, i.e., the samples
correctly identified as attack behaviors by the model, while FP (False Positives) denotes the
number of false positive cases, i.e., the samples incorrectly identified as attack behaviors.
The higher the Precision, the more accurate the model is in identifying attack behaviors,
with fewer false positives. Recall, also known as sensitivity, is another crucial metric
measuring the model’s coverage. It represents the proportion of true attack behavior
samples correctly identified by the model out of all actual attack behavior samples. The
formula for Recall is as follows:

Recall =
TP

TP + FN
(20)

where FN (False Negatives) represents the number of false negative cases, i.e., the samples
incorrectly identified as normal behavior by the model. The higher the Recall, the more
complete the model is in identifying all attack behaviors, with fewer omissions. Accuracy
is the most intuitive performance metric, representing the proportion of samples correctly
identified by the model (including both attack and normal behaviors) out of the total
samples. The formula for Accuracy is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

where TN (True Negatives) represents the number of true negative cases, i.e., the sam-
ples correctly identified as normal behavior. The higher the Accuracy, the stronger the
model’s overall identification ability. These evaluation metrics are significant for assessing
model performance. Precision and Recall evaluate the model’s ability to recognize attack
behaviors from different perspectives, one focusing on prediction accuracy and the other
on prediction completeness. In practical applications, depending on the requirements of
different scenarios, more emphasis may be placed on one of these metrics. For instance, in
scenarios highly sensitive to false positives, Precision may be prioritized, while in scenarios
where missing any attack behavior is critical, Recall may be emphasized. Accuracy, as
a comprehensive metric, intuitively reflects the model’s performance across all samples
and is crucial for assessing the model’s overall performance. However, when dealing
with imbalanced datasets, where there is a significant difference in the number of attack
behavior samples compared to normal behavior samples, relying solely on Accuracy may
be misleading. In such cases, even if the model classifies all samples as the more numerous
class, it may still achieve high Accuracy; however, this does not indicate good recognition
ability. Therefore, when evaluating model performance, rather than depending solely on
Accuracy, other metrics such as Precision and Recall should be considered as well.

To find a balance between Precision and Recall, the F1 Score was introduced as a
performance evaluation metric. The F1 Score is the harmonic mean of Precision and Recall,
considering both the accuracy and completeness of the model, and is calculated as follows:

F1 Score = 2 × Precision × Recall
Precision + Recall

(22)

The higher the F1 Score, the better the balance between Precision and Recall, indicating
better overall performance. In practice, depending on different business needs, a preference
may exist for models with higher Precision or Recall; the F1 Score provides a metric to
weigh these factors, aiding researchers and engineers in making more rational choices.
During the implementation of model performance evaluation, dataset preprocessing and
division were first carried out to ensure the consistency of the distribution between the
training and testing sets, thereby reducing bias in the evaluation process. The stability
and reliability of the evaluation results were further enhanced through methods such as
cross-validation. The model’s performance on various metrics was recorded over multiple

Appl. Sci. 2024, 14, 3829 20 of 28

rounds of experiments while analyzing the impact of different parameter configurations
and model structures on performance along with the relationships and balances among
Precision, Recall, and Accuracy. Through these thorough evaluation processes, the model’s
effectiveness in detecting cyberattack behaviors was verified and a deep understanding of
the model’s applicability and limitations in different scenarios was gained. The application
of these evaluation metrics enabled a comprehensive and objective assessment of the
model’s performance, providing a solid foundation for future optimization and application
of the model.

3.4.4. Baseline Models

In this study, several large models widely recognized in the field of artificial intelli-
gence were selected as baseline models for comparison in order to comprehensively verify
the effectiveness and superiority of the proposed model for detecting cyberattack behaviors.
These baseline models, covering different architectures and learning mechanisms, have
demonstrated their powerful performance on multiple NLP tasks. Comparison with these
models allows for a more objective assessment of our model’s performance in detecting
cyberattack behaviors.

First, the OPT-175B model proposed by OpenAI is discussed [44]. OPT-175B, a large
language model based on the transformer architecture, boasts 175 billion parameters,
representing the cutting edge of current deep learning technology. Through pretraining on
a vast scale of text data, OPT-175B has learned rich language representation capabilities,
effectively completing a variety of NLP tasks such as text generation, understanding,
and translation. The core of the OPT-175B model is the transformer architecture, which
utilizes the self-attention mechanism to capture long-distance dependencies within input
sequences, significantly enhancing the model’s ability to process sequential data. Next,
the LLaMa model [45] proposed by Facebook is mentioned. LLaMa, also a transformer-
based large language model, has shown excellent multi-task learning capabilities through
pretraining across various languages and tasks. LLaMa particularly emphasizes fine-tuning
performance on limited data, achieving rapid adaptation and performance improvement
on multiple downstream tasks. When discussing transformer-based models [46], the
transformer model itself, introduced by Vaswani et al. in 2017, must be acknowledged.
It was the first to introduce the self-attention mechanism, revolutionizing the approach
to sequence modeling and laying the foundation for subsequent developments in deep
learning models. The success of the transformer model lies in its ability to process all
elements in a sequence in parallel, significantly improving the model’s learning efficiency
and performance. The BERT model [25], another successful application of the transformer
architecture, was introduced by Google in 2018. Through the Masked Language Model
and Next Sentence Prediction pretraining tasks, BERT has learned powerful language
representation capabilities. The advent of BERT initiated the pretraining revolution in the
NLP field, greatly advancing natural language processing technology. Lastly, ChatGLM3-
6B [47] is a large model specially designed for chat and dialogue systems. It has learned
the ability to understand and generate natural language dialogue through pretraining on
a large corpus of dialogue data. ChatGLM3-6B has shown outstanding performance in
handling dialogue and interactive tasks, providing strong technical support for building
intelligent dialogue systems.

By comparing our model with these baseline models, not only can the absolute per-
formance of our model in detecting cyberattack behaviors be assessed, its the relative
performance across multiple dimensions can be understood as well, revealing the model’s
strengths and limitations in handling specific types of data and tasks. This comparison can
help to validate the effectiveness of our model while providing important references for
future model improvements. In conducting the model comparison, attention is paid to the
overall performance of the models on the dataset as well as to their performance differences
in handling various types of cyberattack behaviors. For example, certain models may excel
in detecting malicious software distribution behaviors but perform less well in identifying

Appl. Sci. 2024, 14, 3829 21 of 28

phishing websites. By analyzing these differences in depth, a better understanding of each
model’s characteristics can be achieved, allowing for the targeted selection or design of
models to address specific security threats.

4. Results and Discussion
4.1. Detection Results for Cyberattack Behaviors

This study conducted experiments on three distinct datasets, namely, server logs,
financial behaviors, and comment data, to validate the effectiveness of the proposed method
in detecting cyberattack behaviors. The experimental design aimed to demonstrate whether
the method combining synchronous attention mechanisms with large language models
could achieve higher Precision, Recall, and Accuracy compared to existing advanced
models such as Transformer, BERT, OPT-175B, LLaMa, and ChatGLM3-6B, indicate more
effective identification and classification of cyberattack behaviors. The experimental results,
as shown in Tables 2–4, indicate that the proposed method outperformed the others across
all three datasets, achieving Precision, Recall, and Accuracy of 0.93, 0.91, and 0.92 on the
server log dataset, 0.90, 0.87, and 0.89 on the financial behavior dataset, and 0.95, 0.93, and
0.94 on the comment dataset, respectively. In contrast, the other models (Transformer, BERT,
OPT-175B, LLaMa, and ChatGLM3-6B), despite showcasing high performance, fell short of
the proposed method across all evaluated metrics. These results distinctly illustrate the
superiority of the proposed method in handling the task of cyberattack behavior detection.

Table 2. Attack detection results for server logs.

Model Precision Recall Accuracy

Transformer 0.81 0.77 0.78
BERT 0.83 0.79 0.80
OPT-175B 0.85 0.82 0.83
LLaMA 0.88 0.85 0.86
ChatGLM3-6B 0.90 0.88 0.89
Ours 0.93 0.91 0.92

Table 3. Attack detection results for financial behaviors.

Model Precision Recall Accuracy

Transformer 0.79 0.76 0.77
BERT 0.81 0.78 0.79
OPT-175B 0.83 0.80 0.81
LLaMA 0.85 0.82 0.84
ChatGLM3-6B 0.87 0.84 0.86
Ours 0.90 0.87 0.89

Table 4. Attack detection results for comment data.

Model Precision Recall Accuracy

Transformer 0.85 0.82 0.84
BERT 0.87 0.84 0.86
OPT-175B 0.89 0.86 0.88
LLaMA 0.91 0.88 0.90
ChatGLM3-6B 0.93 0.90 0.92
Ours 0.95 0.93 0.94

The theoretical analysis of these experimental results is based on several points. First,
large language models, particularly optimized ones such as BERT, LLaMa, and ChatGLM3-
6B, have proven their powerful capabilities in understanding the deep meanings and
contextual relations of text. However, by incorporating synchronous attention mechanisms,
the proposed method has enhanced ability to capture key information and understand
the interactions between different levels of information. This is especially effective in
multimodal data processing scenarios, where it can more efficiently integrate information
from various data sources, thereby improving the model’s comprehensive judgment ability.
Second, the design of the synchronous attention mechanism allows the model to consider

Appl. Sci. 2024, 14, 3829 22 of 28

supplementary information from other data sources while capturing information from a
single data source. This aspect is crucial in detecting cyberattack behaviors, as such behav-
iors often involve complex patterns and cross-verification of information from multiple
sources. Additionally, the proposed method fine-tunes the model’s focus on different tasks
during the learning process through the design of a synchronous loss function, ensuring a
better balance between synchronous processing and feature extraction, leading to signifi-
cant improvements in Accuracy, Recall, and Precision. From a mathematical perspective,
the synchronous attention mechanism, through its formula design, achieves effective syn-
chronization and integration of information between different data blocks by adjusting
the introduction of synchronous signals. This introduction of mathematical mechanisms
enhances the model’s deep understanding of individual data blocks and improves the
model’s grasp of the overall data structure and relationships across data blocks. Meanwhile,
the synchronous loss function optimizes the management of information synchronicity
and task relevance during the model training process through mathematical optimization,
ensuring that the model can more accurately and comprehensively identify attack behaviors
and characteristics in complex cyberattack detection tasks.

Specifically, on the server log dataset, our method successfully identified multiple
complex SQL injection attempts by analyzing anomalous SQL query patterns, which some
baseline models such as BERT and Transformer failed to detect due to their insufficient
context correlation analysis capabilities. Additionally, on the comment dataset, our model
used synchronized attention mechanisms to detect XSS attack scripts hidden within normal
comments, attacks that are often overlooked by other models due to their covert textual
representation. The experimental results and theoretical analysis across different datasets
conclude that the proposed method leverages the deep text understanding capabilities of
large language models and effectively enhances the performance of detecting cyberattack
behaviors through the design of synchronous attention mechanisms and a synchronous
loss function. This approach demonstrates a clear advantage, especially in multimodal
data processing and the identification of complex attack patterns. These results validate
the effectiveness of the proposed method and provide new insights and methodologies for
subsequent research in related fields.

4.2. Ablation Experiments on Different Attention Mechanisms

Through the design of ablation experiments on various attention mechanisms, this
study aimed to explore the effects of different attention mechanisms on the task of cy-
berattack behavior detection and their impact on model performance. The experiments
compared the performance of self-attention, spatial attention, channel attention, and the
proposed synchronized attention mechanisms on the same dataset, including the metrics
of Precision, Recall, and Accuracy, in order to verify the enhancement effects of differ-
ent attention mechanisms on the model’s capability to recognize cyberattack behaviors.
These experimental results visually demonstrated the contribution of different attention
mechanisms to improving model performance in the task of detecting cyberattack be-
haviors, providing theoretical justification and empirical support for selecting suitable
attention mechanisms.

From Table 5, it can be observed that different attention mechanisms have distinctly
varied impacts on model performance. Specifically, the self-attention mechanism exhibited
Precision, Recall, and Accuracy of 0.73, 0.70, and 0.71, respectively, the spatial attention
mechanism 0.81, 0.76, and 0.78, the channel attention mechanism 0.89, 0.85, and 0.87, and
the proposed synchronized attention mechanism the highest at 0.93, 0.89, and 0.91. This
series of results clearly indicates that, as compared to self-attention, spatial attention, and
channel attention mechanisms, the synchronized attention mechanism performed best
on the task of cyberattack behavior detection. By calculating the relationships between
elements within a sequence, the self-attention mechanism captures long-distance depen-
dency information; however, it may overlook features in the spatial or channel dimensions.
The spatial attention mechanism focuses on the spatial location information of feature

Appl. Sci. 2024, 14, 3829 23 of 28

maps, aiding the model in concentrating on important features at spatial locations, whereas
the channel attention mechanism focuses on the importance distribution across feature
channels, enhancing the model’s discriminative ability on feature channels. In contrast, the
synchronized attention mechanism considers the interrelationships within the sequence
while fully utilizing supplementary information between different data sources or blocks
through the synchronization mechanism, achieving a more comprehensive and profound
understanding of cyberattack behavior features.

Table 5. Results of different attention mechanisms in the ablation experiment.

Model Precision Recall Accuracy

Self-Attention 0.73 0.70 0.71
Spacial Attention 0.81 0.76 0.78
Channel Attention 0.89 0.85 0.87
Synchronized Attention 0.93 0.89 0.91

4.3. Ablation Experiments on Different Loss Functions

Through the design of ablation experiments with different loss functions, this study
aimed to explore the impact of various loss functions on model performance on the task
of detecting cyberattack behaviors. By comparing the performance of traditional Cross-
Entropy Loss, Focal Loss, MSE (Mean Squared Error Loss), and the proposed Synchronized
Loss on the same dataset, the effects of these loss functions were assessed across the three
dimensions of Precision, Recall, and Accuracy. The objective of the experimental design
was to verify whether the proposed synchronized loss function could provide superior
performance compared to other common loss functions on the specific task of cyberattack
behavior detection.

As can be observed from Table 6, Synchronized Loss achieved the highest values in
terms of Precision, Recall, and Accuracy, at 0.93, 0.89, and 0.91, respectively, significantly
surpassing the other three loss functions. Cross-Entropy Loss showed the poorest per-
formance, with Precision, Recall, and Accuracy of 0.69, 0.64, and 0.67, respectively. The
performance of Focal Loss and MSE fell between the two, reaching scores of 0.79, 0.73,
0.76 and 0.86, 0.82, 0.84, respectively. These results indicate that for the task of cyberattack
behavior detection, the proposed synchronized loss function can more effectively optimize
the model, enhancing detection precision and robustness compared to other loss functions.
Although cross-entropy loss, the most commonly used loss function for classification tasks,
performs well in many scenarios, it may not offer sufficient performance optimization
when faced with imbalanced datasets or tasks that require a finer delineation of differences
between samples. Focal loss, by adjusting weights to address class imbalance, makes the
model focus more on hard-to-classify samples, thereby improving the model’s recognition
capability for minority classes to some extent. Another commonly used loss function in
regression problems, MSE shows some applicability in the task of cyberattack behavior
detection, especially in providing more continuous gradient information when evaluating
the difference between model outputs and actual labels. However, the proposed synchro-
nized loss function, by introducing a synchronization term, considers both the prediction
accuracy of individual samples and the synchronicity and consistency of the model when
processing multi-source data. This design enables the model to more comprehensively
capture and utilize information across data sources during the learning process, thereby
improving the model’s ability to recognize complex attack patterns.

Table 6. Results of different loss functions in the ablation experiment.

Model Precision Recall Accuracy

Cross-Entropy Loss 0.69 0.64 0.67
Focal Loss 0.79 0.73 0.76
MSE 0.86 0.82 0.84
Synchronized Loss 0.93 0.89 0.91

Appl. Sci. 2024, 14, 3829 24 of 28

4.4. Testing on a Different Dataset: Stock Price Prediction

In this section, the primary goal was to validate the generalization ability and adapt-
ability of the proposed method for detecting cyberattack behaviors on different types of
datasets. Applying the method to the domain of stock price prediction, which is signifi-
cantly different from the original task, was intended to demonstrate the robustness and
efficacy of the proposed method in dealing with various types of problems.

Table 7 shows that the proposed method achieved the highest Precision, Recall, and
Accuracy at 0.91, 0.87, and 0.90, respectively, significantly outperforming the other models.
Compared to the other models, the proposed method demonstrated the best performance,
showcasing its excellent adaptability and generalization capability when dealing with
different types of datasets. Among these, ChatGLM3-6B also displayed high performance,
with Precision, Recall, and Accuracy at 0.88, 0.84, and 0.87, respectively. The baseline
Transformer model exhibited the poorest performance, with Precision, Recall, and Accuracy
at 0.78, 0.75, and 0.77, respectively. From a mathematical perspective, the proposed method,
with its synchronous attention mechanism and loss function tailored for specific tasks, has
significant advantages in capturing and processing complex data patterns. The synchronous
attention mechanism effectively integrates multi-source information, enhancing the model’s
capability to capture factors influencing stock prices, while the specific loss function further
optimizes the model’s performance in stock price prediction tasks, leading to its superior
performance in Precision, Recall, and Accuracy over other models. Furthermore, the
design of the proposed method fully considers the temporality and dynamism of the
data, improving the accuracy of the model in predicting stock price changes through
refined feature extraction and information processing strategies. These experimental
results indirectly reflect the importance of the proposed method’s design philosophy and
mathematical characteristics in enhancing model generalization capability and adapting
to different task types, providing new perspectives and ideas for subsequent research in
related fields.

Table 7. Stock Price Prediction Results.

Model Precision Recall Accuracy

Transformer 0.78 0.75 0.77
BERT 0.80 0.77 0.79
OPT-175B 0.83 0.79 0.82
LLaMA 0.85 0.82 0.84
ChatGLM3-6B 0.88 0.84 0.87
Ours 0.91 0.87 0.90

4.5. Limitations and Future Work

The method proposed in this paper, based on large language models and synchronous
attention mechanisms for detecting cyberattack behaviors, has been validated on multiple
datasets for its effectiveness and superiority, especially in handling complex and multi-
modal data. However, despite the encouraging results achieved in this study, there remain
a number of limitations and challenges for practical application and further research, which
will be important directions for future work. First, although the synchronous attention
mechanism effectively integrates and processes multimodal data, enhancing the model’s
detection capability for complex attack behaviors, its performance on extremely imbalanced
datasets has not been fully verified. In the field of cybersecurity, attack events are often
much less frequent than normal behaviors, and this class imbalance problem may affect
the learning efficiency and detection performance of the model. Therefore, designing
more effective data sampling strategies or optimization algorithms to improve the model’s
performance on imbalanced datasets is a critical issue for future research. Second, while
the proposed method shows good generalization ability on certain specific datasets, such
as the stock price prediction dataset, this does not mean that it will maintain the same
performance across all types of tasks. The adaptability and stability of the model still need
further exploration and validation, especially on tasks with high dynamics and uncertainty.

Appl. Sci. 2024, 14, 3829 25 of 28

Thus, further enhancing the model’s generalization capability and robustness to adapt to a
broader range of application scenarios will be an important direction for future research.
Lastly, the computational complexity of the proposed method is relatively high, especially
when processing large-scale datasets, which may entail significant computational resource
consumption and time costs.

5. Conclusions

In this study, we successfully developed a novel method based on large language
models and synchronous attention mechanisms for detecting cyberattack behaviors. The
method aimed to improve the accuracy and efficiency of cyberattack behavior detection
by deeply mining the semantic information and contextual relationships in text data.
Extensive experiments conducted on datasets consisting of server logs, financial behavior,
and comment data demonstrated that the proposed method excels in key performance
metrics such as Precision, Recall, and Accuracy.

On the server log dataset, the proposed method achieved a Precision of 0.93, Recall of
0.91, and Accuracy of 0.92, significantly higher than other models, including Transformer,
BERT, OPT-175B, LLaMa, and ChatGLM3-6B. This result proves the efficiency and accuracy
of the proposed method in handling the task of cyberattack behavior detection. Similarly,
on the financial behavior dataset, the proposed method led with Precision of 0.90, Recall
of 0.87, and Accuracy of 0.89, showcasing its powerful capability in capturing complex
financial fraud behaviors. On the comment data dataset, the proposed method further
confirmed its exceptional performance in text data analysis, with Precision of 0.95, Recall
of 0.93, and Accuracy of 0.94. Additionally, our analysis of different attention mecha-
nisms through ablation experiments revealed that the proposed synchronous attention
mechanism played a key role in enhancing our model’s performance. Compared to tradi-
tional self-attention, spatial attention, and channel attention mechanisms, the proposed
synchronous attention mechanism demonstrated superior results in Precision, Recall, and
Accuracy, reaching 0.93, 0.89, and 0.91, respectively. This further illustrates the significant
effect of the synchronous attention mechanism in integrating and processing multimodal
data, enhancing the model’s ability to recognize features of cyberattack behaviors. In our
ablation experiments on different loss functions, the proposed synchronized loss function,
with its outstanding performance in Precision, Recall, and Accuracy (0.93, 0.89, and 0.91,
respectively), highlighted its unique advantage over Cross-Entropy Loss, Focal Loss, and
MSE in optimizing model performance. This result affirms the importance of the proposed
synchronized loss function in the proposed method, and provides new insights into loss
function design for future research. Moreover, testing on a stock price prediction dataset
showcased our method’s good generalization capability and adaptability, achieving satis-
factory results in the financial domain, with Precision of 0.91, Recall of 0.87, and Accuracy
of 0.90. This successful cross-domain application further proves the effectiveness and
practicality of the proposed method. The integration of large language models with syn-
chronous attention mechanisms marks a pioneering approach to enhancing the precision
and efficiency of cyberattack detection. Extensive experimental validations across various
datasets have shown our method’s superior performance compared to existing models,
highlighting its ability to handle complex detection tasks effectively. Additionally, the
development of a synchronized loss function offers unique advantages in processing multi-
source data, significantly improving the model’s comprehensive recognition capabilities of
cyberattack behaviors.

In summary, the method proposed in this paper for detecting cyberattack behaviors
based on large language models and synchronous attention mechanisms has proven its
significant advantages in improving the accuracy and efficiency of cyberattack behavior
detection through experimental results on multiple datasets. By analyzing and processing
complex text data in depth, the proposed method can effectively identify various cyber-
attack behaviors, providing strong technical support for the field of cybersecurity. This
study showcases the important roles of the synchronous attention mechanism and syn-

Appl. Sci. 2024, 14, 3829 26 of 28

chronized loss in optimizing model performance, offering new perspectives and methods
for future research in this domain. Despite certain limitations, with further research and
optimization the proposed method is expected to play a greater role in wider applications
in cybersecurity and other fields, contributing to the construction of a safer and smarter
cyber-environment.

Author Contributions: Conceptualization, Y.B., M.S., Y.Y. and C.L.; Data curation, L.Z., Y.W., S.L. and
J.T.; Formal analysis, M.S., L.Z., S.L. and Y.L.; Funding acquisition, C.L.; Investigation, M.S. and J.T.;
Methodology, Y.B. and C.L.; Project administration, C.L.; Resources, Y.W. and J.T.; Software, Y.B., Y.L. and
J.T.; Supervision, Y.Y.; Validation, L.Z. and Y.L.; Visualization, Y.W. and S.L.; Writing—original draft, Y.B.,
M.S., L.Z., Y.W., S.L., Y.L., Y.Y. and C.L.; Writing—review and editing, J.T., Y.Y. and C.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
61202479.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Nalendra, A. Rapid Application Development (RAD) model method for creating an agricultural irrigation system based on

internet of things. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2021;
IOP Publishing: Bristol, UK, 2021; Volume 1098, p. 022103.

2. Chun, J.; Lee, J.; Kim, J.; Lee, S. An international systematic review of cyberbullying measurements. Comput. Hum. Behav. 2020,
113, 106485. [CrossRef]

3. Wu, J.; Zhang, C.; Liu, Z.; Zhang, E.; Wilson, S.; Zhang, C. Graphbert: Bridging graph and text for malicious behavior detection
on social media. In Proceedings of the 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA,
28 November–1 December 2022; IEEE: New York, NY, USA, 2022; pp. 548–557.

4. Alkhalil, Z.; Hewage, C.; Nawaf, L.; Khan, I. Phishing attacks: A recent comprehensive study and a new anatomy. Front. Comput.
Sci. 2021, 3, 563060. [CrossRef]

5. Liu, Q.; Hagenmeyer, V.; Keller, H.B. A review of rule learning-based intrusion detection systems and their prospects in smart
grids. IEEE Access 2021, 9, 57542–57564. [CrossRef]

6. Rezaimehr, F.; Dadkhah, C. A survey of attack detection approaches in collaborative filtering recommender systems. Artif. Intell.
Rev. 2021, 54, 2011–2066. [CrossRef]

7. Alraizza, A.; Algarni, A. Ransomware detection using machine learning: A survey. Big Data Cogn. Comput. 2023, 7, 143.
[CrossRef]

8. Alshehri, A.; Khan, N.; Alowayr, A.; Alghamdi, M.Y. Cyberattack Detection Framework Using Machine Learning and User
Behavior Analytics. Comput. Syst. Sci. Eng. 2023, 44, 1679–1689. [CrossRef]

9. Elnakib, O.; Shaaban, E.; Mahmoud, M.; Emara, K. EIDM: Deep learning model for IoT intrusion detection systems. J. Supercomput.
2023, 79, 13241–13261. [CrossRef]

10. Meddeb, R.; Jemili, F.; Triki, B.; Korbaa, O. A deep learning-based intrusion detection approach for mobile Ad-hoc network. Soft
Comput. 2023, 27, 9425–9439. [CrossRef]

11. Elsaeidy, A.A.; Jagannath, N.; Sanchis, A.G.; Jamalipour, A.; Munasinghe, K.S. Replay attack detection in smart cities using deep
learning. IEEE Access 2020, 8, 137825–137837. [CrossRef]

12. Nicholls, J.; Kuppa, A.; Le-Khac, N.A. Financial cybercrime: A comprehensive survey of deep learning approaches to tackle the
evolving financial crime landscape. IEEE Access 2021, 9, 163965–163986. [CrossRef]

13. Chu, J.; Sha, Z.; Backes, M.; Zhang, Y. Conversation Reconstruction Attack Against GPT Models. arXiv 2024, arXiv:2402.02987.
14. Hu, Y.; Zou, F.; Han, J.; Sun, X.; Wang, Y. Llm-Tikg: Threat Intelligence Knowledge Graph Construction Utilizing Large Language

Model. arXiv 2023, arXiv:2308.13916; Available at SSRN 4671345.
15. Xu, J.; Stokes, J.W.; McDonald, G.; Bai, X.; Marshall, D.; Wang, S.; Swaminathan, A.; Li, Z. AutoAttacker: A Large Language

Model Guided System to Implement Automatic Cyber-attacks. arXiv 2024, arXiv:2403.01038.
16. Yang, Y.; Tu, S.; Ali, R.H.; Alasmary, H.; Waqas, M.; Amjad, M.N. Intrusion detection based on bidirectional long short-term

memory with attention mechanism. Comput. Mater. Contin. 2023, 74, 801–815. [CrossRef]
17. An, H.; Ma, R.; Yan, Y.; Chen, T.; Zhao, Y.; Li, P.; Li, J.; Wang, X.; Fan, D.; Lv, C. Finsformer: A Novel Approach to Detecting

Financial Attacks Using Transformer and Cluster-Attention. Appl. Sci. 2024, 14, 460. [CrossRef]

http://doi.org/10.1016/j.chb.2020.106485
http://dx.doi.org/10.3389/fcomp.2021.563060
http://dx.doi.org/10.1109/ACCESS.2021.3071263
http://dx.doi.org/10.1007/s10462-020-09898-3
http://dx.doi.org/10.3390/bdcc7030143
http://dx.doi.org/10.32604/csse.2023.026526
http://dx.doi.org/10.1007/s11227-023-05197-0
http://dx.doi.org/10.1007/s00500-023-08324-4
http://dx.doi.org/10.1109/ACCESS.2020.3012411
http://dx.doi.org/10.1109/ACCESS.2021.3134076
http://dx.doi.org/10.32604/cmc.2023.031907
http://dx.doi.org/10.3390/app14010460

Appl. Sci. 2024, 14, 3829 27 of 28

18. Wang, Y.; Ma, W.; Xu, H.; Liu, Y.; Yin, P. A lightweight multi-view learning approach for phishing attack detection using
transformer with mixture of experts. Appl. Sci. 2023, 13, 7429. [CrossRef]

19. Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K.; Chen, H.; Yi, X.; Wang, C.; Wang, Y.; et al. A survey on evaluation of large
language models. Acm Trans. Intell. Syst. Technol. 2023, 15, 1–45.

20. Meng, Y.; Zhang, Y.; Huang, J.; Xiong, C.; Ji, H.; Zhang, C.; Han, J. Text classification using label names only: A language model
self-training approach. arXiv 2020, arXiv:2010.07245.

21. Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier,
E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023,
103, 102274. [CrossRef]

22. Min, B.; Ross, H.; Sulem, E.; Veyseh, A.P.B.; Nguyen, T.H.; Sainz, O.; Agirre, E.; Heintz, I.; Roth, D. Recent advances in natural
language processing via large pre-trained language models: A survey. Acm Comput. Surv. 2023, 56, 1–40. [CrossRef]

23. Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–15919.
24. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc. (NeurIPS): Long
Beach, CA, USA, 2017; Volume 30.

25. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

26. Liu, X.; Zheng, Y.; Du, Z.; Ding, M.; Qian, Y.; Yang, Z.; Tang, J. GPT understands, too. AI Open 2023, in press. [CrossRef]
27. Min, S.; Lewis, M.; Hajishirzi, H.; Zettlemoyer, L. Noisy channel language model prompting for few-shot text classification. arXiv

2021, arXiv:2108.04106.
28. Ebrahimi, M.; Zhang, N.; Hu, J.; Raza, M.T.; Chen, H. Binary black-box evasion attacks against deep learning-based static malware

detectors with adversarial byte-level language model. arXiv 2020, arXiv:2012.07994.
29. He, S.; Zhu, J.; He, P.; Lyu, M.R. Loghub: A large collection of system log datasets towards automated log analytics. arXiv 2020,

arXiv:2008.06448.
30. Hazell, J. Large language models can be used to effectively scale spear phishing campaigns. arXiv 2023, arXiv:2305.06972.
31. Liu, M.; Li, K.; Chen, T. DeepSQLi: Deep semantic learning for testing SQL injection. In Proceedings of the 29th ACM SIGSOFT

International Symposium on Software Testing and Analysis, Virtual Event, USA, 18–22 July 2020; pp. 286–297.
32. Kaur, J.; Garg, U.; Bathla, G. Detection of cross-site scripting (XSS) attacks using machine learning techniques: A review. Artif.

Intell. Rev. 2023, 56, 12725–12769. [CrossRef]
33. Kereopa-Yorke, B. Building resilient SMEs: Harnessing large language models for cyber security in Australia. J. Ai Robot.

Workplace Autom. 2024, 3, 15–27.
34. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the International Conference on Medical Image Computing and Computer—Assisted Intervention, Munich, Germany, 5–9 October 2015;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

35. Zhang, Y.; Liu, X.; Wa, S.; Liu, Y.; Kang, J.; Lv, C. GenU-Net++: An Automatic Intracranial Brain Tumors Segmentation Algorithm
on 3D Image Series with High Performance. Symmetry 2021, 13, 2395. [CrossRef]

36. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
37. Fazil, M.; Sah, A.K.; Abulaish, M. Deepsbd: A deep neural network model with attention mechanism for socialbot detection.

IEEE Trans. Inf. Forensics Secur. 2021, 16, 4211–4223. [CrossRef]
38. Muthukumar, S.; Ashfauk Ahamed, A. A novel framework of DDoS attack detection in network using hybrid heuristic deep

learning approaches with attention mechanism. J. High Speed Netw. 2024, 1–27. [CrossRef]
39. Wang, D.; Zhang, Z.; Jiang, Y.; Mao, Z.; Wang, D.; Lin, H.; Xu, D. DM3Loc: Multi-label mRNA subcellular localization prediction

and analysis based on multi-head self-attention mechanism. Nucleic Acids Res. 2021, 49, e46. [CrossRef] [PubMed]
40. Hu, T.; Xu, C.; Zhang, S.; Tao, S.; Li, L. Cross-site scripting detection with two-channel feature fusion embedded in self-attention

mechanism. Comput. Secur. 2023, 124, 102990. [CrossRef]
41. Wen, P.; He, C.; Xiong, W.; Liu, J. SQL injection detection technology based on BiLSTM-attention. In Proceedings of the 2021

4th International Conference on Robotics, Control and Automation Engineering (RCAE), Wuhan, China, 4–6 November 2021;
IEEE: New York, NY, USA, 2021; pp. 165–170.

42. Zhu, E.; Yuan, Q.; Chen, Z.; Li, X.; Fang, X. CCBLA: A lightweight phishing detection model based on CNN, BiLSTM, and
attention mechanism. Cogn. Comput. 2023, 15, 1320–1333. [CrossRef]

43. Chen, J.; Guo, S.; Ma, X.; Li, H.; Guo, J.; Chen, M.; Pan, Z. Slam: A malware detection method based on sliding local attention
mechanism. Secur. Commun. Netw. 2020, 2020, 6724513. [CrossRef]

44. Viggiato, M.; Bezemer, C.P. Leveraging the OPT Large Language Model for Sentiment Analysis of Game Reviews. IEEE Trans.
Games 2023, 1–4. [CrossRef]

45. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.
Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971.

http://dx.doi.org/10.3390/app13137429
http://dx.doi.org/10.1016/j.lindif.2023.102274
http://dx.doi.org/10.1145/3605943
http://dx.doi.org/10.1016/j.aiopen.2023.08.012
http://dx.doi.org/10.1007/s10462-023-10433-3
http://dx.doi.org/10.3390/sym13122395
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1109/TIFS.2021.3102498
http://dx.doi.org/10.3233/JHS-230142
http://dx.doi.org/10.1093/nar/gkab016
http://www.ncbi.nlm.nih.gov/pubmed/33503258
http://dx.doi.org/10.1016/j.cose.2022.102990
http://dx.doi.org/10.1007/s12559-022-10024-4
http://dx.doi.org/10.1155/2020/6724513
http://dx.doi.org/10.1109/TG.2023.3313121

Appl. Sci. 2024, 14, 3829 28 of 28

46. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Virtual, 11–17 October 2021; pp. 16259–16268.

47. Song, C.W.; Tsai, Y.T. Hyacinth6B: A large language model for Traditional Chinese. arXiv 2024, arXiv:2403.13334.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background and Related Work
	Large Language Models
	U-Net
	Attention Mechanism

	Materials and Method
	Dataset Collection
	Dataset Annotation and Preprocessing
	Dataset Annotation
	Dataset Preprocessing

	Proposed Method
	Overview
	Large Model for Attack Behavior Detection
	Synchronous Attention Mechanism
	Synchronous Loss Function

	Experimental Design
	Hardware and Software Platform
	Training Strategies
	Performance Metrics
	Baseline Models

	Results and Discussion
	Detection Results for Cyberattack Behaviors
	Ablation Experiments on Different Attention Mechanisms
	Ablation Experiments on Different Loss Functions
	Testing on a Different Dataset: Stock Price Prediction
	Limitations and Future Work

	Conclusions
	References

