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Abstract: Asthma and nasal polyposis often coexist and are frequently intertwined by tight pathogenic
links, mainly consisting of the cellular and molecular pathways underpinning type 2 airway inflam-
mation. The latter is characterized by a structural and functional impairment of the epithelial barrier,
associated with the eosinophilic infiltration of both the lower and upper airways, which can be driven
by either allergic or non-allergic mechanisms. Type 2 inflammatory changes are predominantly due
to the biological actions exerted by interleukins 4 (IL-4), 13 (IL-13), and 5 (IL-5), produced by T helper
2 (Th2) lymphocytes and group 2 innate lymphoid cells (ILC2). In addition to the above cytokines,
other proinflammatory mediators involved in the pathobiology of asthma and nasal polyposis in-
clude prostaglandin D2 and cysteinyl leukotrienes. Within this context of ‘united airway diseases’,
nasal polyposis encompasses several nosological entities such as chronic rhinosinusitis with nasal
polyps (CRSwNP) and aspirin-exacerbated respiratory disease (AERD). Because of the common
pathogenic origins of asthma and nasal polyposis, it is not surprising that the more severe forms of
both these disorders can be successfully treated by the same biologic drugs, targeting many molecular
components (IgE, IL-5 and its receptor, IL-4/IL-13 receptors) of the type 2 inflammatory trait.

Keywords: severe asthma; nasal polyposis; united airway diseases

1. Introduction

Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) are widespread, often
coexisting as inflammatory disorders affecting the lower and upper airways, respectively [1,2].
Asthma is usually characterized by shortness of breath, reversible airflow limitation, and
bronchial hyperresponsiveness [3]. Patients with CRSwNP complain of nasal obstruction,
nasal discharge, and smell loss [4]. Bronchial inflammation and sinonasal inflammation are
associated in comorbid subjects, and a significant correlation can be observed between the
inflammatory patterns detectable in bronchial and nasal biopsies, thus further strengthening
the pathogenic concept of united airway disease [5,6]. Moreover, a stronger association
between asthma and CRSwNP occurs in patients with severe disease, as shown by a
greater extent of airway inflammation, paralleled by worse bronchial obstruction and
higher rates of nasal polyp recurrence [1]. Indeed, when CRSwNP is present in asthmatic
patients, asthma is more difficult to control and is also characterized by an enhanced
tendency to exacerbate [7]. Therefore, this observation suggests that CRSwNP can be a
relevant risk factor for asthma severity [8]. On the other hand, patients with CRSwNP
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and concomitant asthma experience worse sinonasal symptoms such as nasal congestion
and smell loss [1]. In comparison with asthmatic children, CRSwNP occurs much more
frequently as a comorbidity of adult-onset asthma, thereby implying that the inflammatory
changes associated with aging (inflammaging) play a key role in disease pathobiology [9].

Asthma and CRSwNP are often driven by chronic type 2 inflammation, sustained
by close interactions between innate and adaptive immune responses (Figure 1) [10]. The
most important immune-inflammatory cells which orchestrate and coordinate upper and
lower type 2 airway inflammation are T helper 2 (Th2) lymphocytes and group 2 innate
lymphoid cells (ILC2) [2]. Other cells participating in the pathophysiologic process un-
derlying type 2 asthma and CRSwNP include airway epithelial cells, dendritic cells, B
lymphocytes, eosinophils, basophils, mast cells, and macrophages [2,10,11]. As a result, type
2 mechanisms can lead to the development, persistence, and amplification of a predominant
eosinophilic endotype, associated or not with an immunoglobulin E (IgE)-mediated allergic
phenotype [12–14]. Indeed, most patients with CRSwNP and asthma present in their nasal
polyp tissue a marked eosinophilic infiltration possibly associated with elevated IgE levels,
as well as with high eosinophil counts in both blood and sputum [4,15,16]. Patients with
CRSwNP do not mount IgE-driven immune reactions only against inhaled allergens, but
also versus Staphylococcus aureus-derived enterotoxins [1]. In particular, a large majority of
these subjects have been shown to implement in their nasal polyp tissue a local production of
polyclonal IgE directed towards staphylococcal enterotoxins [1,15]. Similarly, IgE targeting
S. aureus enterotoxins can also contribute to the pathogenesis of severe asthma [17,18].

Figure 1. Pathobiologic mechanisms underlying type 2 airway inflammation in asthma and nasal
polyposis. Released by damaged airway epithelium, alarmins (IL-25, IL-33, TSLP) activate dendritic
cells, ILC2, and airway fibroblasts. As a consequence, an overproduction of type 2 cytokines (IL-4, IL-
5, IL-13) occurs within both upper and lower airways, being responsible for the development of nasal
polyposis and asthma. In addition to proinflammatory features, the type 2 trait also includes structural
changes underpinning airway remodeling mediated by TGF-β and other growth factors. TSLP: thymic
stromal lymphopoietin; Th: T helper; ILC2: group 2 innate lymphoid cells; IL: interleukin; TGF-β:
transforming growth factor-β. This original figure was created by the authors using “BioRender.com”.
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In addition to CRSwNP, asthma is also associated with nasal polyps in patients suffer-
ing from aspirin-exacerbated respiratory disease (AERD) [1], and it has been established
that about 8–26% of subjects with CRSwNP complain of AERD [19,20]. AERD is charac-
terized by the typical triad including asthma, nasal polyposis, and respiratory reactions
to aspirin and other cyclooxygenase-1 inhibitors [21]. The development and recurrence of
AERD are induced by type 2 respiratory inflammation, based on a complex interplay involv-
ing several cells and proinflammatory mediators. In particular, AERD is a non-allergic type
2 disease, characterized by mast cell degranulation, cysteinyl leukotriene overproduction,
and platelet activation [21].

In asthma and nasal polyposis, type 2 pathomechanisms are responsible not only for
upper and lower airway inflammation, but also for relevant structural changes. Within
this context, bronchial remodeling is characterized by epithelial disruption, goblet cell hy-
perplasia, subepithelial fibrosis, smooth muscle thickening, and increased vascularization,
whereas CRSwNP is marked by stromal edema, turbinate hypertrophy, collagen/fibrin
deposition, and polyp formation [2,22–26].

Notably, the recent advances in the common pathophysiologic processes underpinning
asthma and nasal polyposis highlight the therapeutic importance of targeting shared
pathogenic cells and molecules, including eosinophils, IgE, type 2 cytokines, and their
receptors (Figure 1) [27,28].

On the basis of the above concepts, the purpose of this narrative review is to discuss
the pathobiologic mechanisms implicated in type 2 inflammation responsible for asthma
and nasal polyposis, as well as to outline the therapeutic impact of the current biologic
treatments which can be used to manage the most severe forms of both these diseases.

2. Cellular and Molecular Mechanisms Underlying Type 2 Inflammation in Asthma
and Nasal Polyposis

Type 2 inflammation is the predominant pathologic trait underpinning asthma and
nasal polyposis, driven by either allergic or non-allergic mechanisms [2]. In particular, in
both upper and lower airways, type 2 inflammatory responses are triggered, maintained,
and amplified by synergistic interactions between the innate and adaptive branches of the
immune system, mainly mediated by group 2 innate lymphoid cells (ILC2) and T helper
2 (Th2) lymphocytes, which produce and secrete type 2 cytokines such as interleukins 4
(IL-4), 13 (IL-13), and 5 (IL-5) (Figure 1) [10,14,25,29–32]. Other cellular sources of type 2
cytokines include tissue-resident memory T cells (Trm), T follicular helper 2 (Tfh2) and
13 (Tfh13) cells, mast cells, basophils, and eosinophils [11,33–36]. Within this pathologic
landscape, a key role is played by the dysregulation of airway epithelium, promoted
by deleterious agents such as aeroallergens, airborne pollutants, smoking, and viral and
bacterial infections, which damage both bronchial epithelial cells and sinonasal epithelial
cells, thus stimulating their production of innate cytokines named alarmins [37–39]. These
include thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and interleukin-
33 (IL-33), which act as upstream triggers of innate and adaptive immune mechanisms
underlying type 2 inflammation in both upper and lower airways (Figure 1) [37]. In
particular, alarmins directly stimulate ILC2 and also induce dendritic cells to drive the
differentiation of Th2 lymphocytes [25,31,40]. Alarmins recruit and activate ILC2 not
only in patients with asthma and CRSwNP, but also in subjects with AERD [21]. Upon
alarmin-dependent activation, ILC2 and Th2 cells, as well as mast cells, basophils, and
eosinophils, secrete high amounts of proinflammatory mediators including IL-4, IL-13, IL-5,
prostaglandin D2 (PGD2), and cysteinyl leukotrienes.

2.1. Interleukin-4 and Interleukin-13

IL-4 acts as an essential driver of the commitment of naïve CD4+ T lymphocytes
towards the Th2 immunophenotype [41,42]. This crucial role of IL-4 is also facilitated by
its capability of suppressing the immunomodulatory function of regulatory T (Treg) cells,
which normally inhibit the differentiation of Th2 lymphocytes in healthy subjects [43,44].
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In allergic patients, both IL-4 and IL-13 are responsible for immunoglobulin gene rearrange-
ment at the level of B lymphocytes, thus inducing isotype switching and the consequent
IgE synthesis [45,46]. The allergen-induced bridging of adjacent IgE bound to their high
affinity receptors (FcεRI) expressed by mast cells and basophils (cross-linking) elicits the
IgE-dependent degranulation of these cells, which further amplifies type 2 airway inflam-
mation by increasing the production of IL-4 and IL-13 [40,47].

In addition to T and B lymphocytes, IL-4 and IL-13 also target other immune/inflammatory
and resident cells of the airways. In regard to mast cells, IL-13 enhances cellular prolifera-
tion and FcεRI expression [48]. Furthermore, IL-4 and IL-13 activate the M2 macrophage
subtype in patients with either asthma and/or CRSwNP [10,49–51]. IL-4 and IL-13 are also
involved in eosinophil trafficking. Indeed, IL-4 increases the endothelial expression of the
vascular cell adhesion molecule-1 (VCAM-1), thereby inducing eosinophil extravasation,
whilst IL-13 promotes eosinophil chemotaxis by stimulating the release of eotaxin from
airway epithelial cells [52,53]. Hence, IL-4 and IL-13 contribute remarkably to the massive
eosinophil infiltration which often characterizes asthmatic bronchial walls, as well as the
nasal polyps of patients with either CRSwNP or AERD [21,54].

With regard to airway resident cells, the epithelial barrier can be broken by IL-13
and IL-4 at both bronchial and sinonasal levels. In particular, IL-13 down-regulates the
production of claudin-18.1, a key component of intercellular tight junctions [55]. Moreover,
IL-4 and IL-13 up-regulate the biosynthesis of histone deacetylases 1 and 9 (HDAC 1 and
9), whose expression levels are directly correlated to the structural damage of airway
epithelium [56]. By compromising the integrity of the sinonasal and bronchial epithelial
layers in patients with asthma and nasal polyposis, IL-4 and IL-13 cause a dysfunction of the
airway epithelial barriers, thus increasing their permeability to aeroallergens and infectious
agents [57]. IL-13 induces goblet cell hyperplasia and stimulates the production of mucin
5AC (MUC5AC), a glycoprotein which enhances the viscosity of bronchial mucus and
impairs the mucociliary clearance of nasal epithelium [58,59]. This biological action of IL-13
significantly contributes to mucus plugging, which is closely tied to type 2 inflammation
and airway eosinophilic infiltration [60]. Within this pathogenic context, a key role is
played by the very tight adhesion of mucus to the airway epithelium [61]. IL-13 also rises
the airway epithelial expression of the inducible isoform of NO synthase (iNOS), thereby
incrementing the levels of fractional exhaled nitric oxide (FeNO) [62], which is used in
clinical practice as a reliable biomarker of airway inflammation. Other cellular targets
of IL-13 are airway smooth muscle cells, whose contractile and proliferative responses
can be induced by this type 2 cytokine [63]. Further contributions of IL-13 to airway
remodeling include its biologic actions resulting in the stimulation of collagen deposition,
fibroblast proliferation, sub-epithelial fibrotic thickening, and activation of the epithelial-
mesenchymal trophic unit [10]. Such structural effects are at least in part mediated by
the IL-13-dependent induction of transforming growth factor-β1 (TGF-β1), a fibrogenic
mediator which crucially contributes to airway remodeling in asthma [64,65]. Airway
remodeling elicited by IL-4 and IL-13 also occurs via their stimulatory action on M2-type
macrophages, which promote fibrin deposition and nasal polyp formation by inhibiting
fibrin degradation [64]. Indeed, these type 2 cytokines decrease fibrinolysis by reducing
the biosynthesis of the tissue plasminogen activator [66]. In addition, the up-regulation
of IL-13 expression in nasal polyp tissue is associated with the IL-13-induced increase in
the number of M2 macrophages producing the coagulation factor XIIIA [51]. Therefore,
these cytokines and their receptors represent suitable molecular targets for monoclonal
antibodies (dupilumab) with the therapeutic potential of inhibiting airway remodeling in
asthma and nasal polyposis [32].

2.2. Interleukin-5

The maturation, differentiation, proliferation, and activation of eosinophils are mostly
attributable to IL-5, which also inhibits the apoptotic death of these cells [67–69]. In
addition to ILC2 and Th2 cells, other cellular sources of IL-5 include mast cells, eosinophils
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themselves, and natural killer cells [68]. Furthermore, IL-5 induces the recruitment of
eosinophils into the airways by acting synergistically with eotaxins, which are potent
chemoattractants for these cells [70,71]. High serum concentrations of IL-5 can be detected
in patients with severe asthma, even if eosinophilopoiesis takes place in these subjects
not only in the bone marrow, but also within the airways [72]. Moreover, in asthmatic
patients with the type 2 endotype, IL-5 stimulates the interaction between eosinophils and
the matricellular protein periostin, whose levels increase when eosinophils infiltrate the
airways [73]. IL-5 also promotes eosinophil degranulation [74], thereby contributing to
the injury of both the bronchial epithelium and neural tissue via the release of cytotoxic
proteins stored within cytoplasmic granules, including major basic protein, eosinophil
cationic protein, eosinophil peroxidase, and eosinophil-derived neurotoxin [75,76]. In
addition, when stimulated by IL-5, eosinophils are able to secrete TGF-β1 [77]. Upon
IL-5 stimulation, eosinophils also activate a process named ETosis, which is based on
the assembly and release of eosinophilic extracellular traps (EET), consisting of scaffold
structures including granule proteins and mitochondrial DNA and responsible for the
further worsening of airway inflammation in severe asthma [78,79].

High IL-5 levels and elevated counts of eosinophil progenitors and mature eosinophils
can be detected in induced sputum obtained from allergic asthmatic patients [68]. Moreover,
high concentrations of IL-5 and eotaxins were observed in induced sputum taken from
subjects manifesting acute asthma exacerbations [80]. In induced sputum, IL-5 levels were
found to be inversely correlated with apoptotic eosinophils in patients with either stable
asthma or acute disease exacerbations [81,82]. Moreover, IL-5 expression is up-regulated in
nasal polyp tissue [83], and high IL-5 levels correlate with more severe nasal polyposis [84].
Indeed, the local synthesis of IL-5 promotes the accumulation of eosinophils within the nasal
mucosa of most patients with CRSwNP [85,86]. Furthermore, IL-5-dependent eosinophilic
inflammation has been shown to significantly correlate with epithelial damage, smell loss,
fibroblast activity, collagen production, and the deposition of fibrotic tissue within nasal
polyps [87]. In this regard, it has been shown that molecular antibodies targeting IL-5 are
able to disrupt IL-5-mediated intercellular networks involving eosinophils, mast cells, and
airway epithelial cells, which drive nasal polyp development [88].

Therefore, IL-5 and its receptor appear to be proper therapeutic targets for biologic
drugs (mepolizumab, reslizumab, benralizumab) that are able to inhibit eosinophilic in-
flammation and airway remodeling in both asthma and nasal polyposis [32].

3. Biological Therapies of Severe Asthma and Nasal Polyposis

Since the association between asthma and nasal polyposis in the same patient implies
common underlying pathomechanisms shared by these two diseases, it is intuitive that
currently available biologic therapies can be very useful to treat the inflammatory traits
of both upper and lower airways. In particular, because type 2 inflammation is a frequent
hallmark of severe asthma and CRSwNP, comorbid patients can significantly benefit from
treatments targeting pathophysiologic pathways operated by several effector molecules
including IgE, IL-5, and its receptor, as well as the receptors of IL-4 and IL-13 (Figure 1) [89].
Within this context, many randomized controlled trials (RCTs) and real-life studies have
shown the therapeutic utility of omalizumab, mepolizumab, reslizumab, benralizumab,
dupilumab, and tezepelumab [69]. Among these monoclonal antibodies, only omalizumab,
mepolizumab, and dupilumab have been licensed for the biological treatment of both
severe asthma and nasal polyposis.

3.1. Omalizumab

The humanized monoclonal antibody omalizumab binds to the two Cε3 domains
of the constant region of human IgE, thus generating IgE/anti-IgE immune complexes
which prevent IgE interactions with their high-affinity FcεRI and low-affinity FcεRII/CD23
receptors expressed by immune/inflammatory and airway structural cells [90–92]. Thanks
to this mechanism of action, omalizumab has been shown to be very effective as an add-
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on biological therapy to severe allergic asthma, thus lowering the frequency of disease
exacerbations and significantly improving lung function. Such findings derive from both
RCTs and real-world investigations, and also document the long-lasting safety of omal-
izumab [93–98]. In particular, INNOVATE (INvestigatioN of Omalizumab in seVere Asthma
TrEatment) was the key RCT which showed the above therapeutic effects, thus leading to
the approval of omalizumab for the biological treatment of severe asthma [99]. Eligible
patients for treatment with omalizumab must have serum IgE levels ranging from 30 to
1500 IU/mL, and they also need to be sensitized to perennial allergens.

Omalizumab is also capable of effectively and safely treating CRSwNP [100]. Indeed,
the two POLYP-1 and POLYP-2 24-week phase 3 RCTs demonstrated that, in comparison
with a placebo, omalizumab significantly improved nasal polyp score (NPS), nasal conges-
tion score (NGS)m, and the 22-item sino-nasal outcome test (SNOT-22) score [101]. More-
over, a further 52-week extension trial carried out in patients who had already completed
POLYP-1 or POLYP-2 showed the persistence of the efficacy and safety of omalizumab [102].
In this regard, the findings of a recent real-life study which reported that in patients with
severe allergic asthma and CRSwNP omalizumab induced a significant improvement of
both asthmatic and nasal symptoms are very interesting [103].

3.2. Mepolizumab

Mepolizumab is a humanized monoclonal IgG1/k antibody that specifically interacts
with the α-chain of IL-5, thus inhibiting its binding to the α subunit of the IL-5 receptor
(IL-5Rα) [104,105]. Several RCTs, including the DREAM (Dose Ranging Efficacy And safety
with Mepolizumab), MENSA (MEpolizumab as adjunctive therapy iN patients with Severe
Asthma), and SIRIUS (SteroId ReductIon with mepolizUmab Study) studies, proved that,
in patients with severe eosinophilic asthma, mepolizumab decreased disease exacerbations
and also improved quality of life, symptom control, and pulmonary function [106–108]. In
addition, the SIRIUS trial showed that mepolizumab was able to significantly reduce the in-
take of oral corticosteroids (OCS) [108]. Indeed, this RCT was specifically designed to assess
mepolizumab’s capability in decreasing OCS in patients with severe eosinophilic asthma
undergoing chronic steroid treatment. The phase 3b MUSCA study further validated the ef-
fective therapeutic action of mepolizumab with regard to health-related quality of life [109].
Both COSMOS and COLUMBA studies positively evaluated the long-term efficacy and
safety of mepolizumab [110,111]. Overall, these findings have been recently corroborated
and extended by real-life observations, which also demonstrated that mepolizumab is
effective in both allergic and non-allergic patients, improves lung function at the level of
large and small airways, and can induce asthma remission [112–118]. The latter is a concept
based on the ability of a given drug to decrease severe asthma exacerbations, improve
symptom control, spare OCS use, and stabilize pulmonary function [119]. The required
criteria for patient eligibility to mepolizumab include blood eosinophil levels of at least
150 cells/µL, associated with at least one blood count of 300 or more cells/µL during the
previous 12 months.

The phase 3, 52-week SYNAPSE trial showed that, in patients with CRSwNP, when
compared with a placebo, mepolizumab induced significant improvements in both nasal
obstruction assessed by a visual analogic scale (VAS) and total endoscopic nasal polyp
score, as well as prolonged the time to the first needed nasal surgery [120]. These data
convincingly confirmed similar results reported by a previous study performed in patients
with recurrent nasal polyps: the experience of the good clinical effects of mepolizumab in
regard to upper airway symptoms and the requirement of nasal surgery [121]. A recent
Italian real-world clinical investigation has shown that, in patients with severe eosinophilic
asthma and CRSwNP, mepolizumab decreased the blood eosinophil count and disease
exacerbations, improved sino-nasal and bronchial symptoms, lowered OCS intake, and
reduced the total endoscopic nasal polyp score [122].
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3.3. Reslizumab

Reslizumab is another humanized IgG4/k monoclonal antibody which behaves as an
IL-5 inhibitor [123,124]. Both phase 2 and phase 3 RCTs proved that, in patients with severe
eosinophilic asthma, reslizumab decreased the frequency of disease exacerbations, as well
as improved lung function at the level of the central and peripheral airways [125–128]. In
particular, reslizumab seems to be especially effective in patients with severe eosinophilic,
late onset asthma associated with CRSwNP [129]. The valuable therapeutic effects provided
by reslizumab in severe eosinophilic asthmatics have also been confirmed in real-life clinical
practice [130]. Differently from the other monoclonal antibodies, which are administered
via the subcutaneous route, reslizumab must be given intravenously. Patient eligibility for
reslizumab requires the presence of at least 400 eosinophils per µL of blood.

3.4. Benralizumab

The humanized and afucosylated IgG1/k monoclonal antibody benralizumab utilizes
its Fab portions to occupy and blockade IL-5Rα, thus inhibiting the interaction between this
receptor subunit and the natural ligand IL-5 [131]. Furthermore, the constant Fc fragment
of benralizumab binds to the FcγRIIIa receptor expressed by natural killer (NK) cells,
thereby inducing eosinophil death through antibody-dependent cell-mediated cytotox-
icity (ADCC), a proapoptotic mechanism that is powerfully strengthened by antibody
afucosylation [131,132].

Benralizumab has been extensively evaluated within the context of a wide program of
RCTs named WINDWARD, including the phase 3 studies SIROCCO and CALIMA, which
clearly showed that this biologic drug significantly lowered the number of exacerbations
of severe eosinophilic asthma, and also had a positive impact on symptom control and
lung function [133,134]. The improvement in pulmonary function was also confirmed by
the phase 3 BISE trial, which demonstrated that benralizumab was capable of inducing
a relevant increment of FEV1 (forced expiratory volume in one second) in subjects with
eosinophilic asthma and blood eosinophil levels of at least 300 cells/µL [135]. Both ZONDA
and PONENTE studies showed that benralizumab significantly decreased chronic OCS
intake in patients with severe eosinophilic asthma [136,137]. Moreover, the phase 3 BORA
extension trial documented the persistent good safety profile which characterizes the long-
term use of benralizumab [138]. The results of RCTs have been further corroborated and
extended by real-life investigations, which also reported that benralizumab is very effective
in both allergic and non-allergic patients with severe eosinophilic asthma [139,140]. Such
therapeutic properties make it possible to utilize benralizumab as a successful switch
treatment for allergic subjects with severe eosinophilic asthma, who are partially unre-
sponsive to omalizumab [141]. Taken together, the results of both RCTs and real-world
observations characterize benralizumab as a monoclonal antibody capable of depleting
blood eosinophils, decreasing asthma exacerbations and OCS intake, relieving symptoms,
and also improving airflow limitation and alveolar air trapping [139–145]. Patient eligibility
for treatment with benralizumab requires a blood eosinophil count of at least 300 cells/µL.

In addition to confirming many of the above findings, the phase 3b RCT ANDHI also
showed that benralizumab improved the symptoms of nasal polyposis, as indicated by the
significant reduction in SNOT-22 score [146]. In particular, an ANDHI sub-study aimed
to evaluate the effects of benralizumab on upper airway symptoms, documented that the
beneficial therapeutic action of this biologic drug was especially effective in those patients
with severe eosinophilic asthma and nasal polyposis characterized by higher baseline
SNOT-22 scores [146]. Moreover, some recent Italian real-life studies carried out in patients
with severe eosinophilic asthma and nasal polyposis have shown that benralizumab can
improve not only SNOT-22 score, but also endoscopic nasal polyp score and Lund–Mackay
CT (computed tomography) scan score [147–149].
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3.5. Dupilumab

Dupilumab binds to the α subunit of the IL-4 receptor (IL-4Rα) and prevents its
dimerization with the other molecular components of both IL-4 (γC chain) and IL-13
(IL-13Rα1 subunit) receptors, thereby acting as a dual receptor antagonist of these two
cytokines, whose biological effects are thus effectively inhibited by such a fully human IgG4
monoclonal antibody [150,151]. The two key phase 3 RCTs which led to the approval of
dupilumab for add-on treatment of severe type 2 asthma were LIBERTY ASTHMA QUEST
and LIBERTY ASTHMA VENTURE [152,153]. The first one recruited almost 2000 adult
patients and showed that dupilumab, in comparison with a placebo, lowered the annu-
alized rate of severe asthma exacerbations by about 50% [152]. This preventive effect
rose to a more than 65% reduction when the blood eosinophil count amounted to at least
300 cells/µL. Furthermore, dupilumab ameliorated lung function by significantly increas-
ing FEV1 and also improved the control of asthma symptoms, as well as decreasing the
levels of relevant biomarkers of type 2 asthma such as FeNO and serum IgE concentra-
tions [152]. The LIBERTY ASTHMA VENTURE study, specifically designed for patients
undergoing chronic OCS treatment, demonstrated that dupilumab was very effective as
OCS-sparing medication [153]. Indeed, according to this trial, dupilumab was able to lower
and even zero OCS intake in a relevant percentage of the enrolled adult patients with severe
type 2 asthma. In spite of the marked decrease in daily OCS consumption, dupilumab
significantly decremented the number of severe asthma exacerbations by almost 60%, and
also enhanced FEV1 by more than 200 mL [153]. Among the subjects who completed
one of the above trials, many were enrolled in the TRAVERSE open-label extension study,
which documented that the therapeutic effects of dupilumab observed in severe asthmatic
patients were persistent and associated with a good safety and tolerability profile [154].
The clinical and functional positive findings detected in adult subjects were also confirmed
by the phase 3 LIBERTY ASTHMA VOYAGE RCT in children (age: 6–11 years) with
moderate-to-severe asthma [155]. In adults with severe asthma, the proven therapeutic
effectiveness of dupilumab has also been verified by real-world investigations, showing
that this monoclonal antibody can exert both short-term and long-lasting benefits [156–159].
Prescription criteria for dupilumab include blood eosinophil counts of at least 150 cells/µL
and/or FeNO levels of at least 25 ppb.

With regard to the biologic therapy of nasal polyposis, some adult CRSwNP patients
refractory to intranasal corticosteroids, with or without comorbid asthma, were enrolled in
one of the first double-blind, randomized, and placebo-controlled studies, which showed
that dupilumab bettered the SNOT-22 score, endoscopic nasal polyp score, Lund-Mackay
CT score, and the sense of smell, evaluated by UPSIT (University of Pennsylvania Smell
Identification Test) score [160]. Dupilumab has been licensed for treatment of CRSwNP
thanks to two phase 3 RCTs named LIBERTY NP SINUS-24 and SINUS-52 [161]. These trials
showed that dupilumab, when compared with a placebo, improved nasal obstruction and
congestion, and also decreased the size of nasal polyps and the radiological opacification
of paranasal sinuses, assessed through a Lund–Mackay CT score [161]. Moreover, the
authors of a pooled analysis of these two studies reported that a relatively large number
of asthmatic patients with nasal polyposis, treated with dupilumab, in comparison with a
placebo experienced significant improvements in SNOT-22 and UPSIT scores [162]. These
patients also manifested decreased needs for OCS use and sinonasal surgery [162].

4. Closing Remarks

Patients with asthma and nasal polyposis are frequently characterized by a predomi-
nant type 2 trait of airway inflammation (Figure 1). Type 2 inflammatory features mainly
include dysfunction of the epithelial barrier and eosinophilic infiltration, often detectable
at both bronchial and sinonasal levels and especially in cases of severe disease. Within
such an airway context, type 2 asthma and nasal polyposis develop as a consequence of
the overexpression of IL-4, IL-13, and IL-5. The exaggerated production of these cytokines
is driven by two main cellular pathways, orchestrated and amplified by the innate and
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adaptive immunopathologic mechanisms sustained by ILC2 and Th2 lymphocytes, respec-
tively. These proinflammatory networks can lead to the development of either allergic
or non-allergic type 2 endotypes. Because of the common underlying pathomechanisms,
severe asthma and nasal polyposis can be successfully treated together by the same mon-
oclonal antibodies, targeting IgE, type 2 cytokines, or their receptors (Figure 1). Indeed,
these biologic drugs can improve symptom control and airflow limitation at the level of
both the lower and upper airways.
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