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Abstract: Crowd anomaly detection is crucial in enhancing surveillance and crowd management.
This paper proposes an efficient approach that combines spatial and temporal visual descriptors,
sparse feature tracking, and neural networks for efficient crowd anomaly detection. The proposed
approach utilises diverse local feature extraction methods, including SIFT, FAST, and AKAZE, with a
sparse feature tracking technique to ensure accurate and consistent tracking. Delaunay triangulation
is employed to represent the spatial distribution of features in an efficient way. Visual descriptors
are categorised into individual behaviour descriptors and interactive descriptors to capture the
temporal and spatial characteristics of crowd dynamics and behaviour, respectively. Neural networks
are then utilised to classify these descriptors and pinpoint anomalies, making use of their strong
learning capabilities. A significant component of our study is the assessment of how dimensionality
reduction methods, particularly autoencoders and PCA, affect the feature set’s performance. This
assessment aims to balance computational efficiency and detection accuracy. Tests conducted on
benchmark crowd datasets highlight the effectiveness of our method in identifying anomalies. Our
approach offers a nuanced understanding of crowd movement and patterns by emphasising both
individual and collective characteristics. The visual and local descriptors facilitate high-level analysis
by closely relating to semantic information and crowd behaviour. The analysis observed shows that
this approach offers an efficient framework for crowd anomaly detection, contributing to improved
crowd management and public safety. The proposed model achieves accuracy of 99.5 %, 96.1%, 99.0%
and 88.5% in the UMN scenes 1, 2, and 3 and violence in crowds datasets, respectively.

Keywords: crowd anomaly detection; visual descriptor; sparse feature tracking; neural networks

1. Introduction

The phenomenon of crowds has garnered considerable academic interest in recent
years owing to the proliferation of events that attract large gatherings [1]. The safety
concerns associated with such events, particularly religious and sporting events, have
underlined the importance of detecting crowd anomalies, which entails examining the
actions and interactions of individuals in large groups. The study of crowd anomalies
presents a formidable challenge due to the crowd dynamics’ intricate and unpredictable
nature. Fortunately, recent breakthroughs in computer vision, machine learning, and deep
learning have opened up new possibilities for crowd behaviour analysis. Crowd anomaly
detection (CAD) [2] involves identifying unusual or abnormal behaviour within a crowd.
This capability is crucial in ensuring public safety, preventing accidents, and managing
the flow of people in public spaces, especially at crowded events like religious or sporting
events, where emotions can run high.

By detecting anomalies in real time, it is possible to respond quickly and effectively to
potentially dangerous situations, preventing them from escalating. Local feature extraction
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methods are pivotal in accurately representing crowd behaviour. These methods facilitate
the identification of unique patterns of movement and behaviour within a crowd, simplify-
ing the detection of abnormal or anomalous events. However, the effectiveness of these
methods depends on several factors, including the features used and the specific anomaly
being detected. This study aims to provide insights into the strengths and limitations of
various methods and contribute to developing more robust and practical approaches to
crowd anomaly detection. This study’s findings are expected to contribute to the crowd
behaviour analysis field and help to improve public safety in crowded spaces.

The rest of this paper is organised as follows. Section 2 briefly reviews recent works
in crowd anomaly detection. Section 3 outlines the methodology employed in this study,
including the extraction of local features, the utilisation of sparse feature tracking, and the
spatial representation achieved through Delaunay triangulation. Additionally, the de-
scriptors used for individual and interactive behaviours and their calculation using graph
notations are also explained. Furthermore, we elaborate on this research’s neural network-
based classification method. Section 4 presents the details regarding the datasets utilised
for the analysis and a thorough analysis of the results, including a comparison of the
three local features with and without dimensionality reduction using the autoencoder and
PCA techniques. Finally, Section 5 concludes the paper and outlines potential avenues for
future research.

2. Related Work

Crowd anomaly detection aims to detect changes in and automatically identify crowd
events in video sequences [3,4]. Currently, two main types of techniques are used in crowd
anomaly detection: object-based and holistic techniques [5]. Object-based techniques re-
quire the breaking down of the crowd into smaller groups and the analysis of their extracted
trajectories to infer crowd behaviour [6,7]. However, these methods struggle to recognise
activities within a crowded scene due to occlusion and the loss of target object visibility.
On the other hand, holistic approaches view the crowd as a single interconnected system
and focus on exploiting low- and medium-level features to analyse crowd behaviours [8].
Optical flow fields are often used in these methods [9–12], which can detect various crowd
events. Krausz and Bauckhage [9] introduced an automated method that utilises optical
flow histograms to represent the overall motion of a crowd in a scene. These histograms
were used to identify potentially hazardous situations within crowds, such as the Love
Parade stampede in Germany in 2010. Benabbas et al. [10] utilised low-level motion features
to create crowd models for direction and magnitude. Then, they generated unique motion
sequences using a segmentation algorithm based on regions, which enabled the detection
of various crowd events. Rao et al. [12] proposed a Riemannian probabilistic detection
framework based on optical flow manifolds to detect various crowd events, such as run-
ning, walking, and local dispersion. Newer methods go beyond the frame-to-frame motion
information used by earlier works by either tracking particularly interesting points [13–15]
or employing particle advection [16–18]. These methods use trajectory information to
capture long-term temporal dependencies and extract motion patterns for crowd anomaly
detection. Mousavi et al. [13] proposed the histogram of oriented tracklets (HOT), a 2D
histogram-based motion descriptor that encodes both the magnitude and direction of
motion. It helps to spot unusual events in densely populated scenes.

CAD has been an active area of research in recent years, with various techniques and
approaches being proposed to overcome the various challenges reported in the literature.
A review of the recent advancements in crowd anomaly detection was presented in [2,19],
which discussed the integration of multiple modalities and addressed challenges such as
occlusion and scale variation. This paper concludes with a discussion of future research di-
rections in crowd anomaly detection. A detailed review of the anomaly detection methods
in crowd scenes from the computer vision perspective was presented in [1], which focused
on studying the human crowd, specifically abnormal human behaviour. The paper sum-
marised the state-of-the-art anomaly detection methods in crowd scenes and categorised
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them based on their approach, anomaly scope, and processing target. It highlights the im-
portance of intelligent monitoring systems for effective crowd management and discusses
the role of computer vision, video analysis, and automated crowd anomaly detection in
this context. Crowd anomaly detection using spatial constraints and meaningful perturba-
tion was proposed in [20], which addressed the challenges of rare and diverse abnormal
events in crowd scenes. The paper focused on detecting anomalies in crowded scenes
to enhance automatic video surveillance systems. A novel approach to crowd anomaly
detection was proposed in [21], which focused on detecting anomalies in crowded scenes to
enhance automatic video surveillance systems. The proposed method used a combination
of multiple optimised convolutional neural networks (ConvNets) to detect anomalies in
video data showing crowded scenes. The approach was designed to be efficient and have
a low computational cost, making it suitable for real-time applications. In [22], abnormal
behaviours were detected in a two-step process. Initially, the Yolov5 model was employed
for detection, while the DeepSORT model was utilised for tracking. Subsequently, the ab-
normal behaviour was classified by extracting features from each detected bounding box
using the optical flow and other spatial features. These extracted features were then used to
classify the behaviour by implementing a support vector machine (SVM). The SVM model
demonstrated an average area under the curve (AUC) of 88.96%. The proposed framework
significantly impacted the detection of anomalies in densely populated crowds, such as
those observed during the Hajj pilgrimage. Furthermore, the framework exhibited promis-
ing outcomes when compared to the study conducted in [23], which categorised abnormal
behaviours during Hajj into seven distinct categories. The proposed solution achieved
superior performance, surpassing the previous AUC result by 12.88%. The combination
of various modalities and the application of cutting-edge machine learning techniques
continue to push the boundaries of what is possible in crowd anomaly detection.

Table 1 below summarises various methods used for crowd anomaly detection,
the datasets on which they were tested, and the accuracy achieved. These results demon-
strate the variety of techniques applied to different datasets and the corresponding perfor-
mance metrics, providing insights into the effectiveness of various approaches in crowd
anomaly detection.

Table 1. Recent works on crowd anomaly detection.

Methods Datasets
Used Performance Metrics

GAN [24] ShanghaiTech 73.8% AUC

RNN, 2D CNN [25] Violent-
Flow 93.53% Accuracy

CNN, RNN KNN, Optical Flow [26] ShanghaiTech 73.62% Accuracy

Optical Flow GAN [27]
Hajj

datasets
UMN

79.63% Accuracy 98.1% AUC

CNN Residual LSTM [28] UCF-Crime 70.4% AUC
CNN [29] ShanghaiTech 240.0 MAE, 260.5 MSE

CNN, Random Forest [23] HajjV2 76.08% AUC
Optical Flow [30] ShanghaiTech 89.29% AUC

CNN, Histogram of Optical Flow, SVM [22] HajjV2 88.96% AUC
gKLT + Collectiveness Energy Index (CEI) [31] UMN Scene 1: 92.32%, Scene 3: 94.2%

3. Materials and Methods

Figure 1 provides a schematic representation of the proposed methodology, which is
organised into two distinct sections: (i) crowd representation and behaviour descriptors and
(ii) dimensionality reduction and classification. In the first section, the crowd is represented
through the extraction of feature points from every L (default 20) frame, forming trajectories
and Delaunay triangles. The visual descriptors capturing spatial and temporal information,
such as the velocity, density, etc., are employed to elucidate the crowd’s state. Moving
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on to the next section, the descriptors for a frame are computed and they are aggregated
into histograms. These histograms undergo a dimensionality reduction process using
PCA/autoencoders and are subsequently subjected to classification using neural networks
(NN) to categorise normal or abnormal behaviour accurately. The methods used in our
approach are further elucidated in the following sub-sections.

Figure 1. A schematic representation of the proposed approach.

3.1. Crowd Representation and Behaviour Descriptors

This sub-section explains the methods used to represent the crowd in detail. Firstly,
we will explore the methods employed for local feature extraction and their significance in
representing individuals within a scene, specifically within the context of crowd anomaly
detection. Prominent local feature extraction techniques such as FAST, SIFT, and AKAZE
are revisited in detail to emphasise that these algorithms can be utilised to extract a compre-
hensive set of local features, enabling us to analyse each frame’s content effectively. These
detected interest points serve as valuable observations to represent objects or people in
the scene. Subsequently, we delve into the implementation of a sparse feature tracking
framework. This framework allows us to track the identified local features over consecu-
tive frames. As the tracking accuracy improves, the emphasis shifts from detecting new
features to accurately tracing existing trajectories. Additionally, we explore the spatial
representation aspect of crowds by employing the Delaunay triangulation method. This
approach aids in creating a structured representation of the scene, facilitating the analysis
of individual and interactive behaviours within the crowd. Furthermore, we investigate
the utilisation of individual and interactive behaviour descriptors, which play a pivotal
role in characterising and understanding the observed crowd dynamics. These descrip-
tors provide valuable insights into anomalies or abnormal behaviours within the crowd.
By combining the tracked features and descriptors, we aim to classify the anomalies in the
video effectively.

3.1.1. Local Feature Extraction

This section outlines the local features incorporated into our methodology. Specifically,
we utilise Features from the Accelerated Segment Test (FAST), Scale-Invariant Feature
Transform (SIFT), and Accelerated-KAZE (AKAZE), each of which will be detailed in the
following sub-sections.

1. Features from Accelerated Segment Test (FAST)
The FAST algorithm was initially proposed by Rosten and Drummond [32] and has
been used to identify interest points in an image. Interest points are pixels with well-
defined positions that can be reliably detected. These points contain significant local
information and should be consistently detected across different images. It scans the
image using a circular neighbourhood around each pixel and identifies potential key
points based on intensity differences. The algorithm employs acceleration techniques,
such as a corner criterion using predetermined sample points, to reduce the compu-
tational overhead. Non-maximum suppression is applied to select the most salient
key points, discarding redundant ones. Interest point detection finds application in
image matching, object recognition, and tracking and can also be utilised for crowd
anomaly detection. While there are established algorithms for corner detection, such
as Harris and SUSAN, the FAST algorithm was developed to address the need for a
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computationally efficient interest point detector suitable for real-time applications
with limited computational resources, like SLAM on a mobile robot [33].

2. Scale Invariant Feature Transform (SIFT)
The SIFT algorithm, which was first introduced in [34], is one of the most widely
known feature detection–description algorithms. It approximates the Laplacian-of-
Gaussian (LoG) by utilising the Difference-of-Gaussians (DoG) operator. The DoG
operator is employed to search for local maxima in images at various zoom levels,
enabling the identification of feature points. To extract a robust descriptor, SIFT
computes 128 bin values by considering a 16 × 16 neighbourhood around each
detected feature and segmenting it into sub-blocks. Although SIFT exhibits robust
invariance to image rotations, scales, and limited affine variations, its major drawback
is its high computational cost. In Equation (1), the Difference-of-Gaussians (DoG)
response at a given scale in the Scale Invariant Feature Transform (SIFT) algorithm
is obtained by convolving the image I(x, y) with the difference of two Gaussian
filters calculated at different scales. The result of this convolution represents the DoG
response, which is used to detect feature points in the image.

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y) (1)

3. Accelerated-KAZE (AKAZE)
The Accelerated-KAZE (AKAZE) algorithm, introduced in [11] , is an extension of
the KAZE algorithm that utilises a computationally efficient framework called Fast
Explicit Diffusion (FED) to construct its non-linear scale spaces. AKAZE is based
on non-linear diffusion filtering and employs the determinant of the Hessian matrix
for feature detection. To enhance the rotation invariance, AKAZE utilises Scharr
filters. The maximum responses obtained from the detectors indicate specific feature
point locations. These feature points serve as the foundation for AKAZE’s robust
and distinctive feature detection. The AKAZE descriptor relies on the Modified
Local Difference Binary (MLDB) algorithm, which is both powerful and efficient.
AKAZE’s scale spaces have a non-linear nature, resulting in invariance to scale,
rotation, and limited affine transformations. Moreover, AKAZE’s features become
increasingly distinctive as they are scaled up or down.

In our approach, SIFT, AKAZE, and FAST were individually evaluated, emphasising
their distinct feature extraction capabilities for anomaly detection within sparse feature
tracking. SIFT is renowned for its robustness to changes in scale, rotation, and illumination;
it excels in extracting distinctive key points from crowd images. Its capability to capture
complex patterns enables the detection of anomalous behaviours that deviate from the
expected crowd dynamics, making it particularly effective in detecting anomalies of varying
sizes. AKAZE builds upon SIFT’s principles while offering enhanced speed and robustness.
AKAZE efficiently extracts key points across different scales and is less sensitive to noise
and blur. Its adaptability to diverse environmental conditions makes it suitable for the
detection of anomalies in challenging real-world scenarios, ensuring reliable performance
in varied settings. FAST is designed for rapid corner detection. It can efficiently identify key
features of corners within crowd images. Although not as invariant to scale and rotation as
SIFT and AKAZE, FAST’s speed makes it ideal for real-time anomaly detection applications,
where a timely response is crucial. Its efficient detection of key points contributes to the
overall effectiveness of sparse feature tracking in identifying anomalous crowd behaviours.

3.1.2. Sparse Feature Tracking

Sparse feature tracking is an efficient technique used in computer vision to track a
subset of features spanning in video frames. It addresses challenges such as occlusion
and changes in crowd dynamics by focusing on tracking distinctive features within the
crowd, making it less susceptible to occlusion and environmental changes compared to
dense tracking methods. By selecting key points of interest, sparse feature tracking can
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maintain robustness in tracking even when parts of the crowd are occluded or when there
are dynamic changes in crowd movement. Additionally, sparse feature tracking algorithms
often incorporate mechanisms for feature re-detection and association, allowing them
to adapt to changes in crowd dynamics and maintain accurate tracking over time. This
method utilises the most prominent features that are easy to track, such as the corners or
any unique structures in the frames. Our approach is based on the local features explained
above. The Lucas–Kanade approach [35] is employed to address the issue of an unrestricted
optical flow. The Lucas–Kanade optical flow approach excels in crowd anomaly detection
due to its accuracy, robustness, and adaptability to complex scenarios. By focusing on
sparse feature tracking, it reduces the computational complexity while maintaining high
tracking accuracy, making it suitable for real-time applications. Its ability to capture subtle
motion variations within crowded scenes enables the detection of anomalous behaviours
amidst complex crowd interactions. Leveraging temporal coherence ensures stability in
feature tracking and reduces false positives, enhancing the reliability of anomaly detection.
Overall, the Lucas–Kanade optical flow approach offers a simple, efficient, and effective
solution for crowd anomaly detection in diverse surveillance and monitoring applications.
This method anticipates that all neighbouring pixels within a highly restricted region will
exhibit identical optical flow values. The optical flow is calculated using this group of
pixels, in contrast to other optical flow algorithms, which utilise all pixels in the frame.
Sparse optical flow offers several benefits, including faster computation and the rapid
generation of training data. The optical flow constraint for a group of pixels moving at the
same velocity can be mathematically represented as in Equation (2):

Ix(x1, y1) · vx + Iy(x1, y1) · vy = −It(x1, y1)

Ix(x2, y2) · vx + Iy(x2, y2) · vy = −It(x2, y2)

. . .

Ix(xn, yn) · vx + Iy(xn, yn) · vy = −It(xn, yn)

(2)

The above Equation (2) can be reformulated using matrix vector notation as repre-
sented in Equation (3): Ix(x1, y1) Iy(x1, y1)

Ix(x2, y2) Iy(x2, y2)
Ix(xn, yn) Iy(xn, yn)

 ·
(

vx
vy

)
= −

 It(x1, y1)
It(x2, y2)
It(xn, yn)

 (3)

Considering that this system usually presents more equations than variables, it is
frequently over-determined. The Lucas–Kanade method applies the least squares technique
to address this, thus finding a balanced solution. As a result, it offers a solution to the
system, as illustrated below in Equation (4):

AT Av = ATb

v =
(

AT A
)−1

ATb
(4)

The Lucas–Kanade method [36], which was primarily developed for local optimisation,
may perform poorly with severe object motion due to its reliance on neighbouring pixels
for gradient determination. To address this, a pyramidal structure is utilised, using a coarse-
to-fine technique in which the input images are down-sampled, first with a low-pass filter
and then by a factor of 2 [35]. The optical flow computation begins with the lowest-quality
images and proceeds to higher resolutions, improving the flow field’s accuracy.

3.1.3. Spatial Representation Using Delaunay Triangulation

To encapsulate the spatial interactions between reliable tracklets, we employ Delaunay
triangulation as a spatial representation technique [37]. Tracklets, which are short sequences
of object locations in consecutive frames, are crucial in our approach. The terminal location
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of each tracklet is considered as a vertex in a graph. These vertices are then interconnected
using the Delaunay triangulation graph. The Delaunay graph facilitates the exploration of
neighbouring nodes in any direction, thereby accurately representing both local and spatial
interactions. It is denoted as gk

(
ϑk, εk, Fk

)
, defined by the list of node connections εk and

the list of triple indices
(

Fk
)

, where each triplet represents a triangle. This graph effectively
captures topological changes over time, preserving the overall shape of the graph despite
noise or partial occlusion. From the constructed graph gk, local entities called cliques can
be extracted, which are groups of points connected by edges

(
εk
)

and are defined around

a seed point Vk
i Ck =

{
C
(

Vk
1

)
, . . . C

(
Vk

mk

)}
. Each seed point possesses a unique local

configuration, forming a first-order clique, as represented in Equation (5):

C
(

Vk
i

)
=

{
Vk

i

}
∪
{

Vk
j , ∀

(
Vk

i , Vk
j

)
∈ E k

}
. (5)

Higher-order connections can be extrapolated by considering indirect neighbours,
thereby forming larger cliques, as in Equation (6) [38]

Cn

(
Vk

i

)
= Cn−1

(
Vk

i

)
∪
{

C1

(
Vk

j

)
, ∀Vk

j ∈ Cn−1\Cn−2

}
(6)

with C0

(
Vk

i

)
=

{
Vk

i

}
and C1

(
Vk

i

)
= C

(
Vk

i

)
. The local features are temporally intercon-

nected through trajectories, capturing short-term and long-term patterns. Spatially, they are
connected through cliques of varying order. By leveraging low-level features, a dynamic
graph is constructed that illustrates the temporal and spatial distributions of individuals
within the crowd. This comprehensive, localised scene model facilitates the measurement
of diverse crowd attributes.

3.1.4. Visual Descriptors

A wide array of visual descriptors is extracted to depict various crowd characteris-
tics, which are subsequently used for the analysis. These descriptors encapsulate diverse
crowd-related semantic data, capturing the spatial and temporal aspects of the scene.
By concurrently considering both individual and interactive properties, a comprehensive
analysis of the crowd is enabled. The suggested visual descriptors are divided into individ-
ual behaviour descriptors and interactive descriptors. The individual behaviour descriptors
exploit temporal features like tracklets and motion vectors, while the interactive descriptors
integrate spatial features.

1. Individual Behaviours
In order to scrutinise individual actions within the crowd, we utilise two descrip-
tors that are specifically tailored towards capturing dynamics at the individual level.
Descriptors like flow directions and velocity offer insights into various aspects of indi-
vidual behaviour, thereby enabling the greater comprehension of crowd interactions
and movement.

• Flow Direction
This descriptor characterises individual behaviours in terms of the motion direc-
tion, distinguishing between smooth and chaotic motions by capturing variations
in tracklets’ directions [37]. This is achieved by utilising the complete history
of each trajectory, which is divided into F segments

{
Sk

i , Sk−τ2
i , . . . , Sk−(F−1)τ2

i

}
,

enabling a detailed analysis of directional changes over time. Following this,
the variation in flow direction Dvar

(
Vk

i

)
is determined by calculating the av-

erage of the angular differences across all trajectory segments, as given in
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Equation (7). This calculation provides insights into the changes in the flow
direction throughout the trajectory.

Dvar
(

Vk
i

)
=

1
F
·

F−2

∑
f=0

dθ

(
SK− f τ2

i , sk−( f+1)τ2
i

)
(7)

where Sj
i =

−−−−→v
I J−τ2
1 Vl j , and τ2.

F =
⌊(

∆tk
i /τ2

)⌋
, and dθ is defined for vectors and b as in Equation (8),

dθ(a, b) = ∆θ

(∣∣∣θ(a) − θ(b)

∣∣∣) (8)

with θ(a) representing the angle between the vector a and the x-axis, ∆θ(a) ={
a, if a < π

2π − a, otherwise.

• Velocity
The velocity of individuals is computed using the motion vectors as defined in
Equation (4). To ensure accuracy, the motion vectors from the most recent frame
history are considered, specifically those that exceed a predefined threshold
for acceleration and velocity. By identifying these informative motion vectors,
the velocity can be determined by dividing the vector norm by the total number
of frames, as given in Equation (9).

Dveloc
(

Vk
i

)
=

1
τ1

·
∥∥∥∥−−−−−→Vk−τ1

i Vk
i

∥∥∥∥
2

(9)

To optimise the computational efficiency, the Euclidean distance is calculated be-
tween each motion vector’s origin and current position, rather than summing the
distances across fragments [37]. Empirical evidence indicates that both methods
yield equivalent results, validating our decision to use the more computationally
efficient method. It is worth noting that the descriptor parameter is adapted
based on the video’s frame rate. This adaptation effectively compensates for
perspective distortions within and between videos by incorporating perspective
map weights into the motion vector’s norm. The velocity descriptor plays a vital
role in capturing individuals’ speed, proving particularly valuable in scenarios
where individuals exhibit variations in their speed due to factors such as danger
or urgency.

2. Interactive Behaviours
Besides individual behaviour descriptors, we highlight the significance of integrating
interactive descriptors for a comprehensive analysis. In this study, we employ a set
of five interactive descriptors, three of which capture spatiotemporal information,
while the remaining two specifically target spatial properties. These descriptors draw
inspiration from [14] but have unique formulations as they incorporate the local crowd
representation as a fundamental element in their computation. The descriptors used
in this analysis include stability, collectiveness, conflict, local density, and uniformity.
They are computed locally, enabling a detailed examination of the crowd characteris-
tics and offering valuable insights for crowd analysis.

• Stability
The concept of stability, as defined in [14], captures the degree of consistency
in the topological structure of a crowd over time. It measures the tendency of
individuals in a crowd to maintain their proximity to the same set of neighbours
as time progresses. By assessing the stability property, valuable insights can be
gained into the persistent patterns and relationships within the crowd, providing



Appl. Sci. 2024, 14, 3928 9 of 20

a deeper understanding of its dynamics and behaviour. This characteristic
is established by drawing a parallel between a Delaunay graph’s topological
structure and a crowd’s evolving structure. To be more precise, the stability of a
graph gk at time k is calculated [37] via its graphical distance to the corresponding
graph gk−τ2 at time k − τ2, where τ2 represents the interval used to fragment the
trajectory for the computation of the Dvar descriptor, as defined in Equation (7).
In order to establish temporal matching between cliques, the proposed graphical
distance utilises the temporal aspect of the model of the tracklets and is locally
computed for each vertex. The stability of a given vertex Vk

i is calculated as the

strain between the two adjacent cliques Cn

(
Vk

i

)
and Cn

(
Vk−τ2

i

)
, computed as

in the following Equation (10):

Dstab
(

Vk
i

)
= distg

(
Cn

(
Vk

i

)
, Cn

(
Vk−τ2

i

))
(10)

Each clique is represented by a set of clockwise-oriented triangles, and this is used
to define the graphical distance between two cliques Cn

(
Vk

i

)
and Cn

(
Vk−τ2

i

)
,

represented by Equation (11):

distg

(
Cn

(
Vt1

i

)
, Cn

(
Vt2

i

))
=

1∣∣∣Cn

(
Vt1

i

)∣∣∣
· ∑

riα1
∈Rn

(
V

t1
i

)
riβ1

∈Rn

(
Vt2

i

) g
(
riα1 , riβ1

)
+ ∑

riα2
∈Rn

(
V

t1
i

) min
riβ2

∈Rn

(
Vt2

i

) g
(
riα2 , riβ2

) (11)

The term (Cn

(
Vt1

i

)
pertains to the quantity of neighbours within the clique.

The computation is carried out in two steps, as currently formulated. Initially, we
determine the dissimilarity between the triangles that are matched and indexed
as iα1 and iβ1. For the remaining triangles on both sides, where no matching is
achieved through tracklets, we estimate the distance by selecting the most similar
triangle as a potential corresponding candidate. The function g(·) denotes the
measure of the distance between triangles, which is mathematically defined
as the discrepancy in the cross ratio, taking into account the relative size of
each triangle.

g
(
riα, riβ

)
=

∥∥aiα − aiβ
∥∥ · ∥∥ciα − ciβ

∥∥ (12)

where aiα and ciα in Equation (12) are the area and the cross ratio of a triangle
indexed by iα. To calculate the cross ratio, we use Equation (13):

ciα = fcr
(

fo
(
Vα, v′iα, v′iα′ , Vα′

))
(13)

The cross ratio is used to measure the shape difference since it is invariant to
a projective transform. For a triangle riα, it is computed using the two ends
of the boundary edges (Vα and Vα′), and the projections

(
v′iα and v′iα′

)
of the

midpoints of two sides ([ViVα] and [ViVα′ ]) on the boundary line. Since the cross
ratio is not affected by a projective transformation, it can be used to quantify
the degree of shape dissimilarity between two figures. This ratio is calculated
for a triangle riα, by locating the endpoints of the boundary edges (Vα and Vα′)
and the projections of the midpoints of the two sides ([ViVα] and [ViVα′ ]) onto
the boundary line

(
v′iα and v′iα′

)
.

• Collectiveness
The collectiveness property in crowd analysis refers to how pedestrians move
together as a group. In [14], this property is quantified by computing each
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individual’s directional deviation from the group’s global motion. Traditionally,
coherent motion has been determined using predefined collective transitions.
However, an alternative approach is used in this work by utilising cliques for the
local computation of this descriptor [37]. Specifically, the collectiveness of a set
of seed points is defined based on the degree of motion deviation from the global
motion exhibited by their neighbouring points, all moving cohesively towards
a common goal, as defined by the clique. By considering the local interactions
within the clique, we can capture the collectiveness of the pedestrians, providing
valuable insights into their coordinated movement patterns and group dynamics.
The collectiveness can be computed using the following Equation (14):

Dcollec
(

Vk
i

)
=

1∣∣Cn
(
Vk

i
)∣∣ . ∑

Vk
j ϵCn(Vk

i )

h
(−−−−−→

Vk−τ1
i Vk

i ,
−−−−−→
Vk−τ1

j Vk
j

)
(14)

where h(a, b) =
{

dθ(a, b), if dθ(a, b) < T1
0, otherwise.

• Conflict
Conflict is an important property that captures human interactions in crowded
environments, particularly when individuals are near each other. Like the ap-
proach used to compute the collectiveness descriptor, the conflict property is
also computed locally [37]. A neighbour point from the corresponding clique is
considered as a potential conflict point candidate for each seed point only if both
of their motion vectors converge, indicating movement towards their origins.
Consequently, the set of conflict points, denoted as C′

n

(
Vk

i

)
, forms a subset of

the neighbours. Once the set of conflict points is determined, the conflict level of
the central point is calculated by considering the angular difference and distance
from the other points. The calculation of the conflict level is represented by
Equation (15), in which the angular difference and distance from the other points
are used to determine the conflict level of the central point. This helps to gain
insights into the level of interpersonal interaction and potential congestion in
crowded scenes, enabling a more comprehensive understanding of the dynamics
and social behaviours within the crowd.

Dconf
(

Vk
i

)
=

1∣∣c(Vk
i
)∣∣ ∑

Vk
j ∈C′(Vk

i )

dθ

(
Vk−τ1

i Vk
i , Vk−τ1

j Vk
j

)
∥∥∥Vk

i Vk
j

∥∥∥
2

(15)

• Local Density
The local density descriptor focuses solely on the spatial aspect of the model,
distinguishing it from the previous interactive descriptors. It captures a critical
characteristic of crowd behaviour, specifically how individuals are distributed
within the scene. An approximate measure of the local density can be obtained
by assessing the proximity of nearby features, as defined in [15]. This is based on
the observation that when nearby features move closer together, it indicates a
higher likelihood of a larger crowd gathering in that area. After removing static
tracklets, the remaining raw tracklets are utilised for this purpose. Each vertex’s
local density, denoted as Vk

i , is estimated by applying a kernel density function
to the relative positions of the vertices within their respective neighbourhood
sets. Instead of using a clique as in [15], a clique from the Delaunay graph is
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employed to define the neighbourhood set [37]. The calculation of the local
density descriptor is shown in Equation (16) as follows:

Ddens
(

Vk
i

)
=

1√
2πσ

∑
Vk

j ∈Cn(Vk
i )

exp−

∥∥∥Vk
i Vk

j

∥∥∥
2

2σ2 (16)

The contribution of each neighbouring point to the density calculation is de-
termined by the bandwidth of the 2D Gaussian kernel, represented as σ. It is
crucial to select an appropriate value for σ to ensure that feature points in close
proximity to Vk

i are adequately considered in the density estimation. A larger σ
is required for objects that are closer together due to the influence of perspective
distortions on the detected feature points. A normalisation process is applied to
the perspective map to address this issue, and the Euclidean distances between
vertices are adjusted accordingly. This normalisation guarantees that the compu-
tation of the local density remains consistent regardless of the scale or resolution
used, providing reliable and comparable results.

• Uniformity
The uniformity descriptor is employed to assess the coherence of the spatial
distribution of regional features. It indicates whether a group exhibits a tendency
to cluster together (uniform) or to fragment into smaller subgroups (nonuniform),
as described in [14]. This descriptor operates at a semi-local level, focusing on
the characteristics of groups rather than individual points. To achieve this,
a clustering algorithm is applied to visually distinguish different types of people.
Distance-based clustering, which identifies clusters based on the proximity of
points, is a suitable approach as it does not require prior knowledge of the
number of clusters [37]. Subsequently, for a set of p clusters denoted as clusters
N = {N1, . . . ,NP}, the modularity function is computed for each cluster to
quantify its consistency. This evaluation considers both internal and external
relationships within the clusters, providing insights into the level of coherence
exhibited by the group. It is calculated as in Equation (17) given below:

Dunif (Ni) =
A(Ni, Ni)

A(N, N)
−

(
A(Ni, N)

A(N, N)

)
(17)

The computation of the uniformity descriptor involves graph-based calculations.
After applying the clustering procedure, each vertex Vk

i is assigned to a specific
cluster. The distances between connected points are considered to determine
the inter-cluster and intra-cluster relationships. If a connected point belongs
to the same cluster as the seed point, the distance is used to enhance the intra-
cluster weight. Conversely, if the connected point belongs to a different cluster,
the distance contributes to the inter-cluster weight. This analysis is performed
using a first-order clique C1

(
Vk

i

)
, which facilitates the assessment of the spatial

relationships between vertices within and across clusters [37].
Hence, the terms stated in Equation (17) can be reformulated as in Equation (18):

A(Ni, Ni) = ∑p∈Ni ∑q∈C1(P)q∈Ni

1
∥pq∥2

A(Ni, N) = ∑p∈Ni ∑q∈C1(P)/∈/∈Ni
1

∥pq∥2
A(N, N) = ∑i∈N ∑p∈Ni ∑ qϵC1(p))

1
∥pq∥2

(18)

Shorter within-class distances and longer between-class distances are indicative
of a high level of spatial uniformity within each grouping.
The proposed visual and local descriptors capture both interactive and individ-
ual properties, offering valuable insights into crowds’ spatial distributions and
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movements. These descriptors are particularly relevant for high-level analysis
as they closely align with the crowd behaviour and semantic information. Each
descriptor is encoded using a 1D histogram with 16 bins, enabling statistical
computations at both local patch and global frame levels. The histogram effec-
tively represents the distribution of the descriptor values within specific regions,
making it a suitable choice for our analysis. After scaling, the histograms can
be concatenated to form a feature vector. The current methodology serves as a
robust foundation for the detection of crowd anomalies across diverse scenarios.

3.2. Dimensionality Reduction and Classification

In the process of our crowd anomaly detection analysis, we adopted dimensionality
reduction techniques to handle the gathered descriptors. These techniques aim to reduce
the complexity of the feature set while retaining essential information. We explored two
distinct approaches for dimensionality reduction: principal component analysis (PCA) [39]
and autoencoders [40].

The first method employed was principal component analysis (PCA). PCA seeks to
transform the original features into a new set of uncorrelated variables, known as principal
components, while retaining as much variance as possible. By projecting the data onto
these components, we effectively compress the information into a lower-dimensional space.

The second approach involves utilising autoencoders, a type of neural network de-
signed to learn efficient representations of the input data. Autoencoders consist of an
encoder network that compresses the input into a latent space representation and a decoder
network that reconstructs the original input from this representation. By training the au-
toencoder to minimise the reconstruction error, it learns to capture the most salient features
of the data in the latent space.

After applying dimensionality reduction using PCA and autoencoders, we move on
to the classification stage. In this step, we leverage the reduced-dimensional feature set to
train neural network classifiers. Specifically, we utilise neural networks like the multi-layer
perceptron (MLP) [41]. Neural networks are well suited to handle non-linear problems and
extract intricate patterns from the input data.

The versatility of neural networks is particularly beneficial in detecting anomalies
in crowd behaviour. They excel in uncovering nuanced relationships within data and
identifying unusual crowd dynamics that might remain unnoticed by traditional meth-
ods. Due to their hierarchical architectures, neural networks can capture both intricate
details and higher-level representations, providing a comprehensive understanding of
crowd behaviour.

Throughout our study, we conducted evaluations using neural networks with varying
numbers of hidden layers to determine the optimal configuration for our analysis. Through
systematic testing and performance comparisons, we identified the most effective approach
for crowd anomaly detection. This thorough approach ensured that our methodology
was robust and capable of addressing the complexities of detecting anomalies within
crowd dynamics.

4. Results
4.1. Datasets

The effectiveness of the proposed visual descriptors for crowd anomaly detection in
challenging crowded environments is evaluated using two state-of-the-art crowd datasets.
Two widely recognised public datasets, the University of Minnesota (UMN) dataset [16]
and the violence in crowds dataset [42], are employed for this evaluation. The UMN dataset
is highly regarded in the field. This dataset offers a comprehensive collection of videos
that capture various crowd behaviours, including both normal and abnormal instances. It
consists of eleven videos recorded in diverse indoor and outdoor settings. The videos are
categorised into three scenes: Scene 1 (videos 1 to 2), Scene 2 (videos 3 to 8), and Scene 3
(videos 9 to 11). These videos depict scenarios such as crowds running in a single direction



Appl. Sci. 2024, 14, 3928 13 of 20

or dispersing from a centralised location, providing a wide range of typical and out-of-the-
ordinary segments. Researchers can extract valuable insights and evaluate the performance
of crowd anomaly detection algorithms using this dataset.

The violence in crowds dataset is sourced from YouTube. This dataset offers a diverse
collection of challenging real-world viewing conditions. It includes footage compiled from
various settings and surveillance operations, specifically focusing on crime and violence.
The dataset has been meticulously curated, following established standards for violence
classification. It consists of videos divided into distinct groups, with an equal number
of violent and peaceful videos, ensuring a balanced representation of different scenarios.
Researchers can thoroughly evaluate the proposed visual descriptors for crowd anomaly
detection by utilising these state-of-the-art datasets.

The UMN dataset comprehensively assesses various crowd behaviours, while the vio-
lence in crowds dataset offers realistic and challenging real-world scenarios related explic-
itly to crime and violence. Leveraging these datasets enables the analysis and comparison
of different approaches, facilitating advancements in the field of crowd anomaly detection.

4.2. Crowd Representation

In this section, we present the effectiveness of the proposed visual descriptors, as de-
picted in Figure 1, for crowd anomaly detection. The utilisation of the Delaunay triangula-
tion method to capture the spatial proximity and enhance the neighbourhood representation
is illustrated in Figure 2.

Figure 2. Spatial proximity using Delaunay triangulation to better represent the neighbourhood. (a,b)
represent Delaunay triangles on crowd scenes with no abnormal activities. (c) represents Delaunay
triangles on crowd scene with abnormal activity. Green lines: Delaunay triangle edges,structuring
crowd area. Red dots: indicate anomaly hotspots in crowd dynamics.

In Figure 2, we illustrate the concept of spatial proximity within a crowd using
Delaunay triangulation, a technique that enhances the understanding of the crowd’s neigh-
bourhood dynamics. The figure serves to visually explain how the crowd’s behaviour is
interpreted through feature points and visual descriptors, which are calculated and then
represented using Delaunay triangles.

Figure 2a,b display Delaunay triangles overlaid onto a crowd scene where no abnormal
activities are taking place. The crowd’s behaviour is analyzed through sparse feature
tracking, allowing us to define significant points that represent the scene. Delaunay
triangulation helps to delineate the spatial relationships between these points, forming
triangles that reflect the crowd’s structure and arrangement.

In Figure 2c, we observe the impact of abnormal behaviour within the crowd. As an
anomalous event occurs, the crowd’s typical cohesion breaks down, causing the individ-
uals to scatter and move in various directions. This change in behaviour is effectively
captured and illustrated through Delaunay triangulation. The method of sparse feature
tracking allows us to follow these scattered movements and depict them as changes in the
arrangement of the Delaunay triangles.

A noteworthy feature that aids in discerning abnormal behaviour is the length of
the edges within the Delaunay triangles. In a normal crowd scenario, the edges main-
tain a consistent length, reflecting the crowd’s relatively uniform distribution. However,
when an abnormal event disrupts the crowd, such as scattering due to a sudden distur-
bance, the edges’ lengths can alter significantly and rapidly. This edge length variation
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is clearly depicted in the Delaunay triangles illustrated in Figure 2c. The uniformity of
the edge lengths is disrupted, with certain edges becoming notably longer than others.
This disparity in the edge lengths signifies the occurrence of abnormal behaviour within
the crowd. The magnitude and rapidity of these changes are visually evident in the tri-
angulation representation, providing a valuable tool to understand the dynamics of the
crowd behaviour.

4.3. Classification Results

The following tables display the accuracy and area under the curve (AUC) scores
obtained for each combination of feature point extraction methods (SIFT, FAST, AKAZE)
applied to the two datasets utilised in this analysis. The results are presented for three
different configurations of the neural network: NN, 128/NN, and PCA/NN. The NN con-
figuration uses the neural network without any dimensionality reduction. In the 128/NN
configuration, dimensionality reduction is performed using an autoencoder to reduce the
feature space to 128 dimensions. Lastly, in the PCA/NN configuration, dimensionality
reduction is achieved by applying principal component analysis (PCA) with a variance
threshold of 95. The results obtained for the UMN dataset and the violence in crowds
dataset are presented in Tables 2 and 3, respectively. Five-fold cross-validation is used
in the classification. There are a total of five tests taken, with four training sets used for
each. The average prediction accuracy (ACC) and the area under the curve (AUC) are
reported for the results. The results of Scene 1 of the UMN dataset show that all three
feature point extraction methods (SIFT, FAST, and AKAZE) achieve high accuracy and AUC
scores across different neural network configurations. The NN configuration generally
performs slightly better than the 128/NN and PCA/NN configurations. Among the feature
point extraction methods, SIFT consistently exhibits the highest accuracy and AUC scores,
followed closely by FAST and AKAZE. This indicates that SIFT is particularly effective in
capturing spatial information and detecting anomalies in crowd behaviour for the Scene 1
dataset. The results on Scene 2 of the UMN dataset show comparable performance among
the feature point extraction methods and neural network configurations. SIFT consistently
achieves the highest accuracy and AUC scores, followed by FAST and AKAZE. However,
the overall accuracy and AUC scores are slightly lower compared to Scene 1. This suggests
that Scene 2 may pose more significant challenges in crowd anomaly detection, requiring
more robust feature extraction methods and network configurations.

The results for Scene 3 indicate consistent performance across the feature point ex-
traction methods and neural network configurations. AKAZE demonstrates the highest
accuracy and AUC scores, followed by SIFT and FAST. The overall performance in Scene
3 is similar to that in Scene 1, with slightly lower scores. This suggests that the crowd
behaviour in Scene 3 may exhibit similar characteristics to that in Scene 1 but with some
variations. The results reveal that SIFT consistently outperforms FAST and AKAZE in terms
of accuracy and AUC scores across all scenes. Notably, AKAZE shows promise, particularly
in Scene 3. These findings highlight the robustness of SIFT and AKAZE as feature point
extraction methods for crowd anomaly detection in various scenes. In terms of the neural
network configurations, the NN configuration consistently achieves the highest accuracy
and AUC scores, followed by the 128/NN and PCA/NN configurations. This suggests
that employing a deeper neural network without dimensionality reduction captures more
intricate patterns in crowd behaviour. However, the differences between the configurations
are relatively minor, indicating that dimensionality reduction techniques such as 128/NN
and PCA/NN can yield competitive results with lower computational complexity. Overall,
combining SIFT with the NN configuration emerges as a particularly effective approach for
crowd anomaly detection, delivering superior performance and enabling the identification
of complex crowd behaviours.
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Table 2. Classification results for the UMN dataset (Scene 1, Scene 2, and Scene 3) with descriptors
and methods. Best accuracy is given in bold.

Scene 1 NN 128/NN PCA/NN

SIFT ACC: 0.995
AUC: 0.990

ACC: 0.985
AUC: 0.979

ACC: 0.986
AUC: 0.983

FAST ACC: 0.988
AUC: 0.977

ACC: 0.986
AUC: 0.973

ACC: 0.988
AUC: 0.978

AKAZE ACC: 0.953
AUC: 0.904

ACC: 0.952
AUC: 0.943

ACC: 0.966
AUC: 0.955

Scene 2 NN 128/NN PCA/NN

SIFT ACC: 0.936
AUC: 0.901

ACC: 0.926
AUC: 0.893

ACC: 0.924
AUC: 0.885

FAST ACC: 0.954
AUC: 0.937

ACC: 0.961
AUC: 0.943

ACC: 0.951
AUC: 0.931

AKAZE ACC: 0.937
AUC: 0.892

ACC: 0.918
AUC: 0.892

ACC: 0.917
AUC: 0.872

Scene 3 NN 128/NN PCA/NN

SIFT ACC: 0.990
AUC: 0.976

ACC: 0.983
AUC: 0.980

ACC: 0.985
AUC: 0.968

FAST ACC: 0.981
AUC: 0.956

ACC: 0.983
AUC: 0.973

ACC: 0.983
AUC: 0.959

AKAZE ACC: 0.975
AUC: 0.914

ACC: 0.990
AUC: 0.988

ACC: 0.985
AUC: 0.968

Table 3. Classification results for the violence in crowds dataset (with descriptors and methods). Best
accuracy is given in bold.

Methods NN 128/NN PCA/NN

SIFT ACC: 0.803
AUC: 0.805

ACC: 0.799
AUC: 0.804

ACC: 0.848
AUC: 0.846

FAST ACC: 0.848
AUC: 0.851

ACC: 0.844
AUC: 0.847

ACC: 0.844
AUC: 0.851

AKAZE ACC: 0.856
AUC: 0.862

ACC: 0.885
AUC: 0.895

ACC: 0.873
AUC: 0.878

The classification results for the violence in crowds dataset, as presented in Table 2,
exhibit some variations compared to the UMN dataset. In the case of the violence in
crowds dataset, the performance of all three feature point extraction methods, namely
SIFT, FAST, and AKAZE, shows slightly lower accuracy and AUC scores compared to the
UMN dataset. AKAZE consistently outperforms FAST and SIFT, demonstrating superior
accuracy and AUC scores. This observation suggests that AKAZE possesses inherent
capabilities that enable it to effectively capture the distinctive characteristics of the crowd
anomalies within the violence in crowds dataset. Shifting our focus to the neural network
configurations, we observe that the PCA/NN configuration consistently outperforms
both the NN and 128/NN configurations in terms of accuracy and AUC scores. This
outcome highlights the significance of employing dimensionality reduction techniques,
specifically through principal component analysis (PCA), to enhance the performance of
crowd anomaly detection on the violence in crowds dataset. By reducing the dimensionality
of the data, PCA facilitates the extraction of salient features, thereby leading to improved
accuracy and AUC scores. The obtained results for the violence in crowds dataset emphasise
the importance of carefully selecting and evaluating the appropriate combination of feature
point extraction methods and neural network configurations for each dataset. It is evident
that the performance of these methods can be subject to variations based on the dataset’s
characteristics and the specific nature of crowd anomalies. Therefore, it is important to
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exercise caution and conduct thorough evaluations to identify the optimal combination of
methods that will yield the highest performance in crowd anomaly detection tasks.

Figure 3 encapsulates the results derived from the application of three classification
approaches used in this work on the UMN and violence in crowds datasets, using the
SIFT, FAST, and AKAZE descriptors. The performance of the crowd anomaly detection
methods is generally higher on the UMN dataset compared to the violence in crowds
dataset. The UMN dataset provides well-defined scenarios, while the violence in crowds
dataset has more diverse and challenging real-world conditions. The controlled settings
in the UMN dataset and the more precise differentiation between normal and abnormal
behaviours contribute to the higher performance. On the other hand, the lower performance
on the violence in crowds dataset may be attributed to factors such as poor video quality,
occlusion, and variability in the surveillance scenarios. It is essential to address these
specific challenges in each dataset to improve the performance of crowd anomaly detection
methods. When examining the three scenarios individually, it was observed that Scenes
1 and 3 (outdoor) led to perfect accuracy, whereas Scene 2 (indoor) did not. This result is
intriguing; however, the limited complexity of the videos hindered our ability to conduct a
more in-depth investigation.

Figure 3. Summary of the performance of CAD on the UMN dataset (a–c) and on violence in crowds
(d) using the SIFT, FAST, and AKAZE descriptors.

4.4. Result Comparison

In an exhaustive analysis of the UMN and violence in crowds datasets, a meticulous
comparison between the proposed approach and the top-performing techniques from recent
studies has been conducted, unveiling subtle distinctions and noteworthy achievements
in their respective performance. Our approach has been rigorously compared with recent
advancements in the literature, as delineated in Tables 4 and 5. These tables articulate
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the AUC and accuracy metrics for the CAD methodology applied to both the UMN and
violence in crowds datasets. Within the context of the UMN and violence in crowds datasets,
our approach consistently manifests superior performance when juxtaposed with the best
alternative method. Specifically, for the UMN dataset, our approach attains an AUC of
99.0%, eclipsing the best results procured with [37], which include an AUC of 98.72%,
95.21%, and 97.50% for Scene 1, Scene 2, and Scene 3, respectively. To further underscore
the consistency in the method’s superior performance, we have delineated the AUC and
accuracy results for all three scenes of the UMN dataset. The comparative analysis of
the accuracy also corroborates the superior performance relative to other methods. Our
approach surpassed the other techniques, achieving 99.5%, 96.5%, and 99% for Scene 1,
Scene 2, and Scene 3 of the UMN dataset, respectively. In contrast, the advantage of our
approach is more pronounced in the violence in crowds dataset, where it transcends the top
results with an AUC of 89.5% compared to 88% and accuracy of 88.5% compared to 84.44%.
The consistent performance of our approach across both datasets indicates a higher level of
effectiveness in classification tasks, effectively leveraging unique features and techniques
that contribute to its advantages.

Table 4. A comparison of the results on the UMN dataset.

Methods AUC % Accuracy %

Optical Flow [16] 84.0 /
SFM [16] 96.0 /

Sparse Reconstruction [43] 97.0 /
Visual Descriptors [37] Scene 1: 0.98.72, Scene 2: 95.21,

Scene 3: 97.50
/

Optical Flow, GAN [27] 98.1 /
Our Approach Scene 1: 99.0, Scene 2: 94.3,

Scene 3: 98.8
Scene 1: 99.5, Scene 2: 96.1,

Scene 3: 99.0

Table 5. A comparison of the results on the violence in crowds dataset.

Method AUC % Accuracy %

VIF [42] 85 81.30
Visual Descriptors [37] 88 84.44

Our Approach 89.5 88.5

5. Conclusions and Future Study

This study presents a pioneering approach to crowd anomaly detection, capitalising
on the fusion of visual descriptors and neural networks. The method’s efficacy, showcased
through rigorous experiments on the established UMN and violence in crowds datasets,
underscores its potential in accurately identifying aberrant crowd behaviours. The supe-
riority of the SIFT and AKAZE descriptors, combined with the competitive performance
of the neural network configurations, highlights the robustness of our approach. As such,
this research contributes significantly to the field’s evolving landscape, providing a strong
foundation for the future development of crowd anomaly detection systems.

As the research progresses, several promising avenues for further exploration in the
field have been identified:

1. Transitioning from conventional neural networks to advanced deep learning architec-
tures promises enhanced performance;

2. Incorporating cutting-edge feature extraction methods can provide more comprehen-
sive insights into crowd behaviour patterns;

3. To enable real-world applicability, rigorous testing on real-time datasets that encom-
pass distortions and complexities is necessary;

4. The fusion of multimodal data and the extension of the methodology to detect various
types of anomalies hold substantial potential.
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We believe that these future directions will collectively pave the way for refined,
adaptable, and multifaceted crowd anomaly detection systems.
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