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Abstract: Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective
vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. My-
cobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated
immunity plays an important role. The maintenance of memory T cells following M. tuberculosis
infection or vaccination is a hallmark of immune protection. This review analyzes the development
of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune
memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development
of memory T cells are discussed in detail. The understanding of the development of memory T cells
should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
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1. The Differentiation of Memory T Cells

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), remains a
major global health threat. In 2022, it led to 10.6 million new cases and 1.3 million deaths
worldwide [1]. Following M. tuberculosis infections, alveolar epithelial cells and alveolar
macrophages are the first barrier cells to interact with M. tuberculosis, playing critical roles
in both bacterial dissemination and anti-TB mucosal immunity [2,3]. Before uptake by
phagocytic cells, alveolar epithelial cells secrete antimicrobial peptides, defensins, surfactant
proteins, and hydrolases, which contribute to controlling M. tuberculosis survival [4,5].
Then, alveolar macrophages phagocytose the bacilli, and infected macrophages exert an
inflammatory response, recruiting innate immune cells such as natural killer cells (NK cells),
neutrophils, and innate lymphoid cells (ILCs), to eliminate or contain M. tuberculosis. If
innate immunity does not eliminate invaded M. tuberculosis, CD8+T cells and Th1-type cell-
mediated immune responses are activated, to secrete cytokines such as IFN-γ, which further
activate the macrophage system to kill the bacilli inside macrophages and ultimately form
a granuloma to control M. tuberculosis [6,7]. Although Th1 cells play a prominent role in
controlling intracellular pathogen infections, Th2 cells and antibodies are also important in
combating M. tuberculosis infection. Th2 cells mainly release IL-4 and IL-10 and participate in
the activation and proliferation of B cells, which assist in humoral immunity by producing
antibodies [8]. In general, over 90–95% of individuals infected with M. tuberculosis enter
latent TB infection (LTBI), chronically harboring the pathogen without complete clearance,
while only about 5–10% infected individuals progress to active TB accompanied by the
appearance of clinical symptoms [9]. LTBI is a potential source of active TB. About 5–10%
of LTBI reactivate in their lifetime and the risk of LTBI individuals developing active TB
will increase significantly in populations infected with human immunodeficiency virus
(HIV) (Figure 1).
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individuals developing active TB will increase significantly in populations infected with 
human immunodeficiency virus (HIV) (Figure 1). 

 
Figure 1. Outcome of M. tuberculosis infection. Alveolar epithelial cells are the first barrier cells to 
interact with M. tuberculosis. After M. tuberculosis enters the lung by inhalation, alveolar macro-
phages are activated to engulf the bacteria. Then, infected macrophages exert an inflammatory re-
sponse, recruiting innate immune cells including NK cells, neutrophils and innate lymphoid cells, 
to clear the bacteria. If the bacteria are not killed, T cells and B cells are further activated to mediate 
cellular and humoral immune responses to eliminate M. tuberculosis. Among them, approximately 
90–95% develop into latent TB infection, and 5–10% will progress to active TB. 

Following M. tuberculosis infection or vaccination, naïve T cells are activated and un-
dergo clonal expansion and proliferation, differentiating into effector T cells (Teff) and 
memory T cells (TM) [10–12]. Teff plays a role in killing target cells and controlling infec-
tions. Upon antigen elimination, Teff enters the contraction phase and undergoes death by 
apoptosis [13]. Only a small subset persists and differentiates into TM subsets [14]. Upon 
re-stimulation, TM can rapidly differentiate into Teff and exert a recall response [15]. The 
metabolic requirements for different types of T cells are variable [16–18]. The metabolic 
reprogramming during T cell differentiation determines the development of memory T 
cells [19]. Teff rely on aerobic glycolysis to supply energy and synthesize intermediate 
products, while TM primarily utilize fatty acid oxidation (FAO) and oxidative phosphory-
lation (OXPHOS) for energy. 

TM are phenotypically and functionally heterogeneous [14,20] (Figure 2). TM subsets 
are mainly divided into effector memory T cells (TEM), central memory T cells (TCM), stem 
cell-like memory T cells (TSCM), and tissue-resident memory T cells (TRM) [10–12]. TCM ex-
presses high levels of IL-7 receptor α (CD127), CD62L, and CCR7, while TEM and Teff lack 
CD62L and CCR7 expression [21,22]. TCM are mainly found in the lymph nodes and 

Figure 1. Outcome of M. tuberculosis infection. Alveolar epithelial cells are the first barrier cells to
interact with M. tuberculosis. After M. tuberculosis enters the lung by inhalation, alveolar macrophages
are activated to engulf the bacteria. Then, infected macrophages exert an inflammatory response,
recruiting innate immune cells including NK cells, neutrophils and innate lymphoid cells, to clear
the bacteria. If the bacteria are not killed, T cells and B cells are further activated to mediate cellular
and humoral immune responses to eliminate M. tuberculosis. Among them, approximately 90–95%
develop into latent TB infection, and 5–10% will progress to active TB.

Following M. tuberculosis infection or vaccination, naïve T cells are activated and
undergo clonal expansion and proliferation, differentiating into effector T cells (Teff) and
memory T cells (TM) [10–12]. Teff plays a role in killing target cells and controlling infec-
tions. Upon antigen elimination, Teff enters the contraction phase and undergoes death by
apoptosis [13]. Only a small subset persists and differentiates into TM subsets [14]. Upon
re-stimulation, TM can rapidly differentiate into Teff and exert a recall response [15]. The
metabolic requirements for different types of T cells are variable [16–18]. The metabolic
reprogramming during T cell differentiation determines the development of memory T
cells [19]. Teff rely on aerobic glycolysis to supply energy and synthesize intermediate prod-
ucts, while TM primarily utilize fatty acid oxidation (FAO) and oxidative phosphorylation
(OXPHOS) for energy.

TM are phenotypically and functionally heterogeneous [14,20] (Figure 2). TM subsets
are mainly divided into effector memory T cells (TEM), central memory T cells (TCM), stem
cell-like memory T cells (TSCM), and tissue-resident memory T cells (TRM) [10–12]. TCM
expresses high levels of IL-7 receptor α (CD127), CD62L, and CCR7, while TEM and Teff
lack CD62L and CCR7 expression [21,22]. TCM are mainly found in the lymph nodes
and survive for over 10 years. Upon antigenic re-stimulation, these cells can rapidly
differentiate into TEM and effector cells [21]. TEM mainly exist in the spleen and peripheral
nonlymphoid organs and provide short-term protection for about 3 months [23]. IFN-γ
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is mainly produced by Teff and TEM while IL-2 is predominantly produced by TCM [24].
Moreover, TSCM are defined as the precursors of memory cells and exhibit naïve-like
markers (CCR7, CD27, CD127, CD62L). TSCM have high self-renewal and proliferation
capabilities and a multi-differentiation potential to generate multiple subsets of memory
cells [25,26]. In contrast to other memory T cells, TRM infiltrate local tissues infected by
pathogens and stay there long after infection clearance without recycling [27]. CD69 and
integrin CD103 are initially critical markers for TRM cells [28,29].
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inent role in clearing M. tuberculosis [31]. Due to the high bacterial and antigen load in 
active TB disease, a large number of antigen-specific Teff become activated. Arrigucci et al. 
demonstrated that the number of CD4+ T cells expressing IFN-γ and TNF-α in active TB 
was higher than that in LTBI, indicating that active TB was characterized by highly active 
effector memory Th1 cells [32]. As such, the proportions of IFN-γ and TNF-α in children 
with active TB are higher than that in children with LTBI [33]. Additionally, in HIV-in-
fected patients with active TB, RD1 antigen-specific CD4+ T cells produce high IFN-γ and 
TNF-α [34]. After successful drug treatment, the bacteria are completely cleared, and some 
cells survive and differentiate into the memory T cell, which initiates a recall response 
upon reinfection. For therapeutic TB vaccine, CD8+ T cells are activated and differentiate 
into cytotoxic T lymphocytes (CTLs), which dissolve M. tuberculosis-parasitized macro-
phages by releasing perforin and granulysin. 

Tuberculin Skin Test (TST), QuantiFERON-TB Gold (QFT) or interferon-gamma re-
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Figure 2. Main subsets and characteristics of effector and memory T cells. Following M. tuberculosis
infection or vaccination, naïve T cells are activated and undergo clonal expansion and proliferation,
differentiating into effector T cells (Teff) and memory T cells (TM), which mainly include effector
memory T cells (TEM) and central memory T cells (TCM). T cell antigen receptor (TCR) signal is an
important determinant of T-lymphocyte differentiation. Strong TCR signals drive T cell terminal
differentiation, while weaker signals induce T cell differentiation toward the memory pattern. TCM

expresses high levels of CD62L and CCR7, while Teff lacks CD62L and CCR7 expression. For
transcription factor regulation, T-bet and Blimp-1 drive the terminal differentiation of T cells, while
id3 and Bcl-6 regulate the formation of TCM. Teff rely on aerobic glycolysis to supply energy and
synthesize intermediate products, while memory T cells primarily utilize fatty acid oxidation (FAO)
and oxidative phosphorylation (OXPHOS) for energy.

2. Variation in Memory T Cells among M. tuberculosis Infection

Changes in host immune status are the most direct cause determining the progression
of M. tuberculosis infection [30]. The immune responses related to LTBI and active TB
are dynamic and exhibit divergent patterns. In active TB, antigen-specific Teff play a
prominent role in clearing M. tuberculosis [31]. Due to the high bacterial and antigen load in
active TB disease, a large number of antigen-specific Teff become activated. Arrigucci et al.
demonstrated that the number of CD4+ T cells expressing IFN-γ and TNF-α in active TB
was higher than that in LTBI, indicating that active TB was characterized by highly active
effector memory Th1 cells [32]. As such, the proportions of IFN-γ and TNF-α in children
with active TB are higher than that in children with LTBI [33]. Additionally, in HIV-infected
patients with active TB, RD1 antigen-specific CD4+ T cells produce high IFN-γ and TNF-
α [34]. After successful drug treatment, the bacteria are completely cleared, and some cells
survive and differentiate into the memory T cell, which initiates a recall response upon
reinfection. For therapeutic TB vaccine, CD8+ T cells are activated and differentiate into
cytotoxic T lymphocytes (CTLs), which dissolve M. tuberculosis-parasitized macrophages
by releasing perforin and granulysin.

Tuberculin Skin Test (TST), QuantiFERON-TB Gold (QFT) or interferon-gamma release
assays (IGRAs) are common immune sensitization tests for M. tuberculosis infections. Dur-
ing M. tuberculosis latent infection, the diagnostic results of TST/QFT are generally positive.
However, it has been reported that some TST/QFT-positive individuals show a reversal
phenomenon (QFT reverters), while some remain persistent positives (Figure 3). QFT
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and/or TST reversal may reflect the pathogen’s clearance or bacterial load reduction [35,36].
Previous data showed that IGRA positivity reversion rates were 9.4% of household contacts
after 3-year follow-up, which increased to 38.2% after 6-year follow-up without previous
treatment [37]. In QFT-persistent positive individuals, M. tuberculosis may not be cleared,
and T cells are activated to perform effector functions, resulting in persistent positive TST
and IGRA. Once M. tuberculosis is eliminated or reduced to a low bacterial load, the majority
of Teff may die by apoptosis, making TST and QFT negative [38–40].
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Figure 3. Variation in effector and memory T cells during M. tuberculosis latent infection. According
to the results of QFT, the LTBI population is mainly divided into two groups: QFT reverters and
persistent positives. QFT reverters have a relatively lower bacterial load, a lower proportion of Teff

and a greater formation of memory T cells. In contrast, more M. tuberculosis bacilli are present in
persistent positive populations and continuously stimulate Th1 effector T cells.

Latency-associated antigens could induce specific immune memory and play an
important role in preventing the reactivation of LTBI. dosR and rpf are important genes for
the survival of M. tuberculosis in stress environments. Both dosR regulator and Rv0867c
(RpfA, which is an important member of the Rpf family) could induce the generations of
TEM and Teff cells in a long-term latent infection state (ltLTBI) [41,42]. However, compared
to ESAT-6 and CFP10, DosR and Rpf antigens exhibit significant monofunctional and
bifunctional (IFN-γ and/or TNF-α) T cell responses [43]. In addition, applying peptide
microarray technology and sample analysis found that Rv2659c and Rv1738-specific IgA
were lower in LTBI individuals than in active TB, while their cellular immune response in
LTBI was stronger than that in active TB [44].

Moreover, M. tuberculosis persistent stimulation induces the excessive activation of T
cells, ultimately leading to T cell exhaustion, which is characterized by progressive loss of
effector function and memory T cell potential as well as high and sustained expression of
inhibitory immune checkpoint receptors PD-1 and TIM-3 [45–47]. Persistent M. tuberculosis
antigen stimulation induces T cells, including memory precursors and memory T cells, to
differentiate into short-lived terminal cells, eventually leading to T cell exhaustion [48].
During 28 months of follow-up in untreated active TB patients, antigen-specific IFN-γ-
secreting T cells gradually decreased [49].

3. TB Vaccine-Induced Memory T Cells

Bacille Calmette-Guérin (BCG) is the most widely used TB vaccine globally and has
been used for more than 100 years. It effectively protects infants and children from miliary
TB and meningeal TB but lacks effective protection in adults [50]. It has been suggested
that BCG may induce effective protection for 10–15 years [51]. Therefore, developing
new TB vaccines that are more effective than BCG or capable of boosting BCG-primed
immunity is urgently needed. Novel TB vaccines in clinical trials include live attenuated
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mycobacterial vaccines, subunit vaccines, viral vector vaccines, inactivated whole cell
vaccines, and nuclear acid vaccines, etc. Several TB vaccine candidates are undergoing
clinical trials (Table 1).

3.1. BCG and Recombinant BCG Vaccine-Induced Immune Memory

The protective immunity of BCG lasts for 10–15 years, possibly because persistent
BCG mainly induces TEM [52–54]. In mice, BCG-activated CD4+ TEM cells secrete IFN-γ
and TNF-α, with numbers peaking at 5–6 weeks. In humans, following BCG-priming in
infants or children, the frequency of BCG-specific CD4+ T cells and the amounts of IFN-γ
and TNF-α reach their peak at 10 weeks after vaccination and then gradually decline [55].

Recombinant BCG (rBCG), constructed by overexpressing M. tuberculosis-immunodominant
antigens in BCG or modifying BCG, is supposed to improve the protective efficacy of BCG.
Among them, rBCG ∆ureC::hly (VPM1002) is in clinical trials. VPM1002 is an rBCG that
overexpresses the listeriolysin gene (hly) and has a deleted urease C gene (ureC). Since
listeriolysin can destroy the phagolysosomal membrane, VPM1002 can effectively activate
CD8+ and CD4+ T cells by interacting with host cell MHC class I and class II molecules to
improve BCG antigen presentation. Moreover, it has a shorter survival time in vivo than
BCG, promoting the generation of TCM rather than TEM [56–60]. VPM1002 induces the
secretion of Th1-type and Th17-type cytokines in mice and provides greater protective ef-
fects than BCG [58,59,61]. In an open-label, controlled, randomized, single-administration,
dose-escalation phase I clinical trial (NCT00749034), the immunogenicity and safety of
VPM1002 were evaluated in QFT−, healthy adult male volunteers. It was observed that,
180 days after vaccination, antigen-specific IFN-γ secretion was significantly higher than
that when vaccinated with BCG. Meanwhile, VPM1002 could induce the production of
IL-2+ TNF-α+ IFN-γ+ CD4+ T cells and TNF-α+ IFN-γ+ CD8+ T cells [62]. In another phase
II open-label, randomized clinical trial (NCT01479972), healthy newborns without prior
exposure to HIV and previous BCG vaccination were vaccinated with VPM1002 and BCG,
respectively, to evaluate the safety and immunogenicity in TB-endemic areas. Whole-blood
specimens were incubated with BCG or PPD for 7 days at 37 ◦C to detect IFN-γ production.
Compared to pre-vaccination, both VPM1002 and BCG vaccination could induce multi-
functional IL-2+ TNF-α+ IFN-γ+ CD4+ and TNF-α+ IFN-γ+ CD8+ T cells at 6 months after
the last immunization, but there was no significant difference between the two vaccines.
Interestingly, IL-17+ CD8+ T cells were more induced in the VPM1002 group than that in
the BCG group [63]. They concluded that the CD4+ T cell response induced by VPM1002
vaccination was similar to that induced by BCG, but the CD8+ T cell response was superior
to BCG.
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Table 1. TB vaccine candidates in clinical trials.

Vaccine Vaccine Composition Animal Experiment Clinical Trial Reference

M72/AS01E

Antigens: Mtb39A, Mtb32A
Adjuvant: AS01E, containing

immunostimulants MPL and active
fraction of Quillaja saponaria (QS21)

In the guinea pig model, protective efficacy lasting
over 1 year.

As BCG booster vaccine, providing protective efficacy
superior to BCG.

Inducing higher numbers of multifunctional CD4+ T
cells and CD8+ T cells, lasting 180 days after the last

immunization in healthy population.
The protection efficacy of M72/AS01E was 49.7%
after 3 years of follow-up in the LTBI population.

[64–67]

ID93+GLA-SE

Antigens: Rv2608, Rv3619, Rv3620,
Rv1813

Adjuvant: GLA-SE, GLA-SE, a synthetic
TLR4 agonist GLA formulated in the

squalene-in-water stable emulsion

As BCG booster vaccine, significantly reducing the
bacterial load, superior to BCG alone in mice.

In guinea pigs, as BCG booster vaccine, providing
long-term protection against M. tuberculosis infection.

Inducing antigen-specific IgG antibody responses
and multifunctional CD4+ T cell responses, lasting

238 days in healthy adults.
[68–72]

H56:IC31

Antigens: Ag85B, ESAT6, Rv2660c
Adjuvant: IC31 being composed of
anti-microbial peptide (KLK) and
oligodeoxynucleotide (ODN1a)

In cynomolgus macaques’ models, as BCG booster
vaccine, reducing pulmonary pathologic changes

following M. tuberculosis infection.

Inducing a higher frequency of antigen-specific,
multifunctional CD4+ T cells approximately 100 days

after the last immunization in healthy adults.
[73–75]

GamTBvac Antigens: ESAT-6, CFP10, Ag85A
Adjuvant: Dextran/CpG

Effectively inducing antigen-specific IFN-γ responses
5 weeks after final immunization in mice.

In mouse and guinea pig models, preventing aerosol
and intravenous attacks of M. tuberculosis H37Rv

strain.

Inducing stable and high CD4+ T cell responses and
IgG responses 83 days after the final immunization. [76–78]

H4:IC31 Antigens: Ag85B, TB10.4
Adjuvant: IC31

As BCG booster vaccine, enhancing BCG-induced
memory CD4+ T cells and protection in mice.

6 months after the final immunization, BCG-prime
and H4:IC31 boosting provides protective efficacy of
30.5%, lower than that in BCG boosting vaccination

(45.4%).

[79,80]

AEC/BC02 Antigens: Ag85b, ESAT6 and CFP10
Adjuvant: CpG and aluminum

In guinea pig model of latent infection, reducing the
bacterial load in the lungs and spleen. [81]

MVA85A
Antigen: Ag85A

Recombinant poxviral vector: Modified
vaccinia Ankara (MVA)

In BCG-vaccinated calves, boost with MVA85A
calves showing a wider T cell repertoire than the

BCG revaccination groups.

As BCG booster vaccine, inducing long-lasting,
polyfunctional M. tuberculosis-specific CD4+ memory

T lymphocyte populations 24 weeks following
MVA85A administration.

The MVA85A vaccination was well tolerated and
immunogenic, but there was no efficacy against M
tuberculosis infection or disease in adults infected

with HIV-1.

[82–85]

AdHu5Ag85A

Antigen: Ag85A
Vector: recombinant

replication-defective human serotype 5
adenovirus-vectored (AdHu5-vectored)

As BCG booster vaccine, mucosal boost with
AdHu5Ag85A enhancing the antigen-specific T cell

responses, improving the survival and bacterial
control after challenged with M. tuberculosis in rhesus

macaques.

Low-dose aerosol immunization eliciting
respiratory–mucosal immunity.

Both aerosol inhalation and intramuscular injection
of AdHu5Ag85A were safe and well tolerated.

[86,87]
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Table 1. Cont.

Vaccine Vaccine Composition Animal Experiment Clinical Trial Reference

TB/FLU-04L
Antigen: Ag85b and ESAT6

Vector: recombinant attenuated
influenza strain (Flu NS106)

The TB/FLU-04L intranasal vaccine against TB was
safety in mouse, ferrets, monkeys and rabbit model. [88,89]

VPM1002 rBCG ∆ureC::hly Providing greater protective effects than BCG in mice.

Inducing significantly higher IFN-γ secretion in the
previous BCG-uninoculated individuals 180 days

after vaccination.
Inducing multifunctional CD4+ and CD8+ T cells
6 months after the last immunization in healthy

newborns.

[58,59,61–63,90]

RUTI Detoxified and liposomed, cellular
fragments of M. tuberculosis

RUTI-treated animals showed lower bacillary load
than PBS and BCG groups in the mouse and guinea

pig models.

Triggering specific T cell responses against
M. tuberculosis structural and secreted antigens like

PPD, 16 kDa and 38 kDa in healthy volunteers,
compared with control subjects.

[91–94]

MTBVAC Live, genetically
attenuated MTB

In the macaque model, MTBVAC induced similar
protective efficacy as BCG 21 weeks after vaccination.

Inducing significantly higher vaccine-specific CD4
and CD8 T cell responses 360 days after vaccination

in healthy infants.
MTBVAC was at least as immunogenic as BCG

210 days after vaccination in the healthy population.

[58,59,61–63,95–97]

DAR-901 Inactivated whole cell tuberculosis
booster vaccine

Among animals primed with BCG, boosting with
DAR-901 at 1 mg provided greater protection against
aerosol challenge than a homologous BCG boost in

mouse model.

DAR-901 recipients exhibited increased DAR-901
antigen-specific polyfunctional or bifunctional T cell
responses compared to baseline. A three-dose series
of 1 mg DAR-901 was safe and well-tolerated but did

not prevent initial or persistent IGRA conversion.

[98–100]

GLA, glucopyranosyl lipid adjuvant; SE, stable emulsion; TLR, Toll-like receptor; TDB, trehalose-6,6-behenate; CpG, cellular guanine phosphate; ODN1a, oligodeoxynucleotide (ODN) 1a.
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3.2. TB Subunit Vaccine-Induced Immune Memory

The TB subunit vaccine consists of immunologically active components such as pro-
teins, peptides and glycolipids from M. tuberculosis. It has the advantages of high efficiency,
safety and low cost. The adjuvant of subunit vaccine can help release antigens slowly
and maintain a long period at low levels, which contributes to inducing the formation of
TCM [101–103]. It has been proven that mice vaccinated with subunit vaccines H56 [104] and
LT69 [103] induce long-lived memory T cells, which may include TCM. Subunit vaccines
Ag85B-ESAT-6/CAF01 [105] and H56 [104] could induce the secretion of IL-2, TNF-α, IFN-γ
and other cytokines, among which IL-2 is beneficial to the differentiation and proliferation
of memory T cells [106,107].

Currently, there are six subunit vaccines in clinical trials, including M72/AS01E,
GamTBvac, H56:IC31 (AERAS-456), H4:IC31 (AERAS-404), ID93+GLA-SE and AEC/BC02
(Table 1).

(1) M72/AS01E: M72/AS01E consists of two highly immunogenic M. tuberculosis pro-
teins (Mtb39A and Mtb32A) and the adjuvant AS01E. M72/AS01E has shown promising
results in several phase I and II clinical trials in adolescents and adults [64,65,108–113]. In a
phase II double-blind, controlled, randomized clinical trial (NCT00950612), the safety and
immunogenicity of M72/AS01E were evaluated in QFT−, HIV-uninfected, BCG-vaccinated
adolescents in a TB-endemic area. It was observed that, 180 days after the last immuniza-
tion, M72 peptide-specific IL-2+ IFN-γ+ TNF-α+ CD4+ T cells and IFN-γ+ TNF-α+ CD8+ T
cells were higher than at pre-vaccination. T cell responses induced by M72/AS01E vaccina-
tion were much higher in M. tuberculosis-infected individuals than in QFT− individuals.
Additionally, the difference between the two groups gradually decreased over time [64].
The reason for this may be that M. tuberculosis-infected individuals have already induced
M. tuberculosis antigen-specific TCM or TEM in their body. After M72/AS01E vaccination,
these T cells can be activated and exert a recalling response, which is consistent with the
results of another phase IIa clinical trial (NCT00600782) [112]. The protective effect of
M72/AS01E was evaluated in a multicenter, double-blind, randomized, placebo-controlled
phase IIb clinical trial (NCT01755598) in BCG-vaccinated, QFT+ adults. The morbidity of
pulmonary TB was lower in the M72/AS01E-vaccinated group than that in the placebo
group. A total of 180 days after the last immunization, the protection efficacy of M72/AS01E
was 54% [113]. After 3 years of follow-up, M72/AS01E provided 49.7% protection against
the recurrence of active TB, indicating that M72/AS01E could induce the formation of
long-lived memory T cells and provide partial protection against LTBI reactivation [65].

(2) ID93+GLA-SE: ID93+GLA-SE is composed of four M. tuberculosis antigens (Rv1813c,
Rv2608, Rv3619c, Rv3620c) and Toll-like receptor 4 (TLR4) agonist GLA-SE as adjuvant. In
a mouse model, ID93+GLA-SE immunization induces CD4+ T cells to secrete high levels
of IFN-γ, IL-2 and TNF-α [68,114]. ID93+GLA-SE boosting BCG significantly reduced the
bacterial load following M. tuberculosis challenge, superior to BCG alone [68]. Also, in
guinea pig models, the ID93+GLA-SE vaccine could boost BCG-induced response and
provide long-term protection against M. tuberculosis infection [69].

In a randomized, double-masked, dose-escalation phase I clinical trial (NCT01599897),
the safety and immunogenicity of ID93+GLA-SE were evaluated in BCG-unvaccinated,
HIV-negative, QFT− and healthy adults. ID93 antigen peptide-specific multifunctional
CD4+ T cell responses with increased IFN-γ, IL-2 and TNF-α secretions lasted until day
238 [70]. In another randomized, double-masked, placebo-controlled phase I clinical trial
(NCT01927159), the safety and immunogenicity of ID93+GLA-SE were measured in HIV-
negative, BCG-vaccinated, QFT− and healthy adults from South Africa. Whole blood was
stimulated with ID93 antigen to detect the levels of IFN-γ, IL-2, IL-17 and TNF-α secreted
by CD4+ and CD8+ T cells. Compared to the placebo group, ID93+GLA-SE vaccination
induced higher antigen-specific, IFN-γ+ IL-2+ TNF-α+ CD4+ T cell responses 182 days
after the last vaccination, indicating that it induced the production of long-lived memory T
cells [71]. Furthermore, a randomized, double-blind, placebo-controlled phase IIa clinical
trial (NCT02465216) was conducted in Cape Town, South Africa in BCG-vaccinated, HIV-
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negative adults. ID93+GLA-SE vaccination (2 µg ID93 + 5 µg GLA-SE) induced antigen-
specific, multifunctional IFN-γ+ IL-2+ TNF-α+ CD4+ T cell and IgG responses that lasted for
6 months, significantly higher than those in the placebo group, indicating that the vaccine
was capable of inducing long-lived memory T cells [72].

(3) H56:IC31: H56:IC31 consists of M. tuberculosis early secreted antigen Ag85B, ESAT-6
and latency-associated antigen Rv2660c with IC31 adjuvant. IC31 is a two-component
adjuvant of anti-microbial peptide (KLK) and oligodeoxynucleotide (ODN1a), a Toll-like
receptor 9 (TLR9) agonist [115]. Incorporating Rv2660c into the fusion protein, which is
composed of ESAT-6 and Ag85B, significantly enhances the protective effect of the H56
vaccine against M. tuberculosis infection in mice [104]. In a cynomolgus macaque model,
H56/IC31, as a BCG booster vaccine, alleviated clinical pulmonary pathologic changes at
64 weeks after M. tuberculosis infection and prevented the recurrence of latent infection [73].

In an open-label phase I clinical trial in South Africa (NCT01967134), the safety and
immunogenicity of H56:IC31 were first evaluated in M. tuberculosis-infected and QFT−,
BCG-vaccinated healthy adults. Low-dose (15 µg H56, 500 nmol IC31) and high-dose (50 µg
H56, 500 nmol IC31) vaccines were intramuscularly administered three times. Approx-
imately 100 days after the last immunization, the low-dose H56 vaccination induced a
higher frequency of polyfunctional IFN-γ+ TNF-α+ IL-2+ CD4+ T cells compared to pre-
vaccination. Meanwhile, the H56-induced T cell responses in the M. tuberculosis-infected
population were stronger than that in healthy individuals, which may be related to the pre-
existing M. tuberculosis antigen-specific T cells in M. tuberculosis-infected population [74]. In
another randomized, open-label phase I/II clinical trial (NCT02503839), H56:IC31 vaccine
induced multifunctional CD4+ T cells producing antigen-specific IFN-γ, IL-2 and TNF-α
lasting for 238 days. This suggests that H56:IC31 induced the formation of long-lived
memory T cells [75].

(4) GamTBvac: The antigens Ag85A, ESAT6 and CFP10 are non-covalently bonded
to the framework constructed by the glucan binding domain (DBD), and combined with
the DEAE-dextran nanoparticle adjuvant containing CpG oligodeoxynucleotides (TLR9
agonist) to form a vaccine. Among them, the DBD framework facilitates antigen ex-
traction and presentation [116]. GamTBvac effectively induced antigen-specific IFN-γ
responses in lymph nodes and spleen cells in mice models. Both GamTBvac-prime/boost
and BCG-prime/GamTBvac-boost regimens were effective in preventing aerosol and in-
travenous attacks of M. tuberculosis H37Rv strain [76]. In a phase I open-label clinical
trial (NCT03255278), conducted in Russia (Moscow region), the safety and immunogenic-
ity of different doses of GamTBvac were evaluated in QFT−, BCG-vaccinated, healthy
adults. After whole blood was stimulated with recombinant antigens DBD-Ag85a and
DBD-ESAT6-CFP10 for 72 h, compared with the pre-vaccination period, the half-dose group
(DBD-ESAT6-CFP10, 12.5 µg; DBD-Ag85a, 12.5 µg) induced stable and high CD4+ T cells
responses and IgG responses 83 days after the final immunization. GamTBvac has the
capacity to induce the secretions of TNF-α, IP-10, IL-17 and IL-9 [77]. Another Phase II
double-masked, randomized, multicenter, placebo-controlled clinical trial (NCT03878004)
showed that GamTBvac vaccination induced a high antigen-specific CD4+ T cell response
compared to pre-vaccination at 93 days after the last immunization [78].

(5) H4:IC31: H4:IC31 is formed by Ag85B-TB10.4 (H4) antigen with adjuvant IC31. Cur-
rently, H4:IC31 is mainly used as a BCG booster vaccine. H4:IC31 enhanced BCG-induced
memory CD4+ T cells and protective efficacy in mice [79]. However, in a randomized,
three-arm, placebo-controlled, partially blinded phase II clinical trial (NCT02075203) in
HIV-uninfected, BCG-vaccinated, QFT− adolescents, the protective efficacy of H4:IC31
vaccine (30.5%) was lower than that of BCG vaccination (45.4%) [80].

(6) AEC/BC02: AEC/BC02 vaccine, developed by the China Academy of Food and
Drug Administration (CAFDA), Beijing, China, comprises Ag85b, ESAT6-CFP10 antigen
with the adjuvant BC02 (consisting of CpG with aluminum) [81]. The synergistic effect
of CpG and aluminum induces a robust Th1 immune response [117]. In the guinea pig
model of latent infection, AEC/BC02 protected the guinea pigs from disease progression,
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effectively controlled the reactivation of M. tuberculosis, and reduced the bacterial load in the
lungs and spleen [81]. Currently, two phase I clinical trials (NCT03026972, NCT04239313)
about AEC/BC02 have been conducted in PPD-negative and IGRA-negative volunteers
with unpublished results. There is also an ongoing phase II clinical trial (NCT05284812) in
LTBI individuals.

(7) Other pre-clinical subunit vaccines: In preclinical studies, some vaccines have
also shown good protective effects. Among them, LT70 is a multistage subunit vaccine
composed of immunodominant antigens of M. tuberculosis (Ag85B, peptide 190–198 of
MPT64, ESAT-6, latency-associated antigen Rv2626c and proliferative phase antigen Mtb8.4)
and the adjuvant DDA+Poly(I: C) [118]. In mice models, compared to the PBS and BCG
groups, the LT70 subunit vaccine could induce a Th1-type immune response, producing
high levels of IFN-γ, IgG2c and IgG1 antibodies. The protective efficacy of LT70 against
M. tuberculosis infection in mice was superior to BCG at 30 weeks after the last immunization,
suggesting that LT70 has the ability to induce the formation of long-lived memory T
cells [118].

The CMFO/DMT subunit vaccine is fused with four proteins (Rv2875, Rv3044, Rv2073c
and Rv0577). Except for Rv0577, the others are latency-associated antigens. In a mouse
latent infection model, CMFO-DMT was effective in preventing M. tuberculosis reactivation
by eliminating bacterial load in the lungs and spleen, suggesting that CMFO-DMT is a
promising TB vaccine candidate that can prevent the reactivation of LTBI [119].

3.3. Virus-Vectored Vaccine-Induced Immune Memory

Viral vector vaccines rely on recombinant viruses to deliver antigens without ex-
ogenous adjuvants [120]. Recombinant viral vector vaccines can mimic the invasion of
pathogens, thereby triggering a robust immune response. These vaccines contain viral
vectors that harbor exogenous antigenic segments, allowing them to invade host cells and
replicate extensively within them. As a result, they can elicit significant cellular and hu-
moral immune responses without exogenous adjuvants and have the potential to enhance
antigen-specific immune memory. After the activation of the host’s immune response, com-
monly used genotoxic or replication-deficient viruses are swiftly eliminated. Subsequently,
antigen-specific immune cells gradually transform into memory cells and can persist for
long periods [121].

Currently, viral vectors used in TB vaccine research include influenza virus, Sendai
virus (SeV), adenoviruses (Ad), poxviruses, lymphocytic choriomeningitis virus (LCV), cy-
tomegalovirus (CMV), lentiviruses and vesicular stomatitis virus (VSV). Among them, some
viral vector vaccines have entered clinical trials, such as AdHu5Ag85A (NCT02337270 I),
TB/FLU-01L (NCT03017378 I), TB/FLU-04L (NCT02501421 I), ChAdOx1.85A (NCT03681860
IIa) [122] and MVA85A (NCT00953927 IIb) [123].

AdHu5Ag85A, formerly known as Ad5Ag85A, is a recombinant human type 5 aden-
ovirus (AdHu5) expressing M. tuberculosis Ag85A antigen [124]. A phase I clinical trial was
conducted on 31 BCG-vaccinated, 18–55 years old healthy adults in Canada (NCT02337270),
and bronchoalveolar lavage fluids were collected at 2 weeks and 8 weeks post-vaccination
to assess the immunogenicity of AdHu5Ag85A. The results showed that AdHu5Ag85A
aerosol immunization induced the production of antigen-specific T cells with respiratory
mucosal homing and TRM properties [86].

MVA85A is a poxviruses virus-vectored vaccine, expressing M. tuberculosis antigen
Ag85A. It uses the Ankara strain of the vaccinia virus as a vector to induce a T cell immune
response. Although MVA85A induces long-lasting Ag85A-specific T cell responses in
immunocompetent individuals, it failed to enhance BCG-primed protective efficacy in in-
fants [123]. ChAdOx1.85A is a simian adenovirus vector-based TB vaccine, which expresses
the MTB antigen Ag85A [125]. ChAdOx1.85A induces polyfunctional CD4+ T cells (IFN-γ,
TNF-α and IL-2), IFN-γ+ TNF-α+ CD8+ T cells, and Ag85A-specific IgG responses, which
can be boosted by MVA85A [122].
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SeV85AB is a novel Sendai virus (SeV) vector vaccine that expresses M. tuberculosis
antigens Ag85A and Ag85B [90,126]. The vaccine SeV986A is a recombinant SeV viral
vector that expresses three latency-associated antigens (Rv2029c, Rv2028c and Rv3126c) and
Ag85A [127]. In a mouse model, SeV986A immunization via the intranasal route induces
higher immunogenicity compared to intramuscular injection.

A novel vesicular stomatitis virus (VSV-846) expressing TFP846 (Rv3615c-Mtb10.4-
Rv2660c) [128] induces an effective antigen-specific T cell response through a single in-
tranasal injection, effectively limiting bacterial growth. Mice immunized with VSV-846
show long-term protection against M. tuberculosis infection compared to the mice vacci-
nated with p846 or BCG. An increase in memory T cells is also observed in the spleens of
VSV-846-vaccinated mice at 24 weeks.

4. Factors Affecting Immune Memory Induced by TB Vaccines
4.1. TCR Diversity, Antigen Dose and Route of Inoculation

Antigen dose, stimulation duration and vaccination route affect TM differentiation. T
cell antigen receptors (TCRs) signal is an important determinant of T-lymphocyte differen-
tiation [129]. The diversity, affinity and subsequent strength of the TCR signal determine
the heterogeneity of T cells [130–132]. Low-avidity TCR is critical for protection from het-
erologous reinfections [133]. Strong TCR signals drive T cell terminal differentiation, while
weaker signals induce T cell differentiation toward the memory pattern (Figure 1). For
instance, in studies of influenza virus infection, short-term antigenic stimulation favored
TCM generation, while sustained antigenic stimulation favored T cell differentiation toward
TEM or even Teff [134]. Studies of TB subunit vaccines found that low doses such as 0.5–1 µg
H56 [104] and 2 µgLT69 [103] immunizing mice induced longer-lasting immune protection.

Intranasal inoculation with attenuated strains of herpes simplex virus promotes TEM
production more than a peritoneal injection, probably due to the activation of mucosal
immune response via the intranasal route [135]. Meanwhile, the TRM response in lung tissue
can be enhanced through intranasal administration [53]. Moreover, intravenous injection
of BCG vaccine in non-human primates has a better protective effect than subcutaneous
injection [136].

4.2. Immunization Strategies

Subunit vaccines have poor immunogenicity and require multiple booster immuniza-
tions to enhance the long-lasting immune memory response [67,79,125,137]. The vaccine
immunization interval is the main factor affecting the prime-boost vaccination. It is believed
that the optimal time for boosting would be between the late stage of T cell expansion and
the maintenance period, aiming at inducing a longer-lasting immune memory [138]. If
the interval between prime and booster is short, Teff are predominantly induced and TM
production is lessened. For recombinant viral vector vaccines, a combination of different
viral vector types and prime-boost immunization strategies are applied to achieve a greater
immune response against M. tuberculosis or other pathogens infection [139–141]. To explore
the effect of vaccination intervals on T cell immune memory, LT70 was immunized at
0–3–6, 0–4–12 and 0–4–24 weeks. The 0–4–12 weeks immunization induced more TCM like
cells and could significantly reduce pulmonary bacterial load than that at the 0–3–6 weeks
vaccination interval [142], suggesting that prolonged subunit vaccine booster intervals
contribute to the induction of TCM and effectively prevent M. tuberculosis infection.

TB subunit vaccines are supposed to be used as boosters for BCG to improve BCG-
primed protective efficacy. However, traditional short-interval booster immunization
regimens usually induce TEM and provide short-term protection [142,143]. To optimize the
boosting strategy of subunit vaccines, following BCG priming, both Mtb10.4-HspX (MH)
immunizations twice at 12–24 weeks and ESAT6-CFP10 (EC) boosting thrice at 12–16–24
weeks increased the number and function of long-term memory T cells and promoted the
protective efficacy against H37Ra infection. This indicated that, after BCG priming, “non-
BCG” antigen EC vaccinated thrice and BCG antigen MH boosting twice at appropriate
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intervals would enhance long-lived memory T cell-mediated immunity [144]. H4-IC31H
vaccine boosting at 19 and 22 weeks after BCG immunization significantly reduced bacterial
loads in the lungs and spleen compared to that in the BCG group [79]. However, the recent
phase II clinical trial in BCG-vaccinated, QFT− adolescents, the protective efficacy of the
H4:IC31 vaccine (30.5%) was lower than that of BCG vaccination (45.4%) [80].

4.3. Cytokines

The differentiation of memory T cells is regulated by various cytokines, such as IL-7,
IL-15, IL-21, et al. Among them, IL-7 promotes T cell differentiation and is particularly
crucial for the maintenance of TCM homeostasis [145]. Recombinant adenovirus encoding
cytokines IL-7 (rAd-IL-7) significantly promotes TB subunit vaccines LT70 and MH to
induce more CD4+ TCM-like cells compared to the sham control [146]. IL-7 binds to the IL-7
receptor (IL-7R) to activate the Janus kinase (JAK)-STAT and phosphatidylinositol 3-kinase
(PI3K)-AKT pathways [147]. The activation of JAK1/3-STAT5 initiates the expression
of Bcl-2, which has anti-apoptotic effects and maintains the homeostatic proliferation of
memory T cells. STAT5 and PI3K are competitive and work together to maintain the
homeostasis of T cell proliferation and differentiation [148]. Unlike the effect of IL-7, IL-15
selectively promotes the proliferation of TEM rather than TCM [23]. The IL-21-mediated
STAT3 signaling pathway with anti-inflammatory effects contributes to the maturation of
CD8+ memory precursor T cells in an inflammatory environment [149].

4.4. Transcription Factors

The regulation of T cell memory differentiation by internal and external factors is
mostly realized through transcription factors. Many transcription factors have been identi-
fied as taking part in regulating the development and differentiation of memory T cells,
including Tcf7, kif2, Bach2 [123], Bcl-6, Blimp-1 [150], c-Myc, Id2, Id3 [151], NFAT, NF-κB,
Notch1, Notch2, T-bet and STAT3 [152]. Among them, Blimp-1 is associated with the differ-
entiation of short-lived effector T cells [153]. Id2/Id3 deletion leads to loss of effector and
memory CD8+ T cells, and high Id3 expression predicts T cell differentiation to long-term
memory T cells [151]. In patients with STAT3 mutations, the memory T cell-associated
transcription factor Bcl-6 is reduced, leading to decreased proliferative and differentiation
activity of CD4+ and CD8+ TCM, which makes them susceptible to infection by various
viruses, bacteria and fungi. Therefore, STAT3 is also an important transcription factor
regulating the formation of immune memory [152]. Adeno-associated virus-mediated
IL-7 increases the expression of Id3, Bcl-6 and bach2, which are critical for promoting the
generation of long-lived memory T cells [154]. Furthermore, Tcf7 is a downstream tran-
scription factor of the Wnt signaling pathway. Activation of the Wnt/β-catenin signaling
pathway promotes the differentiation of CD8+ T cells into multipotent memory stem cells
(CD44lowCD62LhighSca-1highCD122highBcl-2high) [154,155].

4.5. Drugs

Drugs can regulate the direction of TM differentiation mainly by affecting signaling
pathways and metabolism during T cell differentiation. The PI3K-AKT-mTOR signaling
pathway and adenosine monophosphate-activated protein kinase (AMPK) pathways are the
main pathways regulating T cell differentiation. The mTOR inhibitor (rapamycin) promotes
the formation of memory precursors during the expansion phase of T cell response and
accelerates the differentiation process of memory T cells during the contraction phase [156].
Adding rapamycin to tumor vaccines [157] and BCG immunization processes can promote
the differentiation of TCM [158]. Our laboratory also found that rapamycin enhanced
the formation of memory T cells induced by the LT70 subunit vaccine [159]. In addition,
the AMPK activator metformin favors the production of memory T cells, suggesting that
metabolic alterations regulate the differentiation of memory T cells [160]. Interestingly,
pyrazinamide (PZA), a critical first-line drug used in TB therapy, promotes the formation of
LT70-induced long-lived memory T cells and improves long-term protective efficacy [161].
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The reason for this may be that it reduces pro-inflammatory cytokine production through a
peroxisome proliferator-activated receptor (PPAR)-dependent pathway [162].

5. Conclusions

Vaccines are powerful weapons for preventing and treating many diseases. Currently,
various TB vaccine candidates are in the preclinical development stage or have entered
clinical trials, breaking the barrier that the BCG vaccine can only be used for pre-infection
prevention. In recent years, vaccine-induced immune memory has received much attention.
Maintenance of the memory T cell response after vaccination is a hallmark of immune
protection and necessary for long-term protection against re-exposure. Therefore, activating
long-term immune memory should be considered in the development of TB vaccines and
adjuvants. With the participation of novel adjuvants and the continuous optimization of
vaccination strategies, effective TB vaccines can be expected to help achieve the ambitious
goal of TB elimination.
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