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Abstract: Due to the widespread involvement of distributed collaboration triggered by COVID-19,
it has become a new trend that has continued into the post-pandemic era. This study investigated
collective performance within two collaborative environments (co-located and distancing settings)
by assessing inter-brain synchrony patterns (IBS) among design collaborators using functional near-
infrared spectroscopy. The preliminary study was conducted with three dyads who possessed 2–3
years of professional product design experience. Each dyad completed two designated design tasks
in distinct settings. In the distributed condition, participants interacted through video conferencing in
which they were allowed to communicate by verbalization and sketching using a shared digital white-
board. To prevent the influences of different sketching tools on design outputs, we employed digital
sketching for both environments. The interactions between collaborators were identified in three
behaviors: verbal only, sketch only, and mixed communication (verbal and sketch). The consequences
revealed a higher level of IBS when mixed communication took place in distributed conditions than in
co-located conditions. Comparably, the occurrence of IBS increased when participants solely utilized
sketching as the interaction approach within the co-located setting. A mixed communication method
combining verbalization and sketching might lead to more coordinated cognitive processes when
in physical isolation. Design collaborators are inclined to adjust their interaction behaviors in order
to adapt to different design environments, strengthen the exchange of ideas, and construct design
consensus. Overall, the present paper discussed the performance of virtual collaborative design
based on a neurocognitive perspective, contributing valuable insights for the future intervention
design that promotes effective virtual teamwork.

Keywords: collaborative design; inter-brain synchrony (IBS); hyper-scanning; design cognition;
COVID-19

1. Introduction

Teamwork innovation has long been recognized as a core competitiveness in an
organization’s ability to address complex problems. Social distancing restrictions during
the COVID-19 pandemic have enforced traditional co-located collaborative mode into
virtual teamwork in an accelerative way, resulting in great transformation for design
collaborators that largely influence their way of communicating and interacting. To adapt to
this COVID-19-related disruption, organizations were striving to embrace information and
communication technologies (ICTs), such as video conferencing platforms, web-based tools,
and computer-aided systems, in order to facilitate efficient virtual teamwork. However, the
surge in ICT utilization poses a major challenge to the digital resilience of both individuals
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and organizations. Previous studies [1–5] have argued the impairments in collaborators’
cognition and communication within distributed collaborative design processes, leading to
a deterioration of group performance. Researchers generally recognized that distributed
teams reduced the awareness of collaborators [6–8] and the abundance of information [9],
as well as aggravated miscommunication and conflicts [10,11]. Although it is widely
accepted that co-located teams outperformed virtual teams, several studies suggested
minor or insignificant correlations between teamwork design processes and collaborative
(distributed or co-located) environments [12–14].

A considerable body of the literature has explored the implications of distributed
design collaboration for design outcomes, collaboration efficiency, and overall group per-
formance. Although several researchers have started to examine the effects of online
collaboration on design activities, the predominant research methods employed continue
to be self-reported questionnaires, interviews, and observations. Such traditional research
methods are deficient in explaining the underlying factors that affect group design activities
and interactions between design partners in different types of environments: co-located
and distributed settings. Therefore, there is a need to gain insight into the neural activities
and inter-brain connectivity during collaborative design processes, which showcases the
potential to offer more objective evidence and demystify how team interactivity operates in
various contexts.

A new technology from cognitive neuroscience, termed hyper scanning, has been de-
veloped and widely utilized to investigate inter-brain synchrony (IBS), a potential indicator
for collective performance among teams [15,16]. IBS refers to the degree to which the brains
of two or more individuals are synchronized. Reinero and colleagues [17] suggested that
IBS can be a complementary approach for understanding collective performance among
teams where self-report surveys are limited to capture design behavior. Another study,
conducted by Lu et al. [18], examined the occurrence of IBS during collaborative tasks and
interactive activities over time and observed a positive association between collaborative
behavior and IBS. However, most hyper-scanning studies of interacting individuals are
conducted in a face-to-face situation in the same room, where subjects can communicate
mutually based on both verbal cues and non-verbal cues, such as facial expressions and
body movements. A limited hyper-scanning study explores the effects of different collabo-
rative environments on the degree of IBS, thereby impacting communication effectiveness
and collective performance. Additionally, meager research focuses on design-related col-
laborations, which is a dynamic process involving various design behaviors to formulate
design requirements, build design goals, and construct design solutions jointly. Only one
relevant study [19] focused on the real-life creative problem-solving processes among teams,
which is yet merely focused on the measurement of the left hemisphere of the brain.

In this study, we aimed to address three research questions. Firstly, we examined the
design activities and interactions that occur in two distinct collaborative environments,
co-located and distributed settings. Next, we explored the similarities and differences in IBS
patterns when multiple design partners engage in design problem-solving processes within
these two types of environments. Lastly, we investigated the correlations between the
design collaboration environments and brain synchrony patterns, which in turn influence
the design outputs and team performance. This study has the potential to unravel the
neural underpinnings affecting design collaboration and its correlations with collective
performance, as well as contribute new insights into the intervention design that promotes
effective virtual teamwork, both in the context of design education and design practices.

2. Literature Review
2.1. Distributed Design Collaboration and Digital Resilience

The concept of collaborative design, as presented by Lahti et al. [20], entails an inter-
active and cooperative process in which participants engage in active communication to
collectively establish a design objective, explore problem and solution spaces, and construct
design solutions. Establishing effective communication between interactive individuals to
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exchange ideas during the concept generation process from diverse perspectives is a key
element of a successful design collaboration driving product innovation [21]. The rapid
development of the pandemic has forced designers to adapt to virtual teamwork; all design
collaborations take place remotely using online video conferencing platforms, which has
accumulatively become a trend that may continue during the post-pandemic era. Thus,
design practitioners are required to increase their competencies of resilience to integrate
technology into the collaborative experience so as to increase remote working benefits and
mitigate digital stressors [22]. Digital stressors are commonly defined as any adverse effects
that technology may have on users. Resilience refers to a process that enables people to ef-
fectively navigate and manage stressors, allowing them to bounce back from adversity [23].
The term digital resilience describes specific knowledge, skills, attitudes, competencies, and
behaviors that individuals must acquire so that digital stressors can be counteracted. In
this study, we defined digital resilience as the ability of collaborators to overcome technical
difficulties and continuously adapt to online collaboration, even achieving collaborative
effectiveness and design outcomes comparable to that of co-located collaboration.

Effective communication in design collaborations is featured by real-time interactions
involving verbalization and the utilization of various visual techniques. In terms of the
influences of virtual collaboration on design tasks, a variety of prior studies observed the
overperformance of co-located collaborations compared to distributed teams. Based on
the consequences of Liska’s research [24], virtual teams required approximately one-third
(33.32%) more time to address the same assigned works and encountered a higher inci-
dence of revising their solutions compared to co-located teams. Moreover, Hammond
et al. [25] pointed out that even though design collaborators spend more time on the
assignment, fewer design alternatives were delivered within such a distributed collabo-
ration process. In addition, distributed collaboration can even induce specific interactive
behaviors, as Kvan [26] and Lee & Do [27] propose, designers are prone to compromise
in design decisions and showcase less willingness to explore the best solutions within
virtual collaborative settings. Likewise, in another analysis [28], distributed collaborators
were observed to exhibit a lower inclination towards using gestures, allocate more time
towards sketching, and participate in fewer studies and discussions with respect to design
problems. Several protocol studies [12,14] indicated no significant differences or even better
performance in quality or novelty of design solutions within distancing cooperation. In
addition, Yang et al. [29] found that in the context of online design collaboration, students
tend to allocate more time to sketching compared to the co-present design environment.
However, contrary to previous research, the researchers revealed a positive impact whereby
increased sketching behaviors reduced cognitive load for students, facilitated the better
expression of ideas, and promoted mutual understanding among interactive individuals.

Protocol studies, retrospective reviews, and observations alone are insufficient to
explore how different collaboration environments impact the interaction behavior and
collective performance of designers. Moreover, there is a lack of effective research on
whether the changes in design behavior result in a weakening or compensating effect
on collaborative performance. Therefore, in this study, we investigated the relationship
between design collaborative behavior and collaborative performance from a brain-based
perspective, focusing on brain movements and connectivity and brain synchrony, in various
collaborative settings.

2.2. IBS and Brain Regions Relevant to Design Activities

Neuroimaging technology is a widely utilized technique that can capture brain infor-
mation of interactive individuals within a non-invasive manner, thereby contributing to
the study regarding interpersonal social interactions. However, due to the prior related
works studying neurocognition that have focused on isolated individuals, the enigmatic
box regarding how the brain engages in dynamic group collaborations has failed to be
fully unraveled. An emerging technique termed hyper-scanning has been devised to con-
currently capture and measure brain activations of multiple collaborative individuals [30].
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Compared to conventional neuroimaging study designs [31], hyper-scanning experiments
provide a more realistic approximation of interactions between individuals. The degree
of IBS, the coordination of brain activity among collaborators, can be measured by the
hyper-scanning method. IBS serves as a neuro mechanism that aids scientists in identify-
ing brain regional connectivity and dynamics during social interaction tasks. Functional
Near-infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) have been more
frequently applied than functional magnetic resonance imaging (fMRI) for measuring IBS,
due to their reasonable spatial resolution, greater resilience to body movements and less
limitation of experimental setting. As a result, fNIRS and EEG are arguably more suitable
for studying IBS within naturalistic interactive environments [32,33].

Numerous studies have generally observed that IBS could be an objective and reliable
indicator of collective performance. For instance, the occurrence of IBS often increases
when team members communicate or infer intentions mutually [34]. Another study also
observed a close relationship between group identification and IBS when individuals
worked together to complete problem-solving tasks [17]. Likewise, a study carried out by
Hsu et al. [35] revealed a stronger IBS among subjects in cooperative mode compared to
single-player mode. Moreover, there was a noticeable decrease in the strength of IBS when
subjects switched from being collaborators to competitors.

To the best of our knowledge, the majority of hyper-scanning studies examining inter-
actions among individuals are always conducted in a co-located environment, featured by
sufficient verbal and non-verbal cues. Merely a limited number of studies have investigated
group interactions in distributed collaborative settings, where individuals exert greater
efforts in deducing and predicting partners’ intentions. One EEG study undertook an
experiment in which each pair of participants collaboratively played an online car racing
game within a physically isolated environment [36]. The researchers found significant
positive relations between better collective performance and increased brain synchrony.
Another study also illustrated that face-to-face conditions promoted more cooperation
and a higher IBS compared to face-blocked interactions. However, the tasks conducted
in the above studies are a far cry from real-world collaboration and team interactions.
Scientists still know little about temporal brain dynamics and how different cooperative
environments affect IBS and collective performance among real-world teamworks.

Additionally, to date, very few research studies have studied real design collaborations
from the neurocognition perspective. In design teamwork, team members often utilize com-
munication via various ways for idea exchange and mutual understanding establishment,
especially in problem-solving and concept-generation processes. One of the fNIRS-based
hyper-scanning studies examined real-world creative problem-solving processes in teams
and explored the temporal changes in IBS over time [19]. The main limitation of this study
is that they restricted their study to measurements of the left hemisphere of the brain.
The previous literature has shown that multiple areas of the brain are activated when
performing activities similar to those design tasks, especially the prefrontal cortex (PFC)
area [37,38]. The PFC is associated with multiple cognitive processes, including but not
limited to planning, maintaining focus, information filtering, and executive function [39].
Within the realm of design creative tasks, the PFC plays a crucial role in various cognitive
functions. Specifically, the PFC on the right is often involved in divergent thinking, while
the opposite hemisphere is more active in rule-based design, goal-oriented planning, and
analytical judgment [40]. Strong synchrony observed in the right PFC is linked to an
increased level of ingenuity in generated solutions [41].

Furthermore, during the execution of creative tasks, the left and right dorsolateral
prefrontal cortical areas (DLPFC) are both active [42]. Increased activation in the right
DLPFC is typically associated with the performance of creative problem-solving and visual–
spatial thinking [43]. The left DLPFC is also involved in creative tasks and exhibits greater
activation when engaged in goal-oriented planning for innovative solutions. In addition,
the right ventrolateral PFC (VLPFC) contributes to evaluating problems instead of solving
problems, aiding in generating alternative assumptions in the problem space search [44].
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By employing neuroscience methodologies to investigate design cognition, we can enhance
comprehension of the neurocognitive processes associated with design and refine design
thinking theory [45].

3. Research Methodology

This study investigated how distributed design collaborations impact design collabora-
tion behaviors, as well as the associations between specific design activities and underlying
neural activities involving IBS as a critical predictor. In light of the aims of this study, think-
aloud protocol analysis was employed to analyze and identify design interaction behaviors
into three interactive behaviors: verbal only, sketch only, and mixed communication (a
combination of verbalization and sketching). According to these three design interaction
approaches, recorded video data were segmented into smaller episodes, which are used as
critical timecodes for subsequent brain activity segmentation and brain-to-brain synchrony
analysis. Hence, this study commonly consists of five components: (i) experiment settings,
(ii) data collection, (iii) interaction segmentation, (iv) brain activity segmentation, and (v)
inter-brain connectivity analysis.

3.1. Participants

The preliminary study was conducted with three dyads of volunteers (1 female–female,
1 male–male, and 1 female–male) who were equipped with 2–3 years of professional prod-
uct design experience. All subjects self-identified as right-handed, healthy, and reported
no visual impairments or neurological conditions. The age range of participants varied be-
tween 22 and 25 years (Mean = 23.3, SD = 0.943). Participants paired in the same dyad were
previously acquainted, so that they could conduct the design process quickly and smoothly
after a warm-up session. Informed consent was obtained from both dyad members prior
to participation. The overarching aim was to design a paradigm that closely resembled
real-world design collaboration scenarios. Therefore, dyads were asked to work on design
problems for a continuous time of 25–30 min with little instruction and no interventions.
All dyads received consistent design briefs and instructions. Ethical approval was obtained
for this project on 14 September 2021 (approval number: HSEARS20210914003).

3.2. Experimental Settings and Procedures

This study was conducted in carefully configured design studio spaces in order
to create a controlled environment that is as close to a real-world setting as possible.
The experimental procedure includes two tasks, requiring participants to undertake two
separate conceptual design tasks within different design collaboration environments: co-
located and distributed. In terms of task 1, each pair of participants was seated together
on the same side of a rectangular table within the same room (see Figure 1), and a fNIRS
cap was fitted over the forehead of each participant. After subjects filled in the consent
form, the design brief was provided and elaborated to the participants prior to the start of
the experiment. Dyads were asked to work together to design a toy and collaboratively
define the target groups and contexts. Participants were then provided with a five-minute
warm-up session for a brief discussion to determine their specific design scope. No fNIRS
scanning happened during the warm-up session. Subsequently, a 25–30 min design session
commenced, yet participants had the flexibility to end their design activities earlier or later
based on their design progress. All pairs of designers were required to develop at least one
final deliverable at the end of the design session. After a five-minute break, participants
were placed in separate rooms without any communication before task 2 commenced
(see Figure 2). Participants were instructed to join a ZOOM meeting and enabled their
camera and microphone for virtual communication. They were also asked to change their
displayed names to their assigned identification numbers. The design requirement for task
2 is to cooperate on a conceptual design for multi-functional furniture that could be used
indoors and outdoors. Repeating the same steps of task 1, dyads were told to undertake a
five-minute virtual warm-up session for design brief exploration and another 25–30 min
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design session employing the whiteboard feature in the ZOOM meeting, and participants
were also allowed to end the design activities earlier or later accordingly. Figure 3 well
illustrates the designated experimental sequences and time frames.
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In this study, digital sketching using the ZOOM whiteboard feature was utilized in
both collaborative contexts (co-located and distributed), aiming to eliminate the influence
of different sketching tools (pen-and-paper sketching and digital sketching) on the design
outputs [46,47]. In order to record participants’ design activities and interactions, ZOOM
recording was conducted while completing design sessions for capturing verbalization and
sketching activities. In addition, other video cameras were installed in front of each dyad
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for identifying non-verbal design behaviors and interactions, such as eye contact and body
language. Figure 4 demonstrates specific cameras’ fields of view.
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environment.

3.3. Instruments and Computational Tools

One prominent technique used in hyper-scanning research is fNIRS, a non-invasive
neuroimaging method that utilizes near-infrared light to penetrate the scalp and skull,
enabling the monitoring of hemodynamic responses in specific brain regions. Correlative
neurocognition reviews [30,48] have highlighted the wide use of fNIRS in investigations
focusing on brain-to-brain communication during social interaction tasks, especially dur-
ing interpersonal cooperation. fNIRS has been used as a dominant complement to fMRI
and EEG to measure IBS, as its reasonable spatial resolution, greater resilience to body
movement, and less experimental settings limits frequently applied for IBS measurement
within naturalistic interactive environments. Therefore, we conducted a fNIRS-based hyper-
scanning study. Each participant was fitted with fNIRS (OctaMon, Artinis Medical Systems,
the Netherlands, as shown in Figure 5a) headcap on the forehead for the assessment of cere-
bral blood flow (CBF) changes in the prefrontal cortex. Scanning data were recorded using
OxySoft 3D software 4.0.6.1 x64, which supports recording two individuals’ changes in
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) levels on one laptop simultaneously
in both co-present and distributed settings. Figure 6 presents the instance of the signal
extracted from one of the dyads with a time window of 400–800 s.
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All signal processing and statistical analyses were performed using the R program-
ming (Version 4.3.1) language, a powerful tool for statistical computing and graphics. To
facilitate these computations, we utilized a variety of relevant R packages designed for
data manipulation, signal processing, and statistical modeling. These tools allowed us
to process the fNIRS data, perform the necessary statistical tests, and derive meaningful
results about the patterns of IBS under different conditions and behaviors in the context of
design collaborations.

3.4. Data Analysis
3.4.1. Interaction Segmentation

The video recording data were initially filtered by coding for off-task behaviors (e.g.,
jokes, banter between the designers, and conversation of events unrelated to the design
problem). Subsequently, the video data was segmented into small episodes and coded for
three design interaction behaviors: verbal-only, sketch-only, and mixed communication
(a combination of verbal and sketch). Verbal-only means that within a certain period, the
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design ideas are only proposed and transmitted through verbal communication. Similarly,
sketch-only means that only sketch activities take place during a certain period of time,
as the only methods of conceptual exchange. In terms of mixed communication, which
means that verbalization and sketching occur simultaneously during a period or quickly
alternate. Table 1 presents specific instances collected from one of the dyads, elaborating
on each defined design behavior observed during the design collaboration process. Two
well-trained investigators conducted the episode segmentation separately aligning with the
same criteria. By comparing the segments classified by the 2 investigators, 23 controversial
segments were excluded. Overall, 432 segments were extracted, of which 250 episodes
occurred within the co-located context and 182 were distributed collaborations.

Table 1. Examples of detailed transcripts and sketching activities (screenshots) in each design
condition: verbal only, sketch only, and mixed communication (sketch and verbal).

No. Condition Specific Behaviour Instances (Scripts and Screenshots)

1 Verbal only

Participant A explained
ideas by verbalization only.

Participant B plays as
an audience.

A: “What do you think about this, like
this, stacking all the modules.”

A: “It’s a bit like Noah’s Ark. Or it can
also be stacked like a pyramid.”

B: “I think it looks great.”

Participant B explained
ideas by verbalization only.

Participant A plays as
an audience.

B: “I’m thinking we can keep the under
layer as a circle shape.”

B: “Because if the shape is too flat, it
may not float on the water, or maybe it

could be just like a little boat.”
A: “I can picture what you

are describing.”

Participants exchange
design ideas alternately

and finally reach
a consensus.

A: “But the size of this ball cannot be
too small”

B: “But if the shape is a ball, they might
fall easily”

A: “I think it’s okay, because they can
float on the water”

B: “Oh! You’re right.”

2 Sketch only

Participant A explains
ideas by sketching only.

Participant B plays as an
information receiver.
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Table 1. Cont.

No. Condition Specific Behaviour Instances (Scripts and Screenshots)

2 Sketch only Participants design by
sketching collaboratively.
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3.4.2. IBS Analysis
fNIRS Data Segmentation and Variance Estimation

The continuous fNIRS data were divided into 15 s windows according to those be-
havior segments defined in Table 1. For each of these time windows and each channel,
the variance was calculated. To ensure the quality of the signals and eliminate outliers,
time windows with variance values above or below 2.5 standard deviations from the mean
variance calculated across all time windows and channels were excluded. This step was
crucial to filter out periods with potential motion artifacts, which could result in high
variance, and dead periods (where no signal was captured), which would result in low
variance. Since the behaviors of each pair of participants varied (i.e., some pairs may exhibit
more verbal behavior, while others may exhibit more sketching behavior), the selected
time windows were randomly sampled to avoid bias. For each condition (face to face and
remote) and each behavior (verbal only, sketch only, and simultaneous verbal and sketch),
10 times windows were selected.
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Establishment of Synchrony Measurement

The fNIRS device used in this study was capable of capturing data from eight channels
per participant. Four of these channels were situated on the left frontal region of the brain
and four on the right frontal region, thereby allowing for a comprehensive capture of brain
activity across these vital areas. After the data collection, the channels were aggregated
for each side of the brain for each participant. This process resulted in four distinct data
sets: Participant 1’s left frontal activity, Participant 1’s right frontal activity, Participant
2’s left frontal activity, and Participant 2’s right frontal activity. Synchrony measures were
then established around the two regions of interest—left and right frontal regions—for
each participant. This resulted in four distinct paths for IBS analysis: (i) Participant 1 Left
Frontal to Participant 2 Left Frontal; (ii) Participant 1 Left Frontal to Participant 2 Right
Frontal; (iii) Participant 1 Right Frontal to Participant 2 Left Frontal; (iv) Participant 1 Right
Frontal to Participant 2 Right Frontal. These paths provide a comprehensive framework for
analyzing the interplay and synchrony of brain activities between the participants during
their design collaboration under various conditions and modes of communication.

IBS between any pair of sites were measured with the average length of the Kuramoto
Order Parameter (KOP). The KOP measures the phase synchrony between two signals
by calculating the vector average of phase angles over time (see Figure 7). A value of
1 indicates perfect phase synchrony, while a value near 0 indicates no phase synchrony.
The KOP was calculated for each pair of brain sites in each experimental condition. The
average KOP length across time was then used as the index of IBS between those two sites.
Higher average KOP lengths indicate greater IBS.
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Figure 7. Illustration of Kuramoto Order Parameter (the phase angles for two signal sources are
depicted by green dots, originating from their respective unit vectors; the blue arrows represent the
mean direction of these unit vectors). (a) the proximity of phase angles between the two signals
results in a magnitude nearly equal to 1; (b) shows that the phase angles from both sources are
aligned, producing a magnitude of exactly 1; (c) illustrates that the sources are in antiphase, leading
to a magnitude of 0.

IBS Calculation

To calculate IBS, we extracted 20 non-overlapping 15 s time windows from the brain
signal data timed to the interaction between the two participants as shown in the video.
Within each window, we calculated the instantaneous Kuramoto Order Parameter (KOP),
denoted r, between the two brain sites at each time point. For example, with 150 time points,
this gave 150 r values. We averaged these r values to obtain a “window-level” synchrony
value representing the phase synchrony during that 15 s period. We then averaged the
20 “window-level” r values within each experimental condition to obtain a “dyad-level”
mean KOP, denoted r, for that condition. Since there were 20 window-level values per
condition, each dyad-level r represented the mean synchrony across those 20 time periods.
The synchrony index r ranges from 0 to 1. A value of 0 indicates completely out-of-phase
signals, while 1 indicates perfect in-phase synchrony. Intermediate r values indicate partial
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synchrony. Thus, the dyad-level r reflected the average phase synchrony between the two
brain sites during a given experimental condition.

4. Results
4.1. IBS Analysis

To understand the effects of different conditions (co-located vs. distancing) and be-
haviors (verbal only, sketch only, mixed interaction (verbal + sketch)), we employed a
linear mixed model. This model allowed us to establish the main effects of condition and
behavior, as well as their interaction effects. Following this, post hoc pairwise comparisons
were calculated where appropriate to further delve into the differences between the con-
ditions and behaviors in terms of their influence on IBS. Given the small sample size of
this preliminary study, we refrained from reporting the statistical results at the individual
channel-to-channel synchrony level. However, to provide insights into the patterns of
IBS, we still present the mean values of synchrony for each of the four established paths:
(i) Participant 1 Left Frontal to Participant 2 Left Frontal; (ii) Participant 1 Left Frontal to
Participant 2 Right Frontal; (iii) Participant 1 Right Frontal to Participant 2 Left Frontal; and
(iv) Participant 1 Right Frontal to Participant 2 Right Frontal. These mean values offer a
preliminary view of the patterns of IBS under different conditions and behaviors, further
contributing to our understanding of collaborative cognition in design tasks.

Our preliminary study revealed several findings that highlight the differences in IBS
among designers collaborating in a face-to-face (F2F) setting compared with a remote
setting (see Figure 8). The interactions were categorized into three design behaviors: verbal
communication only, sketching only, and mixed communication (V + S). The IBS was higher
during the sketch-only behavior in the F2F condition compared to the remote condition.
Conversely, during the V + S behavior, the IBS was higher in the remote condition than
in the F2F condition. In addition, in the F2F condition, IBS was greater during the sketch-
only behavior than during the V + S behavior. In the remote condition, however, the IBS
was higher during the V + S behavior than during the sketch-only behavior. In the F2F
condition, the IBS was smallest during the V + S behavior compared to both verbal-only
and sketch-only behaviors.
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4.2. Statistical Analysis

To examine the influence of experimental conditions and behaviors on inter-brain
synchrony (IBS), we specified a linear mixed-effects model with the formula IBS~Condition
× Behavior + (1|Dyad) + (1|Path). In this model, IBS is the dependent variable, reflecting
the inter-brain synchrony coefficient. Condition and behavior are treated as fixed effects,
with their interaction term, Condition × Behavior, investigating whether the effect of one
factor is contingent on the level of the other. Random effects terms (1|Dyad) and (1|Path)
introduce random intercepts for each dyad and each path, respectively, which allow for the
modeling of variability within dyads and paths that are not captured by the fixed effects.

Model fitting was conducted using the ‘lme4’ package in R. To determine the sig-
nificance of the fixed effects, we performed an Analysis of Variance (ANOVA) using the
ANOVA function from the stats package, which yielded an ANOVA table presenting the
degrees of freedom, the sum of squares, mean squares, F-statistics, and associated p-values
for each fixed effect (see Table 2). To ascertain the necessity of including random effects in
our model, we compared it to simpler nested models with different random effects struc-
tures. Specifically, we compared our full model (IBS~Condition × Behavior + (1|Dyad) +
(1|Path)) to a model with random intercepts for dyads only (IBS~Condition Behavior +
(1|Dyad)) and to a linear model without random effects (IBS~Condition × Behavior). These
comparisons were made using chi-square tests (Figures 9 and 10), which are appropriate for
comparing nested models differing in complexity. Additionally, the chi-square test results
indicated that the full model with both (1|Dyad) and (1|Path) random effects provided
a significantly better fit to the data than the models with fewer random effects, justifying
the inclusion of both random intercepts in our analysis. For post hoc analysis (see Table 3),
pairwise comparisons of the estimated marginal means for each pair of conditions within
behavior levels and each pair of behaviors within condition levels were executed using the
‘emmeans’ package. We addressed the multiple comparison issue by applying the False
Discovery Rate (FDR) correction using the Benjamini–Hochberg procedure to control for
type I errors.

Table 2. ANOVA test for the interaction effect between condition and behavior.

Variable Sum Sq Mean Sq NumDF DenDF F Value p-Value

Condition 0.00901 0.009011 1 1073.8 0.172 0.678
Behavior 0.05676 0.028382 2 1073.8 0.5417 0.582

Interaction 0.47281 0.236405 2 1073.8 4.5124 0.011
Notes: Sum Sq: Sum of Square; Mean Sq: Mean Sum of Square; numDF = numerator degrees of freedom; denDF
= denominator degrees of freedom.

Table 3. Post hoc analysis of pairwise comparisons at each level of condition and behavior.

Condition Behavior Contrast Estimate SE df T Ratio p-Value fdr p

F2F / Sk − Vb −0.010 0.024 1082.02 −0.393 0.691 0.691
F2F / Sk − VS 0.043 0.024 1082.02 1.775 0.073 0.143
F2F / Vb − VS 0.053 0.024 1082.02 2.168 0.029 0.097

Remote / Sk − Vb −0.024 0.024 1082.02 −1.001 0.311 0.350
Remote / Sk − VS −0.052 0.024 1082.02 −2.120 0.032 0.097
Remote / Vb − VS −0.027 0.024 1082.02 −1.119 0.258 0.332

/ Sk F2F − remote 0.042 0.024 1082.02 1.737 0.079 0.143
/ Vb F2F − remote 0.028 0.024 1082.02 1.129 0.254 0.332
/ VS F2F − remote −0.053 0.024 1082.02 −2.158 0.029 0.097

Notes: Sk = sketch only; Vb = verbal only; VS = verbalization + sketch; F2F: co-located interaction; Remote:
distancing interaction.



Brain Sci. 2024, 14, 60 14 of 19

Brain Sci. 2024, 14, x FOR PEER REVIEW 14 of 20 
 

levels were executed using the ‘emmeans’ package. We addressed the multiple compari-
son issue by applying the False Discovery Rate (FDR) correction using the Benjamini–
Hochberg procedure to control for type I errors. 

Table 2. ANOVA test for the interaction effect between condition and behavior. 

Variable Sum Sq Mean Sq NumDF DenDF F Value p-Value 
Condition 0.00901 0.009011 1 1073.8 0.172 0.678 
Behavior 0.05676 0.028382 2 1073.8 0.5417 0.582 

Interaction 0.47281 0.236405 2 1073.8 4.5124 0.011 
Notes: Sum Sq: Sum of Square; Mean Sq: Mean Sum of Square; numDF = numerator degrees of 
freedom; denDF = denominator degrees of freedom. 

Table 3. Post hoc analysis of pairwise comparisons at each level of condition and behavior. 

Condition Behavior Contrast Estimate SE df T Ratio p-Value fdr p 
F2F / Sk−Vb −0.010 0.024 1082.02 −0.393 0.691 0.691 

F2F / Sk−VS 0.043 0.024 1082.02 1.775 0.073 0.143 

F2F / Vb−VS 0.053 0.024 1082.02 2.168 0.029 0.097 

Remote / Sk−Vb −0.024 0.024 1082.02 −1.001 0.311 0.350 

Remote / Sk−VS −0.052 0.024 1082.02 −2.120 0.032 0.097 

Remote / Vb−VS −0.027 0.024 1082.02 −1.119 0.258 0.332 

/ Sk F2F−remote 0.042 0.024 1082.02 1.737 0.079 0.143 

/ Vb F2F−remote 0.028 0.024 1082.02 1.129 0.254 0.332 

/ VS F2F−remote −0.053 0.024 1082.02 −2.158 0.029 0.097 
Notes: Sk = sketch only; Vb = verbal only; VS = verbalization + sketch; F2F: co-located interaction; 
Remote: distancing interaction. 

 
Figure 9. IBS by condition and behavior. Note: Asterisks (*) denote statistical significance with a p-
value less than 0.05. 
Figure 9. IBS by condition and behavior. Note: Asterisks (*) denote statistical significance with a
p-value less than 0.05.

Brain Sci. 2024, 14, x FOR PEER REVIEW 15 of 20 
 

 
Figure 10. IBS by condition, behavior and inter-brain connectivity pathways (Note—S1_LF_S2_LF: 
Designer 1 Left Frontal to Design 2 Left Frontal; S1_LF_S2_RF: Designer 1 Left Frontal to Design 2 
Right Frontal; S1_RF_S2_LF: Designer 1 Right Frontal to Design 2 Left Frontal; and S1_RF_S2_RF: 
Designer 1 Right Frontal to Design 2 Right Frontal). (a) illustrates the Inter-Brain Synchrony (IBS) 
occurring in a co-located setting, where two designers are seated together, engaging in face-to-face 
communication during the design discussion; (b) illustrates the distancing condition, the designers 
are situated in separate rooms, with communication enabled through video conferencing software 
that allows screen sharing and collaborative drawing. 

4.3. Design Outcome Evaluation 
The three design teams were able to satisfy both toy design and multifunctional chair 

tasks between co-located and distributed modes. Table 4 shows the evaluation results of 
the digital sketches by the four design experts. The scores in Table 5 are the average scores 
of the four reviewers. The fourth column (average score) in each mode shows the average 
performance of the three design teams for each criterion. 

 

Table 4. Screenshot of the final design solutions by digital sketches of each team within different 
collaborative environments. 

 Co-Located Mode Distributed Mode 

Team 1 

 
An office toy used for hand relaxing 

A versatile chair can be used as a furniture stool at 
home or as a picnic blanket outdoors. 

Figure 10. IBS by condition, behavior and inter-brain connectivity pathways (Note—S1_LF_S2_LF:
Designer 1 Left Frontal to Design 2 Left Frontal; S1_LF_S2_RF: Designer 1 Left Frontal to Design 2
Right Frontal; S1_RF_S2_LF: Designer 1 Right Frontal to Design 2 Left Frontal; and S1_RF_S2_RF:
Designer 1 Right Frontal to Design 2 Right Frontal). (a) illustrates the Inter-Brain Synchrony (IBS)
occurring in a co-located setting, where two designers are seated together, engaging in face-to-face
communication during the design discussion; (b) illustrates the distancing condition, the designers
are situated in separate rooms, with communication enabled through video conferencing software
that allows screen sharing and collaborative drawing.

4.3. Design Outcome Evaluation

The three design teams were able to satisfy both toy design and multifunctional chair
tasks between co-located and distributed modes. Table 4 shows the evaluation results of
the digital sketches by the four design experts. The scores in Table 5 are the average scores
of the four reviewers. The fourth column (average score) in each mode shows the average
performance of the three design teams for each criterion.
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Table 5. Scores for the design outcomes within different design conditions.

Criteria
Co-Located Mode Distributed Mode

Team 1 Team 2 Team 3 Av Team 1 Team 2 Team 3 Av

How innovative 6.1 5.5 4.8 5.5 5.3 5.1 4.5 5.0

How creative 6.3 6.0 5.3 5.9 5.8 5.6 6.1 5.8

Satisfying design task 7.1 6.7 6.0 6.6 6.2 6.6 6.8 6.5

Practical solution 7.3 6.5 6.7 6.8 6.0 6.4 5.7 6.0

Flexibility of the design 6.2 6.4 7.1 6.6 6.3 6.6 7.0 6.6

Av 6.6 6.2 6.0 6.3 5.9 6.1 6.0 6.0

Team 1’s co-located mode design outcome received higher scores in terms of satisfying
the design task (7.1 vs. 6.6) and practical solution (7.3 vs. 6.4). The criterion of flexibility
of the design score was closer for the two design outcomes (6.2 vs. 6.3). In addition, the
average scores for both collaboration modes were very similar for Team 2 and Team 3
(6.2 vs. 6.1 and 6.0 vs. 6.0). Overall, the three design teams in both collaboration modes
produced very similar design outcomes.

5. Discussions

Our study provides valuable insights into the nuances of collaborative design pro-
cesses under different conditions, and how these conditions can influence IBS. The increased
IBS during the sketch-only behavior in the F2F setting suggests that co-located interactions
might facilitate a better shared understanding when designers are expressing their ideas
purely through sketches. This could be attributed to the immediate and unfiltered feedback
made possible by real-time, physical interactions. In this setting, non-verbal cues such
as body language or facial expression might also play a significant role. In contrast, the
higher IBS observed during the mixed communication (verbal and sketch) in the distributed
condition indicates that this combination of communication modes might be more effective
in synchronizing the designers’ cognitive processes when working remotely. This might be
due to the increased reliance on verbal communication to form a shared understanding
in the absence of physical presence. The need to articulate thoughts clearly and concisely
during remote collaboration might lead to a more coordinated cognitive process.

Interestingly, IBS was greater during sketch-only behavior compared to mixed verbal
and sketching communication in the co-located condition. Conversely, within the remote
collaboration setting, IBS was elevated during mixed communication versus sketch-only
behavior. This suggests the form of interaction that best facilitates cognitive alignment
may heavily depend on whether design partners share physical space. Notably, the lowest
IBS in face-to-face collaboration occurred with simultaneous verbalization and sketching,
potentially indicating heightened cognitive demands that desynchronize neural processes.
The richness of contextual cues in physical proximity may further challenge integration
across multiple communication modes. Furthermore, the highest IBS took place when
collaborators communicated in verbal-only within the co-located condition, while the
mixed communication (verbal and sketch) behavior promoted the highest IBS during
online design collaboration. This finding supports the prior discoveries [29] of increased
time allocated to sketching in virtual teams. These preliminary findings could profoundly
influence the development of optimally collaborative work environments and digital
platforms. Further research should elucidate the precise mechanisms relating design team
synchrony to performance across contexts, providing actionable direction for enhancing
collective innovation.

The limitation of this preliminary study constrains the generalizability of the findings
and conclusions. Firstly, the small sample size of the three dyads restricts the statistical
power and precludes drawing definitive conclusions regarding the impact of different
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collaborative settings on IBS patterns and design outcomes. Additional participants are
necessary to quantitatively discern such effects. Additionally, the limited age range and
design experience level of the participants may not represent the true diversity of collabo-
rative teams in real-world design practices. Broader sampling would augment ecological
validity. Therefore, future studies will be conducted on larger and more diverse samples,
considering additional confounding variables, such as gender, age ranges, and years of
design experience.

6. Conclusions

This study investigated the patterns of brain synchrony among design collaborators
during the conceptual design process within two collaborative environments: distributed
and co-located settings. The consequences based on the preliminary study emphasize sev-
eral variations in IBS among designers collaborating in these two settings. Through protocol
analysis, interactions between each dyad were classified into three categories: verbal-only,
sketch-only, and mixed interaction (verbal and sketch). Subsequently, according to the
hyper-scanning analysis, the increased IBS was observed during the sketch-only behavior
in the co-located setting, suggesting that sketching might be a facilitator for better mutual
understanding when design collaboration occurs face to face. This could be attributed to
the immediate and unfiltered feedback made possible by real-time, physical interactions.
Comparably, our results revealed a higher level of IBS when subjects employed mixed com-
munication (verbal and sketch) in distributed conditions, demonstrating the combination
of verbal communication and sketching might lead to a more coordinated cognitive process
when physical isolation.

Moreover, the IBS was greater during the sketch-only behavior than during the mixed
communication behavior within the co-present setting. Interestingly, the level of IBS
was found to be higher when participants performed sketch-only behavior compared
to mixed communication behavior in the co-present settings, while the IBS was higher
during the combination of verbal and sketching behavior within remote settings. This
finding illustrates the close associations between the utilization of communication methods
improving cognitive synchrony and collaborative environments. Design collaborators
are inclined to adjust their interaction behaviors in order to adapt to different design
environments and strengthen the exchange of opinions and the construction of consensus.
Furthermore, the results indicate that there were no significant differences in overall
collective performance and design outputs between these two collaboration contexts.

To draw statistical conclusions on the impact of IBS on team behavior and performance,
it is suggested that future studies be conducted with a larger sample size along the same
framework. The preliminary study demonstrated how neuroimaging can be used to
analyze behavioral patterns in two different collaboration environments. It could be a step
towards building effective virtual teamwork beyond the design realm. Furthermore, these
findings could have important implications for the design of collaborative workspaces with
digital tools. Further study is needed to better understand the underlying mechanisms and
how these insights could be applied to optimize team performance in design contexts. In
subsequent research, interventions that promote IBS can be tested, such as team training,
introducing diversity within groups, and assessing their impact on IBS.
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