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Abstract: Free radicals are formed as a part of normal metabolic activities but are neutralized by
the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This re-
dox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress,
which is implicated in several progressive neurodegenerative diseases. Following neuronal injury,
secondary injury progression is also caused by excessive production of free radicals. Highly reactive
free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage
the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of
degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a
key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise
to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxi-
dants have been evaluated. Despite promising results in preclinical studies, clinical translation of
antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be
their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant
capacity, requiring repeated and high dosing, which cannot be administered to humans because of
dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant
enzymes to address some of the above issues. Apart from being endogenous, the main advantage
of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more
effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic
antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy,
challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play
in addressing these challenges.

Keywords: neurodegeneration; reactive oxygen species; inflammation; polymers; CNS; antioxi-
dant enzymes

1. Introduction

Free radicals are generated during pivotal biological processes such as metabolic reac-
tions, cell signaling, and gene transcription [1]. Cellular organelles such as mitochondria,
peroxisomes, lysosomes, microsomes, endoplasmic reticulum, plasma membrane, and
phagocytic cells are also the source of free radical production [2,3]. External factors such as
environmental pollutants, radiation, smoking, heavy-metal exposure, diet, and physical
exercise also contribute to the production of free radicals [4,5]. Under normal conditions,
the innate antioxidative defense system that includes various enzymatic and nonenzymatic
antioxidants neutralize free radicals, thus maintaining the redox balance [6]. This balance
is disrupted under certain pathological conditions such as genetic mutations, inflammation,
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injury, ischemia/reperfusion, etc. [7–9]. Excessive free radicals formed overwhelm the
endogenous antioxidant defense mechanism, thus causing oxidative stress which downreg-
ulates the endogenous defense system [10,11]. Neuronal cells are particularly susceptible
to damage due to free radicals, as they contain high levels of unsaturated lipids that are
susceptible to oxidation and the presence of high levels of redox-active transition met-
als that catalyze the formation of free radicals [12]. The central nervous system (CNS)
has high metabolic activity and, hence, a high oxygen demand, which favors free radical
formation [13]. Metabolism of neurotransmitters also produces free radicals [14]. The
CNS also has a relatively weaker antioxidant defense than other organs (e.g., liver) which
makes it more susceptible to oxidative stress than other organs [15,16]. Under oxidative
stress condition, dysfunctional mitochondria are unable to meet the high energy need of
neuronal cells for their normal biochemical and physiological functions; hence they become
vulnerable to rapid cell death [17].

Pro-oxidants or free radicals are usually those atoms or molecules that contain an
unpaired electron in their outermost orbit and can be formed when oxygen interacts
with certain molecules [18]. These free radicals are very unstable but highly reactive
and, when they interact with other molecules, create additional free radicals, initiating
a self-propagating chain reaction of free radical formation [18]. Free radicals contain
reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS are chemically
reactive molecules containing oxygen, whereas RNS includes nitrogen (N) and oxygen (O)
atoms. The ROS and RNS produced in cells comprise both free radical and non-free radical
species and include hydrogen peroxide (H2O2), nitric oxide (•NO), nitrogen dioxide (•NO2),
hydroxyl radical (•OH), superoxide anion (O2

•−), peroxynitrite (OONO−), hypochlorous
acid (HClO), etc. The •OH radical, produced from H2O2 in the metal-catalyzed (free Fe
and Cu) redox reactions such as Fenton reaction, is particularly unstable and reacts rapidly
and nonspecifically with most biological molecules [3].

1.1. Endogenous and Exogenous Sources of Free Radicals

There are multiple cellular processes and biochemical reactions that produce free
radicals as a part of normal cellular function. For e.g., during Electron Transport Chain
(ETC) and its five integrated mitochondrial complexes (I, II, III, IV, and V), reduction of
O2 to H2O by cytochrome c oxidase prematurely generates ROS such as singlet oxygen
(1O2), O2

•−, •OH, and H2O2 [19–21]. Intracellular organelle, peroxisomes, responsible
for degradation of fatty acids, generate H2O2 as a byproduct [22]. Neutrophils that con-
tain myeloperoxidase (MPO) uses H2O2 and halides (Cl−, Br−, and I−) or pseudohalide
(SCN−) ions to catalyze the production of free radicals [23]. Phagocytic cells (neutrophils,
macrophages, and monocytes) while defending the CNS against invading microorganisms
or clearing the dead cell debris produces ROS [24]. Cytochrome P450 is another intracellular
enzyme present in microsomes and the endoplasmic reticulum catalyzes the ROS forma-
tion [25]. Cytosolic enzymes such as xanthine oxidase (XO) during the catalytic oxidation
of hypoxanthine to xanthine and Prostaglandin H Synthase (PHS) from arachidonic acid to
prostaglandin generate ROS [24]. In addition, environmental pollutants; ionizing radiation
(UV-rays, X-rays, γ-rays, and infrared or electromagnetic waves); smoking; long-term
chemical exposure like pesticides, insecticides, or industrial solvents; heavy or transition
metals (Cu, Fe, Mn, As, Cd, Pb, and Hg); diet; and physical exercise contribute to the
production of ROS/RNS [26–39].

1.2. Free Radicals: A Double Edge Sword

Under normal physiological conditions, low levels of ROS are essential for the regula-
tion of critical signaling pathways involved in cell growth, proliferation, differentiation,
survival, regulation of blood pressure, cognitive function, immunity, and maintaining
normal antioxidant defense mechanisms of the body [40]. RNS in the CNS regulate cerebral
blood flow and memory and plays a significant role in maintaining the immune system
and cytokine production [41]. However, excess ROS and RNS, which are the byproducts
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of the oxygen and nitrogen-rich tissue environment in the body, if not neutralized by the
endogenous antioxidants, results in oxidative/nitrosative stress [42]. Such conditions can
damage cells by starting a chemical chain reaction and modifying biomolecules, i.e., lipids,
proteins, and DNA [43]. The ROS produced by mitochondria can accelerate the oxida-
tion of polyunsaturated fatty acids in the cell membrane lipids, a process known as lipid
peroxidation (LPO) that changes the cell membrane structure, impairing its integrity, thus af-
fecting cell signaling. The LPO products such as F2-isoprostanes, malondialdehyde (MDA),
4-hydroxynonenal (4-HNE), and oxidized low-density lipoproteins (LDL) can further dam-
age proteins and nucleic acid bases [44]. With oxidative stress, multiple changes can occur
such as mitochondrial DNA mutation, impairment in the mitochondrial respiratory chain,
and change in membrane permeability influencing Ca2+ homeostasis [20,45–47].

2. Oxidative Stress and Neurodegenerative Diseases

Cell damage triggers a cascade of degenerative events via mitochondrial dysfunction,
neuroinflammation, apoptosis, and tissue necrosis [20,48,49]. Oxidative stress-induced
homeostatic dysregulation remains a central component of several neurodegenerative dis-
eases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral
Sclerosis (ALS) [7]. Examples of injury-triggered neurodegenerative diseases include stroke,
spinal cord injury (SCI), peripheral nerve injury (PNI), etc. [8,9]. The common link between
these neurodegeneration conditions is oxidative stress, ineffective antioxidant defense, and
mitochondrial dysfunction (Figure 1).

Figure 1. Schematic representing the effect of oxidative stress in neurodegenerative diseases. Im-
balance in the level of ROS/RNS and antioxidants leads to an oxidative stress condition that causes
damage to cellular biomolecules, i.e., lipids, proteins, and DNA. Mitochondrial dysfunction and
accumulation of activated astrocytes and microglia release inflammatory cytokines and chemokines,
promoting cellular apoptosis and tissue death.
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2.1. Progressive Neurodegenerative Diseases
2.1.1. Alzheimer’s Disease (AD)

AD, a leading cause of dementia, is characterized by a progressive decline in cognitive
function [48]. Amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), hyperphosphory-
lated microtubule-associated protein tau, and neuronal loss within the brain are specific
histopathological hallmarks of the AD [49]. Prior to the development of plaque pathology,
oxidative stress has been recognized as the key player in the etiology of AD, contributing
to mitochondrial dysfunction in synapses and neurons, and in Aβ production [50,51]. In
fact, the concept of oxidative stress in AD was originally derived from the “free radical
theory of aging”, meaning that free radicals play a central role in the aging process [52].
Mitochondrial dysfunction in AD includes impaired mitochondrial complexes [53–56], mal-
functioning of F1Fo adenosine triphosphate (ATP) synthase, which is involved in oxidative
phosphorylation [57,58], and damage to the promoter of the mitochondrial ATP synthase
gene that controls ATP generation [59,60]. Further, dysfunctional mitochondria produce
4-HNE that upregulates γ-secretase complex and promotes cleavage of the amyloid pre-
cursor protein (APP), leading to Aβ accumulation [61,62]. In addition, increased Ca2+ and
ROS levels lead to a buildup of p-tau aggregates which are toxic and are considered as
one of the defining pathological hallmarks of the AD [63]. ROS also play a pivotal role in
the stress kinases like the phospho-c-Jun N-terminal kinase 1 (p-JNK) pathway which is
linked to tau hyperphosphorylation and cell death in response to Aβ accumulation [64].
Further, oxidative stress reduces the activities of antioxidants, i.e., superoxide dismutase
(SOD), catalase (CAT), and glutathione S-transferase (GST), thus weakening the endoge-
nous antioxidant defense of the CNS [65]. The increased levels of LPO under oxidative
stress are strongly associated with neurotoxicity in AD [50] as it leads to an increase in
amyloidogenesis through upregulation of β-secretase expression [66]. Although there are
several downstream degenerative events, it appears that mitochondrial dysfunction and
oxidative stress are the key triggering factors in the pathogenesis of AD.

2.1.2. Parkinson’s Disease (PD)

PD is the second-most common neurodegenerative disease after AD that causes both
motor and nonmotor symptoms [67]. The pathology of PD is driven by the accumulation
and aggregation of α-synuclein, a presynaptic neuronal protein in the nervous system [68].
The mechanisms associated with the pathogenesis of PD include aberrant protein home-
ostasis, bioenergetic impairment, and oxidative stress [69]. Oxidative stress is associated
with α-synuclein protein aggregation [64]. The cascade of events leading to degeneration
of dopaminergic neurons in PD is also linked to oxidative stress [70]. Analysis of the
postmortem brain tissue of the victims of PD shows elevated levels of oxidative stress
markers such as 4-HNE, protein carbonyl, 8-hydroxy-2′-deoxyguanosine, and 8-hydroxy-
guanosine [71]. In addition, oxidative stress is associated with the formation of Lewy
bodies, which are the clumps of protein in the PD brain [72]. Experimental evidence in PD
models suggests that oxidative stress in the dopaminergic neurons activates p38 mitogen-
activated protein kinase (p38 MAPK) pathway that ultimately leads to apoptosis of the
brain cells [73].

2.1.3. Amyotrophic Lateral Sclerosis (ALS)

ALS is also known as Lou Gehrig’s disease, in which motor neurons in the brain,
brain stem, and spinal cord are damaged, resulting in muscle weakness, atrophy, paralysis,
and premature death [74]. Oxidative stress, mitochondrial dysfunction, and mutations
in the genes that act on mitochondrial processes are involved in the pathophysiology
of the ALS [75,76]. Most of the familial ALS patients (15–20%) have mutations in the
superoxide dismutase 1 (SOD1) gene, which plays an important role in the defense mech-
anism against oxidative stress [77]. More than 150 ALS-related SOD1 gene mutations
have been discovered in various parts of the enzyme, which result in protein misfolding
and aggregation, increased ROS production, and redox system disequilibrium, ultimately
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resulting in nerve cell loss [77,78]. ALS is also linked to several interrelated risk factors,
such as neuroinflammation, excitotoxicity, mitochondrial dysfunction/dysregulation, and
endoplasmic reticulum stress [79–81]. Considerably high oxidative stress biomarkers such
as MDA, 8-hydroxyguanosine, and advanced oxidation protein products are found in
ALS patients [82]. In sporadic ALS patients, cystine/glutamate antiporter overexpression
was observed that causes increased oxidative stress and extracellular glutamate accumula-
tion [83]. In addition, dysregulation of the retinoic acid (RA) signaling pathway, a product
of vitamin A, contributes to the death of motor neurons [84].

2.2. Injury-Induced Oxidative Stress

Neuronal tissue injury, physical or due to ischemic condition, is known to induce
oxidative stress that triggers progressive degeneration, known as secondary injury.

2.2.1. Stroke

In stroke, thrombus formation in cerebral blood vessels creates an ischemic condition,
triggering free radical formation and tissue damage (Figure 2) [85]. Resumption of blood
supply to the ischemic region further exuberates the condition as more free radicals are
formed, termed “reperfusion injury or reoxygenation injury” [86]. Collectively, it is referred
to as the ischemia/reperfusion (I/R) injury [86]. Oxidative stress leads to mitochondrial
dysfunction, neuroinflammation, and glutamate excitotoxicity, resulting in the blood-brain
barrier (BBB) damage, apoptosis/necrosis of neurons, and supporting cellular elements
(glial cells and vessels) [87–89]. These are the prominent features of neurodegeneration
in the stroke-related cerebral pathology [90–93]. Further, excessive ROS production or
impaired ROS degradation [94,95] stimulates vasoconstriction, increased platelet aggre-
gation, and endothelial cell permeability, thereby affecting cerebral blood circulation [96].
Activation of matrix metalloproteinases (MMPs) disrupts the cerebral extracellular matrix
(ECM), which causes immunocyte infiltration and neuroinflammation, culminating in the
breakdown of the neurovascular unit (NVU), leading to hemorrhage and edema [97,98].

Figure 2. ROS-mediated degenerative events during a stroke. Excessive production of ROS during
I/R injury leads to mechanical damage to the brain due to breakdown of the BBB, hemorrhage
and edema, causing a build-up of intracranial pressure (ICP). The biochemical changes lead to
inflammation and progression of apoptosis. Therefore, excess ROS formed during I/R is considered
a target to inhibit the progression of secondary brain damage.
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2.2.2. Spinal Cord Injury (SCI)

SCI is another common form of neuronal injury that causes neurological dysfunc-
tions [99] and is characterized by an initial primary injury followed by the secondary
phase of injury (Figure 3) [100]. Primary injury results immediately from the initial trauma
causing damage to the blood vessels and axons [101]. In contrast, secondary injury is the in-
direct result of the primary injury that involves inflammation and oxidative stress [10]. The
secondary injury progression occurs not only at the site of impact, but it spreads along the
entire spinal cord, including the faraway segments of the spinal cord that are not impacted,
making the condition more devastating and debilitating with time [101]. Following injury,
the elevated levels of ROS and the consequent oxidative stress are considered critical events
associated with the secondary injury progression [102]. Under oxidative stress condition,
dysfunctional mitochondria become the source of ROS [103] that cause a further cascade
of degenerative processes, particularly curtailing ATP production required for normal
cellular functioning, thus promoting apoptosis [103]. The excess ROS alters cell functions
by modulating ion channels, followed by excessive accumulation of intracellular calcium
ions that eventually causes excitotoxicity [104]. Oxidative stress damages the microvascular
endothelium that reduces the spinal cord white matter blood flow, resulting in ischemic
injury [105].

Figure 3. Secondary injury cascade following spinal cord injury. Traumatic injury to the spinal cord
leads to secondary injury progression that affects the lesion site and the entire spinal cord, including
the cranial and caudal segments of the spinal cord. Following injury, excessive production of ROS is
considered to trigger the secondary injury cascade of progressive degeneration that affects the entire
spinal cord.
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2.2.3. Peripheral Nerve Injury (PNI)

The peripheral nervous system (PNS) is a bundle of long nerve fibers that connect
different parts of the body with the CNS. Damage to the peripheral nerves due to trauma
and compression can cause impairment in the brain’s communication with the target
organs [106]. These injuries affect motor and sensory behaviors, perception, consciousness,
and sensations of the skin and joints [106]. The most common symptoms of PNI are
the defects in sensory and motor function that can lead to complete paralysis of the
affected limb or the development of an intractable neuropathic pain [107]. Many surgical
procedures, such as oral and maxillofacial surgery, can also cause injury to the peripheral
nerves [108]. The major component of the mechanism and pathogenies of PNI involves
oxidative stress and inflammation that exacerbates neural damages and plays a negative
role in the regeneration process [109]. Experimental evidence at the preclinical level has
demonstrated that inhibiting oxidative stress could help improve functional recovery by
accelerating the repair processes [110–114].

Other neurodegenerative diseases implicated due to oxidative stress are: vascular de-
mentia [115], Down syndrome [116], Autism [117], attention-deficit/hyperactivity disorder
(ADHD) [118], Huntington’s disease (HD) [119], multiple sclerosis (MS) [120], depres-
sion [121], and epilepsy [122]. Similarly, in traumatic brain injury (TBI) [123], progressive
degeneration occurs due to the accumulation of excessive free radicals, glutamate release,
Ca2+ overload, mitochondrial dysfunction, leading to apoptosis/necrosis [123].

3. Antioxidants

From the above review of the etiology of different neurodegenerative diseases, oxida-
tive stress is considered as the key component, whether these are chronic neurodegenerative
conditions such as AD, PD, or ALS or caused by neuronal tissue injury, such as in stroke,
SCI, or PNI. Dysfunctional mitochondria under oxidative stress become the main source of
free radical formation and deplete the energy needed for normal cellular function, lead-
ing to inflammation and cell death [124]. Another set of literature data indicates that
dysfunctional mitochondria cause oxidative stress [125]. Thus, there is a complexity in
understanding the root cause, whether oxidative stress leads to mitochondrial dysfunc-
tion, or it is mitochondrial dysfunction that leads to oxidative stress [49,126,127]. Despite
ambiguity on the root cause of oxidative stress, it is hypothesized that an effective treat-
ment based on antioxidants can alleviate oxidative stress and regain the redox balance
that can attenuate mitochondrial dysfunction and curtail the downstream cascade of de-
generation [126]. It is also contemplated that oxidative stress-free condition can promote
regeneration and healing by the endogenous mechanisms, such as by promoting migration
and differentiation of progenitor and stem cells [127]. In addition, an oxidative stress-free
environment could promote differentiation of macrophages preferentially to M2 phenotype,
which contains growth factors and can promote healing, rather than to M1 phenotype,
which contains degenerative inflammatory cytokines [128]. With this in consideration,
natural and synthetic antioxidants have been evaluated in preclinical model studies and
clinical trials [129].

Antioxidants can reduce oxidative stress by quenching/scavenging free radical in-
termediates, thereby preventing oxidative chain reactions from propagating [4]. These
antioxidants predominantly include various endogenous antioxidant enzymes with their
substrates or coenzymes and nonenzymatic antioxidants, along with exogenous (natural
and synthetic) antioxidant sources that maintain the redox equilibrium in the biological sys-
tem [130]. Endogenous antioxidant activity is directly regulated by nuclear factor erythroid
2-related factor 2 (Nrf2). It is a ubiquitous redox-sensitive transcription factor that stim-
ulates the expression of antioxidant response element (ARE)-containing gene promoters
involved in ROS detoxification. These promoters are heme oxygenase 1 (HO-1), glutathione
s-transferase (GST), and NADPH quinine oxidoreductase 1 (NQO1) (Figure 4) [131]. Thus,
the Nrf2 pathway is an important aspect of the cellular defense mechanism against oxida-
tive stress [132].
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Figure 4. Natural and synthetic antioxidants: Classification of natural and synthetic antioxidants
and the endogenous Nrf2 pathway, which regulates the activation of ARE genes. Kelch-like ECH-
associated protein 1 (Keap1) represents a negative regulator of Nrf2. Under physiological conditions,
Keap1 forms a ubiquitin E3 ligase complex with Cullin3 in the cytoplasm that targets Nrf2 for
polyubiquitination and rapid proteasomal degradation. During oxidative stress, cysteines in Keap1
are modified and inactivated, and Nrf2 can quickly translocate into the nucleus, where it binds to
small musculoaponeurotic fibrosarcoma oncogene homolog (sMaf) proteins, upregulates downstream
ARE genes, and maintains redox homeostasis.

3.1. Endogenous Antioxidants

The inherent antioxidative protective mechanism is composed of antioxidant en-
zymes such as superoxide dismutase (SOD), catalases (CAT), and glutathione peroxidases
(GPx-1) [130]. In addition, low-molecular-weight nonenzymatic antioxidants include thiol
antioxidants (Glutathione, α-lipoic acid), uric acid, and coenzyme Q10 (CoQ10) [133].
By scavenging excess ROS and limiting further generation of free radical species, these
antioxidants collectively can prevent the detrimental effects of oxidative stress [134]. An-
tioxidants can also neutralize any free radical or a reactive species that can produce new
free radicals [135].

3.1.1. Antioxidant Enzymes

Superoxide Dismutase (SOD): SOD is a heterogeneous metalloprotein enzyme having
four different types of metals at the center, i.e., Cu, Zn, Fe, Mg, and Ni with a crystalline
nature. In the presence of these metal ion cofactors, SOD located in the cytosol and
mitochondria catalytically converts O2

•− into O2 and H2O2 [136]. O2
•− is detoxified to

yield H2O2 by Mn-SOD in the mitochondrial matrix or by Cu/Zn-SOD in the cytosol and
intermembrane space, and H2O2 can also be transformed to •OH in the presence of reduced
transition metals [40]. Cu/Zn-SOD enzymes play a critical function in the first line of
antioxidant defense [135].

Catalase (CAT): It is a tetrameric porphyrin-containing enzyme found mostly in the
peroxisome that protects cells by converting H2O2 into H2O and O2 using either a Fe or
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Mn cofactor [137]. This mechanism prevents the formation of H2O2 and lowers the level of
ROS; both are important mechanisms in the development of oxidative stress tolerance [135].

Glutathione Peroxidases (GPx): GPx is another intracellular enzyme that reduces ROS
levels by conversion of H2O2 into H2O while oxidizing glutathione (GSH) to produce
H2O and glutathione disulfide (GSSG) [138]. Several isoforms of GPx contain either five
selenium cofactors or three noncysteine residues, which is important for enzyme activity.
Most of these enzymes are found in the mitochondrial matrix, with a little quantity in the
cytoplasm [139].

3.1.2. Antioxidant Non-Enzymes

Glutathione (GSH): GSH is a tripeptide composed of amino acids, i.e., glycine, cysteine,
and glutamic acid, and is the most abundant endogenous water-soluble antioxidant. GSH
can directly neutralize ROS and is an important factor in the xenobiotic metabolism [140].
To maintain an intracellular reducing environment and counteract excessive generation
of ROS, GSH works with three groups of detoxification enzymes. These enzymes include
glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione oxidase [139].

α-Lipoic Acid (ALA): ALA is categorized as sulfur-containing molecules that catalyze
the oxidative decarboxylation of α-keto acids, such as pyruvate and α-ketoglutarate. As a
universal antioxidant, oxidized lipoic acid and its reduced counterpart, dihydrolipoic acid
(DHLA), can quench free radicals in both lipid and aqueous environments [141].

Uric Acid: Uric acid is a hydrophilic antioxidant produced during purine nucleotide
metabolism that accounts for about 60% of the total blood serum-free radical scavenging
activity. Uric acid is an effective electron donor and scavenger of a variety of ROS, including
•OH, O2

•−, OONO−, HClO, and lipid peroxides. Complete scavenging of such species
requires the participation of ascorbic acid and thiols in its cycle [142].

Coenzyme Q 10 (CoQ10): Coenzyme Q10 (CoQ10) or ubiquinol is another antioxidant
enzyme cofactor involved in the mitochondrial ETC, which transfers electrons in complex I
and complex II to complex III. CoQ10 is a lipid-soluble antioxidant present in all the cell
membranes and inhibits lipid peroxidation [143]. In addition, other antioxidants, such as
Vitamin E and C, require CoQ10 for their recycling and regeneration [144].

3.2. Exogenous Antioxidants

Dietary sources contain complex systems of multiple antioxidants that include vita-
mins (C, E, and A); carotenoids; and various polyphenols that the human body cannot
synthesize. These antioxidants inhibit the initiation of the chain reactions or break the
chain reactions by donating an electron to radicals, resulting in nonharmful species [4].
Furthermore, these exogenous antioxidants aid in the reinforcement and replenishment of
the endogenous antioxidant, allowing the elimination of excess ROS/RNS [145].

Vitamins: Vitamin C (ascorbic acid) represents an efficient electron donor, converting
free radicals to stable entities in the aqueous phase of the cytoplasm [146]. Tocopherols
and tocotrienols are lipid-soluble forms of vitamin E, protecting the membrane lipids
by inhibiting lipid peroxidation caused by oxidative and inflammatory reactions [147].
Vitamin A designates a family of unsaturated lipid-soluble organic compounds that include
retinol, retinal, retinoic acid, retinyl palmitate, and many provitamin-A carotenoids, such
as β-carotene [148]. Vitamin supplements are commonly used with an anticipation that
they will protect cells and tissue from oxidative stress [149–151].

Carotenoids: Carotenoids are fat-soluble terpenoids containing conjugated trans dou-
ble bonds. Carotenes (lycopene, β-carotene, or α-carotene) and xanthophylls (lutein, astax-
anthin, fucoxanthin, capsanthin, zeaxanthin, and canthaxanthin) belong to the carotenoid
family, widely present in red, orange, and yellow pigments in carrots; sweet potatoes; pa-
paya; mangos; tomatoes; and oranges [152]. Carotenoids, acting as free radical scavengers
and singlet oxygen quenchers, play a key role in inhibiting the oxidation of lipids [135]. In
addition, these carotenoids inhibit apoptosis by preventing oxidative stress and display
antioxidant and neuroprotective roles [153–155].
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Polyphenols: Polyphenolic compounds are present in various fruits; vegetables;
and beverages, such as grape juice, green tea, or coffee, and possess antioxidative, anti-
inflammatory, and neuroprotective properties by scavenging free radicals [156]. Polyphe-
nols have a wide range of aromatic structures, but the basic monomer in polyphenols is the
phenolic ring. Depending on the strength of the phenolic ring into phenolic acids, they can
be classified into phenolic acids, flavonoids, stiblins, phenolic alcohols, and lignans [157].
These polyphenols commonly include anthocyanins from berries, resveratrol found in
grape skin or seeds, catechins from green tea, and curcumin isolated from the rhizome
of the Indian spice turmeric Curcuma longa Linn [158]. Other most studied polypheno-
lic chemicals include chalcones, epigallocatechin gallates (EGCG), and quercetin [159].
These antioxidants detoxify various free radicals by scavenging or trapping them and by
upregulating the activities of endogenous antioxidants [160]. These natural polyphenols
also prevent oxidation of proteins, LPO, and show neuroprotective and neuroregenerative
effects [133].

3.3. Synthetic Antioxidants

Synthetic antioxidants, modifications of natural antioxidants, or conjugates with other
effective molecules have been prepared for better scavenging activity, bioavailability, and
metabolic stability than natural antioxidants [161]. Synthetic antioxidants such as butylated
hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PG), and tert-butyl
hydroquinone (TBHQ) are widely used in the food industry to prevent lipid oxidation [162].

Recent research on synthetic antioxidant derivatives provides promising data against
oxidative stress and multiple targets in neurodegenerative diseases. For example, syn-
thetic compound 4-((5-(Tert-butyl)-3-chloro-2-hydroxy benzyl) amino)-2-hydroxybenzoic
acid [163] and 1,3,4 oxadiazole compound A3 [164] showed significant antioxidative and
neuroprotective effects. Synthesized docosahexaenoic acid (DHA)-acylated astaxanthin
diesters (AST-DHA) showed substantially better effects than astaxanthin in reducing oxida-
tive stress tau protein, enhanced learning and memory [165], and suppressing apoptosis
of the dopaminergic neurons [166]. Similarly, the synthetic pyrazole derivative of cur-
cumin (CNB-001) was demonstrated to suppress RNS generation with anti-inflammatory
effect [167]. Synthetic derivatives of a natural phenolic compound such as caffeic acid
phenethyl ester (CAPE) [168] or coumarin [169] also demonstrated to protect dopaminer-
gic neurons by inhibiting p38 phosphorylation, increasing cell viability, and promoting
antioxidant response.

Combination of novel synthetic pyrazole-containing compound 5-amino-1- phenyl-
1H-pyrazole-4-carbonitrile (APPC) with lipoic acid, i.e., UPEI-800, showed synergistic
neuroprotection both an in vitro hypoxia model and in vivo stroke model by reducing
infarct volume [170]. A synthetic hybrid of antioxidants, i.e., coumarin and licochalcone
A (Lico A), i.e., LM-031, has shown to inhibit Aβ aggregation in Aβ-GFP SH-SY5Y cells,
scavenge ROS, promote neurite outgrowth, and activate the Nrf2-related antioxidant
and antiapoptotic pathways [171]. Another hybrid compound (Dlx-23) developed by
conjugating ALA and 3-n-butylphthalide (NBP), was shown to protect neuronal cell death,
restore redox homeostasis, and synergistically prevent mitochondrial damage in a stroke
model [172].

Synthetic nitrones are effective inhibitors of short-lived free radicals [173]. Due to
their ability to react with free radicals to form a persistent nitroxide spin adduct; they can
be used as an analytical tool for the detection and characterization of free radicals using
Electron Paramagnetic Resonance (EPR) spectroscopy [174]. Synthetic nitrone derivatives
showed antioxidative and neuroprotective effects in various neurodegenerative disease
conditions [175,176].
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Synthetic edaravone scavenges free •OH radicals and OONO− radicals, which are
highly associated with neuronal damage/death in cerebrovascular disorders such as is-
chemic strokes and degenerative neurological disorders such as ALS [177]. It exerts neuro-
protective and antioxidant effects and delays disease progression by limiting the extent of
lipid peroxidation and cell membrane damage from oxidative stress [178].

In recent years, mitochondrial-targeted antioxidants have been successfully developed.
For e.g., synthetic analogs of CoQ10, idebenone, and mitoquinone (MitoQ) demonstrated
effective amelioration of mitochondrial ROS [179], DNA damage, neuroinflammation, and
prevented neuronal degradation [180]. Idebenone is characterized by a shorter and less
lipophilic tail than CoQ10, and MitoQ is composed of ubiquinone and triphenylphos-
phonium (TPP+) [181]. Plastoquinone derivatives, i.e., SkQ1 and SkQR1 molecules that
contain an antioxidant moiety linked to a lipophilic cation, also demonstrated a neuropro-
tective effect [182]. Synthetic arylidenmalonate derivative 5-(3,4-dihydroxybenzylidene)-
2,2-dimethyl-1,3-dioxane-4,6-dione (KM-34) also showed significant antioxidant property,
mitoprotection and neuroprotection in vitro and in vivo models [183].

4. Preclinical Studies with Antioxidant Agents
4.1. Antioxidant-Based Therapy in Neurodegenerative Diseases

With a strong rationale that oxidative stress is a key component of neurodegenerative
diseases, antioxidants of different types, either alone or in combination, natural and syn-
thetic have been tested in neurodegenerative disease models. In general, in AD models,
the treatment with antioxidants produced favorable outcomes. For e.g., the treatment
with CoQ10 or lipoic acid increased the levels of ATP and SOD and reduced the levels of
Apolipoprotein E (ApoE) and Aβ fragments [184]. The treatments also reduced the levels
of phosphorylated tau and neuroinflammatory factors [185] and improved hippocampal
synaptic plasticity [186]. Similarly, the treatment with carotenoids inhibited the markers of
oxidative stress [137,187] and the AD marker proteins, improved memory loss, and reduced
inflammation [188–190]. Polyphenols such as resveratrol [191], curcumin [192,193], and an-
thocyanin [121] have been shown to attenuate glutamate-induced excitotoxicity, increased
antioxidant capacity and mitophagy [194], and rescue cell death in AD models [195–197].
The nutritious mushroom, hericium erinaceus is a source of exogenous antioxidants and
has been shown to possess neuroprotective and anti-inflammatory properties [198]. In a
sporadic AD model, hericium erinaceus treatment reduced behavioral abnormalities, hip-
pocampus neuronal degeneration, and AD markers [199]. A few combination therapies
such as ubiquinol and ascorbic acid [200], lycopene with vitamin E [201], CoQ10 and
Omega-3 [202], and resveratrol and curcumin [203] reported to having a synergistic bene-
ficial effect on reducing amyloid plaques and tau hyperphosphorylation in transgenic or
sporadic models of AD. A synthetic derivative of CAPE termed FA-97 was developed by
Wan et al. and has been shown to attenuate H2O2-induced apoptosis and suppress the
levels of ROS, MDA, and protein carbonyl; and induce the cellular antioxidant levels in an
in vitro study [204].

In PD models, supplements of vitamins E [205] and C [206,207] and CoQ10 [208] have
been shown to restore corticostriatal synaptic plasticity, reduce dopaminergic cell death
in the substantia nigra, microglial activation and astrogliosis, and improve behavioral
parameters. ALA was shown to suppress oxidative stress, mitochondrial dysfunction, and
glutamate-induced toxicity [209,210]. The treatment with other antioxidants, crocin [211]
or fucoxanthin [212], was also shown to suppress autophagy and improve behavioral
alterations, homeostasis, and mitochondrial enzyme function. In the pesticide-induced PD
model, treatment with resveratrol [213] improved lifespan and behavioral deficits [214]
via Nrf2 activation [215]. Further, the combinatorial treatment of quercetin and piperine
(bioavailability enhancer) significantly improved behavioral abnormalities [216]. A recent
study has reported that the treatments with synthetic chalcone derivate and 2-Hydroxy-40-
methoxychalcone (AN07) reduced ROS level, stimulated Nrf2 pathways, increased GSH
levels, and decreased inflammatory factors, thus favoring recovery [217]. In dopaminer-



Antioxidants 2022, 11, 408 12 of 36

gic catecholaminergic (CATH.a) cells, a novel synthetic morpholine-containing chalcone
(KMS99220) was shown to reduce oxidative stress effectively and protein aggregation,
potentiate the Nrf2 mechanism and lower intracellular aggregation of α-synuclein [218]. In
another example, Drummond et al. reported the antioxidant ability of a novel synthetic
flavonoid, Proxison (7-decyl-3-hydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone), and
demonstrated enhanced cellular uptake, radical scavenging capabilities and neuroprotec-
tion against cell loss in a zebrafish model of dopaminergic neurodegeneration [219].

In ALS, mutation of the SOD1 genes reduces the antioxidant enzyme activity and
hence is ineffective in lowering the ROS levels [220]. Curcumin has been shown to inhibit
aggregation and fibrillation of SOD1 amyloid fibrils, lowering amyloidogenicity and neu-
rotoxicity [221]. In a mouse model of ALS, treatment with anthocyanin-enriched extracts
from strawberries was found to delay the disease onset, improve grip strength, reduce
spinal motor neuron death, and preserve neuromuscular junctions (NMJs) [222]. Zhao et al.
discovered that EGCG treatment stabilizes SOD1 conformation against misfolding and in-
hibits apo-SOD1 aggregation [223]. EGCG was found to have a substantial binding affinity
for mutant SOD1, which reduces its toxic aggregate formation [224]. Phenolic compounds,
quercitrin, quercetin 3-β-D-glucoside, and EGCG have been found to inhibit H2O2-induced
misfolding and aggregation of A4V SOD1 [225]. Kaempferide and kaempferol are active
ingredients of Brazilian green propolis that possess antioxidative properties and were
shown to prevent SOD1 intracellular aggregates in a mutant SOD1-induced N2A cellular
model [226]. Other studies also reported that the treatment with antioxidants (e.g., fisetin
or protocatechuic acid) improves survival rate, attenuates motor impairment, reduces
astrogliosis and microgliosis in the spinal cord, protects the spinal motor neurons from
apoptosis, and regulates redox homeostasis by lowering the levels of both mutant and
wild-type human SOD1 [227,228].

4.2. Antioxidant-Based Therapy in Neurological Injury

This review selected stroke, SCI, and PNI as examples where oxidative stress plays a
key role in the early pathological and progressive degeneration following the acute event;
this mechanism is also relevant to the acute TBI [123]. Treatments with several types
of antioxidants, including α-lipoic acid (ALA) [229], α-tocopherol [230], vitamin C [231],
crocin [232], resveratrol [233], and (−)-Epicatechin [144], have been shown to significantly
reduce infarct volume, brain edema, oxidative damage, and apoptosis. In addition, the
treatments protected the BBB integrity and promoted neurological recovery in stroke model
studies. In other studies, pretreatment with natural free radical scavenger (e.g., ginkgo
biloba extracts (Egb-761) [234] and astaxanthin [235]) has been shown to significantly
ameliorate ischemic injury and reduce infarct volumes and brain edema, accompanied by
alleviated oxidative stress, and upregulation of expression of brain-derived neurotrophic
factor (BDNF) and nerve growth factor (NGF) mRNA.

In several studies, the efficacy of antioxidant treatment has been examined in animal
models of acute SCI. They have been found to inhibit the expression of proapoptotic pro-
teins (Bax and Caspase-3), increase the level of antiapoptotic protein (Bcl-2), reduce the
level of MDA, and improve the activities of SOD and GSH (e.g., CoQ10) [236]. For example,
the rats with SCI treated with vitamin E-enriched diet showed accelerated bladder recovery
and improved locomotor function [237]. Treatment either with β-carotene or lycopene
was also shown to reduce oxidative damage, mitochondrial dysfunction, cell apoptosis,
and hind limb motor disturbances [238]. The treatment also inhibited inflammation by
blocking the nuclear factor kappa B (NF-κB) pathway [239]. Antioxidants such as cur-
cumin derivative, EGCG, or astaxanthin have been shown to reduce inflammation [240],
promote regeneration, provide neuroprotection, and ultimately improve functional recov-
ery [241,242]. Similarly, the treatment with resveratrol was shown to reduce the levels
of inflammatory cytokines and inhibit cell death [243], improve motor function [244] via
activation of the Sirtuin 1 (SIRT-1)/NF-κB signaling pathway [245], Beclin-1 and LC3-B, key
proteins of autophagy [246], or the SIRT1/Adenosine 5′ monophosphate-activated protein
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kinase (AMPK) signaling pathway [247]. Quercetin treatment in SCI models was shown
to reduce necroptosis of oligodendrocytes, which prevented axonal loss [248] and also
suppressed macrophages/microglia polarization to proinflammatory M1 phenotype [249].
The combination treatment with ascorbic acid and taurine (nonproteogenic essential amino
acid) showed synergistic protection against apoptotic, inflammatory, and oxidative stress
markers in SCI-induced rats [250]. In PNI, compounds having antioxidative properties
such as vitamins, carotenoids, enzymes, and proteins have been demonstrated to facilitate
the process of nerve repair [127].

4.3. Clinical Trials with Antioxidants

Promising data from preclinical studies led clinical trials to determine the efficacy of an-
tioxidants in different neurodegenerative diseases/injuries, primarily with few commonly
used antioxidants such as curcumin, vitamin E, lipoic acid, and CoQ (Tables 1 and 2).

A phase II clinical trial study with oral dosing of curcumin in AD patients was shown
to reduce cognitive deterioration but did not improve cognition [251]. Curcumin oral
supplementation also demonstrated a slight slowdown in the disease progression in ALS
patients [252]. Treatments with resveratrol [253,254] and EGCG [255] have been shown to
attenuate Aβ1–40 and slow cognitive decline in AD patients, and in stroke patients, reduce
the levels of matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-2 (MMP-2).
However, intranasal administration of GSH did not show the effect of the treatment on
motor scores in PD patients [256,257]. High-dose treatment of CoQ10 in the idiopathic PD
participants showed improved unified PD rating scale (UPDRS); however, it was indicated
that the high-dose of CoQ10 (2400 mg/day) could increase the risk of oxidative damage
in the long run [258]. In another clinical trial with CoQ10, although its dose was found
safe and well-tolerated, it did not show any therapeutic benefits; hence, the study was
terminated [259]. Similarly, a high dose of CoQ10 treatment showed a decrease in the
ALS Functional Rating Scale-revised (ALSFRSr) score; however, the subsequent analyses
revealed no significant differences compared to the placebo control [260]. Ginkgo biloba
treatment in older patients with cognitive impairment also did not improve cognition
compared to placebo [261]. Clinical trial on edaravone demonstrated a significant reduction
in the ALSFRSr score in ALS patients compared to placebo group [262,263]. Furthermore,
edaravone has been shown effective in recovery in stroke patients and reduce the MMP-9
levels [264,265]. In addition, the combination treatment, edaravone with (+)- borneol,
a food additive, has been proven to be safe and well-tolerated in stroke patients [266]
and is currently under a phase II clinical trial in patients suffering from intracerebral
hemorrhage [267].
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Table 1. Clinical trials of antioxidants in neurodegenerative diseases.

Antioxidants Route Disease Patients Dosage Follow Up Period No. of Patients Outcome References

Curcumin Oral AD
ALS

1.5 g/d
100 mg/d

6 months
9 months

34
42

Reduced cognitive deterioration
Slowdown in disease progression [251,252]

Resveratrol Oral AD 1 g/d 52 weeks 119
Decreased Aβ1–40 and MMP-9 levels in
CSF
Slowed cognitive decline

[253]

GSH Intranasal PD 300 mg/d or 600 mg/d thrice
100 mg/d or 200 mg/d thrice 3 months 30

45

Safety and tolerability
No significant differences between groups
No effect on motor function

[256,257]

CoQ10 Oral
PD
PD

ALS

400, 800, 1200, and 2400 mg/d
1200 mg/d or 2400 mg/d
1800 mg/d and 2700 mg/d

10 weeks
16 months
9 months

16
600
105

Improved UPDRS, Reduced
F2-isoprostanes
No therapeutic benefit
Decreased ALSFRSr
No significant differences between groups
at high dose

[258–260]

Ginkgo biloba Oral AD 120 mg/d twice 8 years 3069 No improvement in cognition [261]

Edaravone
(FDA Approved in 2017) Intravenous ALS 60 mg/d 24 Weeks 137 Decreased ALSFRSr [262,263]

Lipoic acid and,
Omega-3 fatty acids Oral AD

600 mg/d
675 mg docosahexaenoic acid
(DHA) 975 mg eicosapentaenoic
acid (EPA)

12 months 39 Slowed cognitive and functional decline [268]

Vitamin E and,
Memantine Oral AD 2000 IU/d20 mg/d 5 years 613 Slower functional deterioration in Vitamin

E group [269]

Vitamin E,
Vitamin C,
ALA, and
CoQ

Oral AD

800 IU/d
500 mg/d
900 mg/d
400 mg/d thrice

16 weeks 78 No effect on amyloid or tau pathology
biomarkers [270]

Omega-3 fatty acids and,
Vitamin E Oral PD 1000 mg

400 IU 12 weeks 60 Improved UPDRS, TAC and GSH [271]

Nanocurcumin and,
Riluzole Oral ALS 80 mg/d

50 mg/d twice 12 months 54
Safety and tolerability
Increased survival probability of ALS
patients

[272]

Curcumin Formulation
(Longvida)
Solid-Lipid Curcumin

Oral AD
Control

2000 mg–3000 mg/d
400 mg/d

9 months
4 weeks

26
60

Not provided
Improved cognition and mood [273,274]
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Table 2. Clinical trials with antioxidants in neurological injury.

Antioxidants Route Disease Patients Dosage Follow Up Period No. of Patients Outcome References

Resveratrol Oral/
Infusion Stroke 2.5 mg/kg 0–2 h of

stroke onset 312 Decreased MMP-9
and MMP-2 levels [253,254]

EGCG
Intravenous/
oral/
infusion

Stroke 500 mg 0–5 h of
stroke onset 371 Decreased MMP-9

and MMP-2 levels [255]

Edaravone Intravenous Stroke 30 mg
60 mg

6 months
12–24 h of stroke
onset

40163
Effective recovery
Decreased MMP-9
levels

[264,265]

Edaravone Dexborneol Intravenous
Stroke
Intracerebral
Hemorrhage

12.5 mg, 37.5 mg or 62.5 mg
every 12 h for 14 days
37.5 mg every 12 h for 14 days

3 months
NA 385390 (estimated)

Safe and well
tolerated
No Recruitment

[266,267]

Nanoparticle-loaded
Edaravone Intravenous Cerebral

Hemorrhage 25 mg 3 weeks 120

Reduced edema
Improved
neurological function
Reduced interleukin
and tumor necrosis
factor

[275]

Ginkgo biloba and,
Aspirin Oral Stroke 450 mg

100 mg 6 months 348
Alleviated cognitive
and neurological
impairment

[276]

Omega-3 pill
Vegetation Protein
Powder
InflanNox (curcumin)
capsuleAnti-oxidant
Network capsule
Chlorella tablet

Oral SCI

500 mg/d EPA, 250 mg/d
DHA, thrice
45 g/d
400 mg/d thrice
615 mg/d twice
1000 mg/d, 6 times

3 months 20

Improvement in
behavior
Modification in
neuroactive
compounds
Reduction in IL-1β

[277]
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The combination treatments such as lipoic acid and omega-3 fatty acids, i.e., fish
oil, given to AD patients were found to slow the cognitive and functional decline as
compared to the placebo [268]. Similarly, vitamin E, the AD drug memantine (brand name:
Namenda), or their combination was shown to slow down the clinical progression of AD.
Interestingly vitamin E treatment resulted in a slower functional deterioration than the
combination [269].

A combination treatment consisting of vitamin E, vitamin C, ALA, and CoQ did
not show the effect on amyloid or tau pathology biomarkers in the cerebrospinal fluid
(CSF). Furthermore, the treatment with CoQ did not improve oxidative stress or neu-
rodegenerative indicators [270]. On the other hand, omega-3 fatty acids and vitamin E
co-supplementation in PD patients resulted in a significant improvement in the UPDRS
and favorable effect on total antioxidant capacity (TAC) and GSH levels compared to
placebo but did not affect the oxidative stress indices or lipid profiles and inflammatory
factors [271]. Daily treatment of the combination of ginkgo biloba (Egb761) and aspirin
in stroke patients alleviated cognitive and neurological impairment after acute ischemic
stroke without increasing the risk of vascular injury [276]. In SCI patients, dietary sup-
plementation containing curcumin and omega-3, vegetation protein powder, antioxidant
network capsule, and chlorella tablet were reported to reduce inflammatory mediators
and improve depressive behavior [277]. Overall, the clinical trial results showed some
trend towards a positive outcome, particularly the changes in the pathological markers
and a few studies, improvements in functional outcome, thus indicating the potential of
antioxidants to mitigate oxidative stress in humans. However, the results also highlighted
the need to improve their therapeutic efficacy and make the clinical outcomes conclusive
and reproducible, and importantly achieve functional recovery. To that end, in addition to
developing more potent and target-specific antioxidants, drug delivery approaches have
also been explored.

4.4. Drug Delivery Challenges

Despite promising results in preclinical models of neurodegenerative diseases, not all
the clinical trial results were definitive. In general, antioxidant compounds were found to
reduce clinical signs and symptoms only [252] but unable to stop the disease progression or
reverse it [261]. Vitamins and flavonoids are still used but mostly as dietary supplements,
which may act as prophylactic with long-term use. Edaravone (free radical scavenger) is
the only Food and Drug Administration (FDA)-approved antioxidant treatment, and it is
used to help people recover from stroke in Japan and is used to treat the early stages of ALS
in the US and Japan, but it does not affect the disease progression in late-stage ALS, thus
benefiting only 5% of ALS patients [278]. In Europe, the use of Radicava medication (active
substance of edaravone) has been withdrawn from the marketing authorization, since
the data did not show a positive benefit-risk balance [279]. There are various challenges
associated with effective drug delivery of antioxidants that may be impeding their clinical
translation.

• Low permeability to the CNS: The presence of a physiological barrier such as the
BBB or spinal–blood barrier (SBB) restricts the accessibility of antioxidant compounds
to the CNS and hence could not achieve a prolonged therapeutic dose to impart an
antioxidant effect in chronic neurodegenerative diseases [280]. In certain pathological
conditions, the BBB/SBB may be compromised due to inflammation or injury (e.g.,
stroke and spinal cord injury) but still may not be able to achieve the desired dose for
a prolonged period due to transient and limited permeability of the BBB/SBB, giving
a narrow time window for delivery of therapeutics [281].

• Low bioavailability: Most antioxidants are given orally, and they are insoluble or
unstable in a gastric environment that could result in low bioavailability to provide
high systemic levels for transport to the CNS at effective doses [282,283]. Antioxidant
compounds that are administered via systemic routes have short half-lives [284], which
could also limit their transport to the CNS.
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• Low catalytic activity: High doses of antioxidant compounds are needed to detoxify the
effect of free radicals, which could not be given to humans because of the dose-limiting
toxicity [285]. Noncatalytic antioxidant becomes ineffective, once these molecules
interact with free radicals [286], and hence, maintaining high antioxidant levels in the
target tissue to counteract free radicals that are formed over a period of time in chronic
conditions could be challenging.

• Toxicity: Due to toxicity concerns, human doses could have been significantly lower
than those used in animal model studies. This could also constrain the duration of
treatment necessary to see the beneficial outcome in clinical trials [287].

• Oxidative stress target and other factors: Although oxidative stress is considered as
the driving force behind neurodegenerative diseases, there could be other cofounding
pathological factors in humans that may not have been targeted solely by antioxi-
dants [288,289]. In addition, the question raised is also how close animal models are
to human pathology [290].

5. Antioxidant-Based Nanotherapy

To overcome the limitations of natural and synthetic antioxidants, significant efforts
have been made to improve their efficacy using drug delivery approaches. These include ex-
ploring nanocarriers of different polymeric materials, conjugates, and complexes [291,292]
to improve their stability, half-lives, transport to the CNS, and sustained their effect in the
target tissue (Figure 5).

Due to its broad pharmacological effects, including anti-inflammatory and antioxidant
properties, curcumin has been widely investigated in clinical studies. To overcome its
low water solubility, poor bioavailability, and rapid metabolism, curcumin is formulated
as nanocurcumin using different nanocarriers, such as liposomes, polymers, conjugates,
cyclodextrins, micelles, dendrimers, and nanoparticles [293]. Transferrin-conjugated poly
(lactic co-glycolic acid) (PLGA) nanoparticles have been demonstrated to improve the
bioavailability of curcumin to the brain and reduce Aβ deposition and tau hyperphos-
phorylation in the AD model [294]. Similarly, different formulations of nanoparticles
have been shown to inhibit aggregation of Aβ and reduce depressive-like behavior and
oxidative stress in AD models [295,296]. Intra-arterial administration of resveratrol (RES)-
encapsulated nanoparticle (RES-NP) in a rat transient middle cerebral artery occlusion
(t-MCAO) enhanced the resveratrol bioavailability and its brain-penetration, resulting
in reduced infarct volume, and attenuated oxidative stress [297], brain edema, and neu-
ronal apoptosis. The treatment also contributed to neurogenesis, leading to improved
neurological recovery [298]. In a cerebral palsy rabbit model, intravenous treatment of
dendrimer-based N-acetyl-L-cysteine (NAC) [299], a glutathione precursor with antioxi-
dant and anti-inflammatory properties [300], reduced neuroinflammation and neurological
injury, and improved motor function. In general, formulating antioxidants in nanocarriers
has enhanced their efficacy due to better stability and/or improved transport to the CNS
than free antioxidants [301–327]. Nanocurcumin has been evaluated as an add-on therapy
to Riluzole in a pilot randomized clinical trial for safety and efficacy in ALS [272] and
AD patients as dietary supplements [274]. In another study, solid–lipid curcumin showed
significantly improved cognition and mood in healthy older population [273].
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Figure 5. Antioxidant-based nanotherapy. Schematic depicting advantages of delivery of antioxidant-
loaded nanoparticles to improve half-life of antioxidants and their ability to cross the BBB, improve
bioavailability, and sustain the effect, thus effectively neutralizing oxidative stress in neurodegenera-
tive diseases.

Edaravone-loaded ceria nanoparticles have demonstrated to cross the BBB via receptor-
mediated transcytosis and protect the BBB [328]. In addition to the antioxidant property
of ceria nanoparticles, edaravone provided its effect against oxidative stress in a stroke
model [328]. Jin et al. demonstrated that the treatment with edaravone-encapsulated ago-
nistic micelles caused rapid infarct volume reduction, prolonged survival, improved axonal
remodeling, and reduced behavioral deficits than free edaravone-treated animals [329].
Wang et al. reviewed nanotechnology-based strategies for the treatment of ALS, including
antioxidant agents [330]. Nanoparticle-loaded edaravone has been tested on the postop-
erative effects in patients with cerebral hemorrhage. The nanoparticle-loaded edaravone
showed reduced edema as compared to free edaravone treated group, significantly im-
proved neurological function, and reduced the production and release of interleukin and
tumor necrosis factor, which was considered beneficial to protect healthy brain tissue and
other organs, and conducive to the recovery and healing [275].

Antioxidant Enzymes

When they interact with free radicals, natural or synthetic antioxidants become in-
active [331]. To continue to neutralize free radicals formed over a prolonged period, in
chronic disease conditions, therapeutic levels of these antioxidants need to be maintained,
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which could be challenging, as repeated and high dosing cause dose-limiting toxicity in
humans [331]. The main advantage of antioxidant enzymes is their catalytic mode of
action [6]; hence, they can effectively neutralize free radicals at low doses. However, due to
their short half-lives (5–11 min) [332], exogenously delivered antioxidant enzymes are inef-
fective in combating oxidative stress. Modifications such as PEGlylation and lecithinization
improve their stability in the circulation [333] and fusion with cell membrane-penetrating
peptides like a transactivator of transcription peptide or tetanus toxin fragment increases
their ability to cross the BBB [334]. However, there are limitations to these modifications.
Although PEGylated SOD (PEG-SOD) increases the enzyme’s stability in the circulation
from 6 min to 36 h, PEG limits the permeability of the conjugated SOD across cerebral
cell membranes [335]. Similarly, a chemical reaction involved in the fusion of different
cell-penetrating or cell-specific peptides could cause denaturation and loss of enzyme
activity [336]. In addition, the newly formulated hybrid enzyme could trigger immune-
mediated anaphylactic responses to patients [337]. Intravenous delivery of SOD loaded into
liposomes has shown to partially inhibit the infarct volume, but instability of liposomes
in vivo (half-life ~4.2 h) limits the duration of SOD activity and, hence, its efficacy [338,339].

The recent effort includes formulations of antioxidant enzymes, SOD1, and catalase by
electrostatic coupling of enzymes with cationic block copolymers called nanozymes [340].
In mice, this formulation demonstrated increased stability of enzymes in both blood and
the brain and showed increased accumulation in the brain tissues than enzyme alone
treated animals [340]. In a rat MCAO model, nanozymes reduced I/R-induced tissue injury
and improved the sensorimotor functions [341]. In a moderate SCI rat model, treatment
with nanozymes showed a recovery of locomotor functions, reduction of swelling, and
post-traumatic cysts in the spinal cords of the treated animals [342]. Muzykantov’s group
reviewed different nanocarriers to deliver antioxidant enzymes for vascular targeting
in oxidative stress conditions associated with cardiovascular, pulmonary, and nervous
systems [343].

Our research group has been investigating the efficacy of antioxidant enzymes en-
capsulated in PLGA-based sustained release nanoparticles. The neuroprotective efficacy
of the SOD-encapsulated nanoparticles (nano-SOD) was initially demonstrated in the
H2O2-induced oxidative stress model in human neuronal cells and, subsequently, with
the CAT-encapsulated nanoparticles (nano-CAT) in human astrocytes [344,345]. In the
MCAO model in rats, intracarotid administration of nano-SOD following 1 h of ischemia
inhibited reperfusion injury. The treatment demonstrated improved neurological recov-
ery and survival compared to controls (saline or SOD solution). There was evidence of
neuronal recovery and regeneration with time in the above study [346]. The follow-up
study in a thromboembolic rat stroke model, where tissue plasminogen activator (t-PA)
was administered first for clot lysis followed by nano-SOD/CAT, both via the carotid artery,
demonstrated the protective effect of the treatment. Significantly, the t-PA + nano-SOD
combination treatment stimulated the migration of stem/progenitor cells from the sub-
ventricular zone and circulation, promoting neurogenesis. In contrast, this process was
inhibited in the animals which received t-PA only treatment [347]. The above sequential
treatment also inhibited edema formation, suggesting protection of the BBB from reperfu-
sion injury [347]. In a separate study, we demonstrated aggravation of the BBB permeability
when t-PA alone was administered via the carotid artery in the same thromboembolic rat
stroke model [348]. Thus, the delivery of antioxidant enzyme nanoparticles in the above
sequential treatment study protected the BBB from reperfusion injury and, also, from the
effect of t-PA.

In our recent study, we demonstrated that intravenous administration of nano-SOD/CAT,
6-hr following injury in a rat severe contusion model of SCI, partially attenuated mitochon-
drial dysfunction, reduced ROS levels, and the expression of apoptotic factors (Figure 6C).
Further, the isolated mitochondria from the spinal cords of the treated animals demon-
strated reduced ROS activity and higher ATP production capacity than those isolated from
untreated control animals (Figure 6D). The overall effect of the treatment was found to be
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the protection of the injured spinal cord from cell apoptosis and further degeneration [349].
The protective effect of the treatment was seen across the entire spinal cord as there was
reduced expression of apoptotic factors, suggesting that the treatment significantly attenu-
ated the progression of secondary injury. Neuroprotective efficacy of the nano-SOD/CAT
in the above SCI model study is attributed to the protection of the encapsulated enzymes
and sustained antioxidant effect at the lesion site [350] (Figure 6). Since nano-SOD/CAT is
formulated with PLGA, an FDA-approved polymer, its translational potential is high.

Figure 6. Antioxidant enzyme-based nanotherapy for spinal cord injury: Localization of nanoparticles
at the lesion site following intravenous administration. Nanoparticles were injected 6 h post-injury,
and spinal cords were analyzed for localization of the nanoparticles. Nanoparticles contained a
near-infrared dye, and the spinal cords were analyzed 24 h after the injury using the Maestro Optical
Imaging System site. Reproduced with permission from [350], copyright 2019 Elsevier. (A) Dose-
dependent localization of nanoparticles at the lesion site. (B) Images of the spinal cord taken with
Maestro Optical Imaging (Ba) Normal spinal cord without injury and nanoparticles. (Bb) Injured
spinal cord from the animals that received dye-loaded nanoparticles intravenously. Efficacy of nano-
SOD/CAT treatment (C)-treated animals show reduced mitochondrial ROS levels. (D) Mitochondrial
isolated from the spinal cord of the treated animals show more ATP production capacity than those
isolated from the spinal cords of untreated animals. * p < 0.05; *** p < 0.001 Reproduced with
permission from [350], copyright 2019 Elsevier.

6. Concluding Remarks/Future Perspective

Effective treatment for neurodegenerative diseases is a clinically unmet need. Sub-
stantial evidence supports the hypothesis that oxidative stress plays a key role in disease
progression; hence, antioxidant treatment could provide a potential solution. However,
several challenges, including inadequate dosing, low bioavailability, limited transport
to the CNS and transient retention, and low antioxidant capacity to completely detoxify
the effect of free radicals, could have limited their translation to clinical practice. In this
regard, nanoparticle-based drug delivery systems could address some of the above issues.
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Antioxidant enzymes hold promise due to their high catalytic activities; therefore, much
work has been done in recent years to develop the nanotherapy-based approach to deliv-
ering these antioxidant enzymes. Since oxidative stress is a common pathophysiological
process in multiple diseases, an effective antioxidant system could have broad therapeutic
applicability in many clinical settings.
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