
Citation: Ekramirad, N.; Khaled,

A.Y.; Donohue, K.D.; Villanueva, R.T.;

Adedeji, A.A. Classification of

Codling Moth-Infested Apples Using

Sensor Data Fusion of Acoustic and

Hyperspectral Features Coupled with

Machine Learning. Agriculture 2023,

13, 839. https://doi.org/10.3390/

agriculture13040839

Academic Editor: Hongbin Pu

Received: 2 February 2023

Revised: 28 March 2023

Accepted: 5 April 2023

Published: 8 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Classification of Codling Moth-Infested Apples Using Sensor
Data Fusion of Acoustic and Hyperspectral Features Coupled
with Machine Learning
Nader Ekramirad 1 , Alfadhl Y. Khaled 1, Kevin D. Donohue 2 , Raul T. Villanueva 3

and Akinbode A. Adedeji 1,*

1 Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
2 Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
3 Department of Entomology, University of Kentucky, Princeton, KY 42445, USA
* Correspondence: akinbode.adedeji@uky.edu; Tel.: +1-(859)-218-4355

Abstract: Codling moth (CM) is a major apple pest. Current manual method of detection is not very
effective. The development of nondestructive monitoring and detection methods has the potential
to reduce postharvest losses from CM infestation. Previous work from our group demonstrated
the effectiveness of hyperspectral imaging (HSI) and acoustic methods as suitable techniques for
nondestructive CM infestation detection and classification in apples. However, both have limitations
that can be addressed by the strengths of the other. For example, acoustic methods are incapable
of detecting external CM symptoms but can determine internal pest activities and morphological
damage, whereas HSI is only capable of detecting the changes and damage to apple surfaces and
up to a few mm inward; it cannot detect live CM activity in apples. This study investigated the
possibility of sensor data fusion from HSI and acoustic signals to improve the detection of CM
infestation in apples. The time and frequency domain acoustic features were combined with the
spectral features obtained from the HSI, and various classification models were applied. The results
showed that sensor data fusion using selected combined features (mid-level) from the sensor data
and three apple varieties gave a high classification rate in terms of performance and reduced the
model complexity with an accuracy up to 94% using the AdaBoost classifier, when only six acoustic
and six HSI features were applied. This result affirms that the sensor fusion technique can improve
CM infestation detection in pome fruits such as apples.

Keywords: apples (Malus domestica); codling moth; sensor fusion; hyperspectral image; acoustic;
machine learning

1. Introduction

Apples are one of the most valuable fruits in the USA with domestic consumption
and total exports of around 4.1 and 0.87 million metric tons, respectively [1]. However,
the codling moth (CM) pest causes significant damage to apples pre- and post-harvest.
The presence of a CM larva can cause the rejection of fruit shipments from most U.S.
export destinations [2] and up to a 59% reduction in value when infested apples are
diverted to other low-value uses [3]. To improve the detection approach, there is a need to
develop rapid, effective, and accurate nondestructive detection methods for CM-infested
apples [4–6].

Generally, fruits have complex and dynamic textures with different characteristics [7].
As a result, only limited information of fruit samples can be obtained using an individual
sensing technique [8]. Thus, merging data from different sensors can provide compre-
hensive information about the characteristics of fruits and improve the prediction and
classification rates through a better understanding of the internal and external states of the
produce. Information fusion strategies have been defined as methods of fusing data from
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different sensors or knowledge from different models, while the relationship between the
fused information and the target parameter is represented as a mathematical model [9,10].
Three levels of fusion strategies have been defined based on the type of information to be
fused: (1) measurement or low-level fusion, (2) feature or mid-level fusion, and (3) decision
or high-level fusion [11]. In the first level of fusion, the raw data from the sensors are inte-
grated into a new dataset for further processing. This strategy suffers from high amounts of
redundant and noisy data [12]. For the second level of fusion, the extracted features from
each sensing technique are fused as inputs to the final model. This method can address the
redundancy and noise issues to achieve improved results [13]. In the third level of fusion,
the outputs of multiple models are combined for a full evaluation of the final decision.
For example, the majority voting method takes into account the results of many classifiers
to provide an overall decision. While the decision fusion strategy potentially reduces
the interference by the limitations of different models, it has the risk of losing important
information in the raw data [11].

Recently, fusion strategies have been used in studies on defect detection and quality
assessment of fruits. Liu et al. [14] applied a mid-level/feature fusion method based on HSI
and Electrical nose (E-nose) data for fungal contamination detection in strawberries. They
concluded that while the raw data fusion of HSI and E-nose resulted in a low prediction
rate and high processing time, the feature fusion method improved the detection accuracy
compared with each of the individual sensing methods. In another study, the application of
fusion of HSI and olfactory sensors for tea quality evaluation was investigated [15]. From
the results presented, the accuracy of the models for evaluating tea improved from 75% for
the individual sensor data to 92% when applying the fused data.

Codling moth pest attacks lead to damage to both the external and internal physico-
chemical characteristics of apples [16]. While the fusion of different sensing methods can
provide comprehensive and combined information related to the infestation, individual
sensing techniques will only capture one (or a few) of the many aspects of infestation dam-
age. For example, HSI provides physical and chemical information from the top layers of
fruit tissue and flesh [14], however, it is not able to capture data from the core of apples. On
the other hand, vibrational/acoustic methods can be used to monitor and detect infested
apples through sensing, either by the activities of the insects that bore deep into the fruit or
the internal textural changes related to infestation [5,17]. The outputs of the two sensing
systems can be fused and analyzed using multivariate approaches to improve the pattern
recognition results for classifying infested apples. Because the capability of rapid detection
by HSI and acoustic can be negatively affected by large data dimensionality, the specific
objective was to perform mid-level fusion with feature extraction and selection from the
raw HSI and acoustic data and then develop the fusion models based on the multiple
optimum features. Thus, in this study, we investigated the application of the sensor data
fusion approach (HSI and acoustic) for improving classification accuracy in the detection of
postharvest CM infestation in apples.

2. Materials and Methods
2.1. Sample Preparation

The apple samples used in the experiments were organic Gala, Fuji, and Granny Smith
cultivars purchased from a commercial market in Princeton, KY, USA in October 2020.
After careful inspection, 60 apple samples without any form of mechanical damage that
were similar in size, diameter, and shape were chosen from each cultivar (180 samples
in total). The apples were then disinfected against fungal and bacterial decay in a 0.5%
(v/v) sodium hypochlorite solution according to Louzeiro et al. [18]. The samples were
washed with distilled water and dried in the open air at ambient conditions at 25 ± 2 ◦C
in the Lab (Department of Entomology, University of Kentucky, Princeton, KY, USA). To
artificially infest the apples, a first instar CM larva was placed near the calyx end of each
apple in an isolated cup (8 cm bottom diameter, 10 cm top diameter, and 10 cm high)
with a plastic lid for respiration purposes. Figure 1 shows an example of the external and
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internal views of a CM-infested apples. The apples of each cultivar were divided into
20 control and 40 infested groups and stored in an environmental control chamber at 27 ◦C
and 85% relative humidity for three weeks to cause infestation to occur. Hyperspectral data
acquisition was carried out in the Food Engineering lab at Biosystems and Agricultural
Engineering Department, University of Kentucky, Lexington, KY, USA.
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Figure 1. A typical Codling moth (CM) infested apple. (a) External view; (b) internal view.

2.2. Hyperspectral Image Acquisition and Spectral Extraction

The short wave near-infrared (SWNIR) HSI system in the spectral range of 900–1700 nm
was used to acquire hyperspectral images of healthy and infected apples for each cultivar
(Figure 2). This system was formed using an imaging spectrograph (N17E, Specim, Oulu,
Finland), an InGaAs camera (Goldeye infrared camera: G-032, Allied Vision, Stradtroda,
Germany), a stepping-motor-driven moving stage (MRC-999–031, Middleton Spectral Vi-
sion, Middleton, WI, USA), and a 150 W halogen lamp (A20800, Schott, Southbridge, MA,
USA). The hyperspectral imaging system is a pushbroom (line scanning) type. To acquire
clear images, the parameters of the sample stage speed, exposure time of the camera, halo-
gen lamp angle, and vertical distance between the lens and the sample, were set to 10 mm/s,
40 ms, 45◦, and 25 cm, respectively. The samples were placed on the sample stage and cap-
tured in a line scanning or pushbroom mode. The acquired hyperspectral images contained
wavelength bands in “*.raw” format along with a header file in “*.hdr” format. Three scans
were acquired for each apple sample in the stem, calyx, and side-view orientations.
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Figure 2. A schematic of the hyperspectral imaging (HSI) system [4].

2.3. Acoustic Impulse Response Test and Signal Recording

After hyperspectral image acquisition, each sample was used for the acoustic test. A
schematic of the acoustic impulse response test is shown in Figure 3. It consists of two
main parts: the acoustic recording unit and the impulse or knocking unit. The unit used
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for conducting the impulse or knocking test comprised of two primary parts, namely an
impulse generator and a mechanical support system. This arrangement was intended to
make the apple more secure when it was attached to other parts with respect to each other,
as illustrated in Figure 3. The support system was fabricated using standard lab metalware
and mounted on an individual ring stand with a cast-iron base to minimize any resonance
effects (American Educational 7-G15-A).

Agriculture 2023, 13, x FOR PEER REVIEW 4 of 12 
 

 

Figure 2. A schematic of the hyperspectral imaging (HSI) system [4]. 

2.3. Acoustic Impulse Response Test and Signal Recording  
After hyperspectral image acquisition, each sample was used for the acoustic test. A 

schematic of the acoustic impulse response test is shown in Figure 3. It consists of two 
main parts: the acoustic recording unit and the impulse or knocking unit. The unit used 
for conducting the impulse or knocking test comprised of two primary parts, namely an 
impulse generator and a mechanical support system. This arrangement was intended to 
make the apple more secure when it was attached to other parts with respect to each other, 
as illustrated in Figure 3. The support system was fabricated using standard lab metal-
ware and mounted on an individual ring stand with a cast-iron base to minimize any res-
onance effects (American Educational 7-G15-A).  

 
Figure 3. A schematic diagram of the acoustic impulse response system for data acquisition from an 
apple. 

The apple was carefully positioned within a three-prong gripper, secured with an 
actuating screw. The other grippers were adjusted vertically and laterally. A spacer at-
tached to the end of the solenoid ensured a consistent distance from the apple’s surface. 
The flexible setup accommodated different sizes and shapes of apples while ensuring firm 
and consistent testing. The experiment used a precise solenoid impulse generator con-
trolled by a microcontroller. The solenoid model chosen had a nose with a 6.35 mm radius 
on the armature to deliver the impact. A push button triggered the impulse, connected to 
the microcontroller, configured to generate a 50 µs output pulse with a hold-off. The du-
ration was sufficient to ensure the solenoid reached maximum extension at 9V. The pulse 
was transmitted through a resistor to a TIP-31c NPN transistor to handle the current and 
EMF kick of the solenoid. Power was supplied using a 9V DC adapter. 

The acoustic recording unit was a custom-designed system to record the high-fre-
quency acoustic response signals from apples generated by the impulse/knocking test. 
This system consisted of a contact piezoelectric sensor (R6α-SNAD 52, Physical Acoustics 
Corporation, West Windsor Township, NJ, USA) with a frequency range of 35 to 100 kHz, 
a preamplifier (model1220A, Physical Acoustics Corp., West Windsor Township, NJ, 
USA), an I/O board (PCI-2, Physical Acoustics Corp., West Windsor Township, NJ, USA), 
and signal processing software (AEwin by MISTRAS).   

To reduce the ambient noise, the acoustic impulse response experimental unit was 
set above an isolated table that had a 15 cm layer of sand, topped with a 5 cm slab of 
granite with acoustic padding. This unit was in a room with a concrete padded floor built 
on 20 cm of gravel above the loam soil bed in an isolated room in the Food Engineering 
Lab at the Biosystems and Agricultural Engineering Department, University of Kentucky, 

Figure 3. A schematic diagram of the acoustic impulse response system for data acquisition from
an apple.

The apple was carefully positioned within a three-prong gripper, secured with an
actuating screw. The other grippers were adjusted vertically and laterally. A spacer
attached to the end of the solenoid ensured a consistent distance from the apple’s surface.
The flexible setup accommodated different sizes and shapes of apples while ensuring firm
and consistent testing. The experiment used a precise solenoid impulse generator controlled
by a microcontroller. The solenoid model chosen had a nose with a 6.35 mm radius on the
armature to deliver the impact. A push button triggered the impulse, connected to the
microcontroller, configured to generate a 50 µs output pulse with a hold-off. The duration
was sufficient to ensure the solenoid reached maximum extension at 9V. The pulse was
transmitted through a resistor to a TIP-31c NPN transistor to handle the current and EMF
kick of the solenoid. Power was supplied using a 9V DC adapter.

The acoustic recording unit was a custom-designed system to record the high-frequency
acoustic response signals from apples generated by the impulse/knocking test. This system
consisted of a contact piezoelectric sensor (R6α-SNAD 52, Physical Acoustics Corporation,
West Windsor Township, NJ, USA) with a frequency range of 35 to 100 kHz, a preamplifier
(model1220A, Physical Acoustics Corp., West Windsor Township, NJ, USA), an I/O board
(PCI-2, Physical Acoustics Corp., West Windsor Township, NJ, USA), and signal processing
software (AEwin by MISTRAS).

To reduce the ambient noise, the acoustic impulse response experimental unit was set
above an isolated table that had a 15 cm layer of sand, topped with a 5 cm slab of granite
with acoustic padding. This unit was in a room with a concrete padded floor built on 20 cm
of gravel above the loam soil bed in an isolated room in the Food Engineering Lab at the
Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington,
KY, USA. To carry out each test, an apple was placed between the sensor and the impulse
generator (solenoid). The signal recording for each test was performed for 10 s with two
impulses for each apple, where the first impulse was generated in the fifth second and
the second impulse in the tenth second. The acoustic signals derived from the knocking
impulse on apples were collected and processed by different signal processing methods,
and then the time-domain and frequency-domain features of the vibration acoustic signals
were extracted for use in the machine learning classification models.
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After manually segmenting the actual impulse moment from the entire signal, 21 important
time and frequency domain features were extracted (Table 1) using a code created in
MATLAB (Release 2020b, The MathWorks, Inc., Natick, MA, USA). With these features as
the variables (columns) for all samples (as rows), the dataset was built for use in machine
learning classification. Moreover, these features were concatenated with the HSI features to
build the data fusion models.

Table 1. Selected time- and frequency-domain features.

No. Feature Name Domain Type Explanation

1 Average signal level Time A technique in signal processing is used to enhance the signal’s
strength in comparison to the noise that is interfering with it.

2 Variance Time The mathematical expression represents the average value of the
squared difference between a random variable and its mean.

3 Kurtosis Time A numerical indication of the degree of dispersion or flattening of the
probability distribution of a random variable that takes real values.

4 Skewness Time The presence of skewness or distortion in a normal distribution or
bell curve, which is symmetric by definition, within a given dataset.

5 Mean absolute deviation Time
The mean of the absolute deviations of each data point from the

arithmetic mean, which measures the average distance between the
data points and the mean.

6 Root mean square Time The square root of the mean square.

7 Entropy Time A metric used to evaluate the distribution of power across the
spectral range of a signal.

8 Mean rise time Time The average duration required for a signal to transition from a
predetermined low value to a predetermined high value.

9 Absolute energy Time The calculation obtained by adding the squares of individual
signal values.

10 Area under curve Time The summation signal values.
11 Signal strength Time A measure of the power of the signal.
12 Average value of peaks Time The mean value of the peak amplitudes crossing the threshold.

13 Number zero crossing Time The momentary position where there is an absence of frequency
components.

14 Number of peaks Time The number of maximum amplitudes.
15 Energy spectral density Frequency The distribution of the energy of the signal in the frequency domain.

16 Maximum power spectral
density Frequency The peak power level exhibited by a signal over the range of

frequencies it contains.

17 Centroid Frequency The average location of all points within a signal is calculated
through the arithmetic mean.

18 Peak frequency Frequency The frequency of maximum power.

19 Power bandwidth Frequency The variation in power between the highest and lowest frequencies
within a continuous frequency range.

20 Maximum spectral
entropy Frequency A technique used for estimating spectral density.

21 Fast Fourier transform
mean coefficient Frequency The average of the values of a signal in the frequency domain.

2.4. Data Fusion Strategies

Data fusion is defined as the fusion of the data acquired using different sensors [19].
In this study, low-level and mid-level data fusion strategies were implemented to combine
information from hyperspectral and acoustic datasets for CM-infestation detection in apples.
In the low-level fusion, the raw hyperspectral and acoustic datasets were concatenated
into a single matrix by merging them along the rows. This resulted in a combined data
matrix with the same number of rows as the number of samples. The columns represent the
combined variables from each dataset (241 spectral and 21 acoustic). However, because the
features from different sensors had different scales, a z-score normalization was used for
rescaling purposes before building the model. In mid-level fusion, the extracted features
from the hyperspectral dataset using the PCA method were fused with the optimum
acoustic features selected by the Pearson correlation method (six HSI and six acoustic
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features). The merged data matrices from the low-level and mid-level methods were then
used to build multivariate calibration models.

Principal component analysis (PCA) has been widely applied for dimensionality
reduction in large feature datasets usually obtained from the HSI method to reduce the
possibility of overfitting [20–22]. PCA is a linear method that transforms features by axis
rotation to align the first principal component with the direction of maximum variance.
The other principal components (PCs) are perpendicular to the previous components and
are represented as linear combinations of the variables. Using only a few of the first PCs, it
is possible to represent a significant amount of the total variance of the entire dataset [23].

2.5. Classification Models

After creating the datasets, to build and compare the different classifiers, the PyCaret
(Version 2.3.10) machine learning library in Python was used. Different classification
algorithms were used for the sorting process, including support vector machine (SVM),
random forest (RF), k-nearest neighbors (kNN), decision trees (DT), linear discriminant
analysis (LDA), Naïve Bayes (NB), Ridge, gradient boosting (GB), quadratic discriminant
analysis (QDA), extra trees (ET), and AdaBoost (AB), to build the retrieval. Several studies
have used these models in various classification applications [20–27].

The results of these models were analyzed and compared, and the best model obtained
was the ensemble AdaBoost method based on the total accuracy, recall, precision, and
F1 score. Then the average values for the accuracy, recall, precision, and F1-score were
calculated in a fivefold cross-validation process. These values were calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 score = 2 × Recall × Precision
Recall + Precision

(4)

where true positive (TP) and true negative (TN) are the correctly predicted samples that
belong to their actual class. False positive (FP) and false negative (FN) values are obtained,
when the predicted level conflicts with the actual level. Precision, which is the positive
predictive value, indicates the number of samples correctly classified as infested. On the
other hand, recall, which is the true positive rate, is related to the number of samples that
belong to the infested group and were predicted to be positive, including those that were
incorrectly classified as healthy by the model.

3. Results and Discussions
3.1. Feature Dimensionality of HIS Data Based on PCA

In this study, the PCA was used to reduce the dimensions of the preprocessed spectra
from 241 to 10 and even 6 features before building the classification models. Based on these
results, the accumulated variance represented by only the first three PCs for all the three
apple cultivars was more than 99% of the total variance in each case (Figure 4). Therefore,
it was expected that the samples would be classified using this limited number of PCs as
the inputs to machine learning models for the classification of apples. Similar results were
reported by Moscetti et al. [28] for the application of PCA on the NIR spectroscopy data of
non-infested and infested olive fruits with the first two PCs accounting for 98.3% of the
total variance in the spectra.
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3.2. Feature Selection of Acoustic Data

A total of 21 features including the time and frequency domains were measured from
the impulse signals of the CM-infested and control apple samples. The selected features
were chosen based on the correlation between the all the 21 features and the two classes of
apple samples. Larger correlation values, closer to 1, indicated better correlation results.
The impulse signal features of the number of zero-crossing, entropy, number of peaks,
kurtosis, root mean square, and mean absolute deviation showed the highest correlation
results with minor changes from one cultivar to another, such as Granny Smith, illustrating
that the energy spectral density displayed high correlation. Table 2 presents the top six
features with high correlation per category, which were applied in the classification step of
fusion with the HSI data to classify the CM infestation in apples. The Pearson correlation
coefficients of these six selected features were higher than 30% in Fuji, 58% in Gala, 60% in
Granny Smith, and 45% in the combined cultivars [5]. The classification models utilized in
this study for analyzing the impulse signals were applied to two datasets: one comprising
the complete 21 features and the other consisting of only six selected features.

Table 2. The selected features applied to Fuji, Gala, Granny Smith, and all cultivars with their
correlation coefficients [5].

Fuji Gala Granny Smith All Cultivars

Number of zero crossing (r2 = 0.68) Number of peaks (r2 = 0.88) Number of peaks (r2 = 0.79) Number of peaks (r2 = 0.79)
Number of peaks (r2 = 0.66) Entropy (r2 = 0.82) Number of zero crossing (r2 = 0.78) Number of zero crossing (r2 = 0.76)

Entropy (r2 = 0.45) Number of zero crossing (r2 = 0.82) Entropy (r2 = 0.78) Entropy (r2 = 0.68)
Kurtosis (r2 = 0.40) Mean absolute deviation (r2 = 0.67) Mean absolute deviation (r2 = 0.72) Kurtosis (r2 = 0.59)

Energy spectral density (r2 = 0.38) Kurtosis (r2 = 0.67) Kurtosis (r2 = 0.68) Mean absolute deviation (r2 = 0.58)
Peak frequency (r2 = 0.30) Root mean square (r2 = 0.58) Variance (r2 = 0.59) Root mean square (r2 = 0.44)

Reprinted with permission from Elsevier [5]. 2023, Khaled et al., (2022).

3.3. Classification Models of the Individual Acoustic and HSI Datasets

Table 3 shows an example of a performance comparison of all the classifiers used for
the classification of CM-infested Gala apples, with AdaBoost having the best performance.
The results of the classification of normal and CM-infested apples using all features of the
acoustic and HSI datasets are shown in Table 4. Between the two datasets, the acoustic data
gave higher classification rates than the mean spectral hyperspectral data. The acoustic
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data from the Gala apples were better classified using the AdaBoost ensemble learning
method, achieving an accuracy of up to 97% for the test set data. The best classification
accuracy for the HSI method was obtained for Fuji apples at 88% using the AdaBoost
ensemble classifier. For the combination of all three cultivars, while the acoustic method
achieved an acceptable classification rate in the lower 90% range, the HSI yielded a poor
classification accuracy. The lower classification results from the combined samples could
be attributed to the different textural and surface color characteristics such as the different
pigmentation of the skin of the three apple cultivars, caused extra biological variability into
the model. The pigmentation in the Granny Smith cultivar, for example, is green (non-red),
while the pigmentation in the skin of the other two cultivars is red/pink [29].

Table 3. Comparison of the performance of different classifiers in the classification of Gala apples as
units of %.

Classifier Model
Gala–All Features (%)

Accuracy Standard Deviation Precision Recall F1-Score

SVM 64 11 64 65 60
RF 96 2 96 96 96

kNN 68 5 63 62 62
DT 96 2 96 97 97

LDA 96 3 96 93 94
NB 62 10 67 68 62

Ridge 96 3 96 95 96
GB 96 3 96 97 97

QDA 74 5 75 79 73
ET 96 2 96 96 96
AB 97 1 96 97 97

SVM: Support Vector Machine, RF: Random Forest, kNN: k-Nearest Neighbors, DT: Decision trees, LDA: Lin-
ear Discriminant Analysis, NB: Naïve Bayes, GB: Gradient Boosting, QDA: Quadratic Discriminant Analysis,
ET: Extra Trees, AB: AdaBoost.

Table 4. The test-set classification results based on different sources of data from each individual
sensor using the ensemble AdaBoost classifier as units of %.

Cultivar Features Variables Accuracy Recall Precision F1 Score

Fuji Full-HSI 241 88 88 91 88
Acoustic 21 90 87 89 88

Gala
Full-HSI 241 79 62 67 79
Acoustic 21 97 97 96 97

GS
Full-HSI 241 71 71 71 71
Acoustic 21 95 92 91 91

Combined
Full-HSI 241 64 65 68 64
Acoustic 21 94 93 93 93

HSI: Hyperspectral Imaging; GS: Granny Smith. All dependent results are percentage (%) scores.

3.4. Classification of Each Sensing Method Dataset based on Selected Features

The results of the machine learning classification based on the HSI features extracted
by PCA and the acoustic features selected by the Pearson correlation method are presented
in Table 5. Overall, the PCA-based HSI models showed better performance than the
models based on the full HSI spectra, whereas the dimensionality of the data was decreased
significantly from 241 to 15, 10, or 5 features. This improved classification performance
was due to the reduction in both the dimension of the data and the redundancy (some
wavelengths) of the variable. However, for the acoustic models with the selected features
a slight decrease in the classification performance was observed because the dimensions
of the full-scale acoustic data were already low (21). Therefore, with the feature selection
process and removal of some of the information, the accuracy was reduced, though not so
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significant [5]. This slight decrease in the classification rate was compensated for by having
a model with only six features in comparison to twenty-one.

Table 5. Selected features applied to Fuji, Gala, Granny Smith, and all cultivars [5].

Cultivar Features Variables Accuracy Recall Precision F1 Score

Fuji PCA-HSI 10 88 91 88 90
Acoustic 6 84 92 90 91

Gala
PCA-HSI 5 86 50 43 86
Acoustic 6 95 97 96 97

GS
PCA-HSI 10 71 71 71 71
Acoustic 6 93 91 89 90

Combined
PCA-HSI 15 69 70 70 69
Acoustic 6 92 91 92 91

HSI: Hyperspectral Imaging; GS: Granny Smith. All dependent results are in percentage (%) scores.

3.5. Classification Based on Data Fusion from Acoustic and HSI

In the low-level data fusion application, the acoustic dataset was directly concate-
nated with the HSI dataset. The results of the classification of CM-infested apples for the
three cultivars are presented in Table 6. In the case of the Gala cultivar, the classification
performance of the low-level data fusion model was superior to each of the individual
acoustic and HSI models, with all the performance metrics surpassing 98% for the test set.
The combination of the acoustic and HSI improved the classification accuracy for Gala
apples by 24% compared with the full-HSI spectra and by approximately 2% compared
to the full acoustic dataset. Particularly important is the perfect recall result for the Fuji
and Gala apple cultivars. The implication of the 100% result is that all infested apples were
100% correctly classified with zero false negatives. The high misclassification of infested
GS apples, which had a clearly different color and surface reflectance, may be attributed to
the skin pigmentation and reflection during the HSI scanning. This pigmentation effect
was also reflected in the combined data from all the three cultivars.

Table 6. The performance of the classification models based on the complete data fusion as units
of %.

Cultivar Features Variables Accuracy Recall Precision F1 Score

Fuji Acoustic–HSI 21 + 241 98 100 97 98
Gala Acoustic–HSI 21 + 241 98 100 98 99
GS Acoustic–HSI 21 + 241 92 91 97 94

Combined Acoustic–HSI 21 + 241 90 93 92 93
HSI: Hyperspectral Imaging; GS: Granny Smith. All dependent results are based on percentage (%) scores.

With mid-level fusion, the optimum features separately extracted by Pearson correla-
tion and PCA for the acoustic and HSI datasets, respectively, were merged as a single matrix
and then used for classification analysis (Table 7). The mid-level data fusion showed an
improvement for all the three apple cultivars compared with the low-level results (Table 5).
For example, the performances of the Gala apple parameters of accuracy, recall, precision,
and F1-score were 98%, 98%, 100%, and 99%, respectively. These high classification rates of
the mid-level data fusion compared with the low-level data were especially noticeable in
the combined samples from all the cultivars. This was due to having a general model capa-
ble of classifying CM-infested apples regardless of the apple cultivar. Using the mid-level
fusion approach, it was possible to classify CM-infested apples in a sample of the three
different cultivars with an accuracy, recall, precision, and F1 score of 94%, 97%, 95%, and
96%, respectively.
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Table 7. The classification performance based on the fusion of selected acoustic and HSI features as
units of %.

Cultivar Features Variables Accuracy Recall Precision F1 Score

Fuji Acoustic–PCA-his 6 + 6 94 97 94 96
Gala Acoustic-PCA-his 6 + 6 97 97 100 98
GS Acoustic-PCA-his 6 + 6 88 91 92 91

Combined Acoustic-PCA-his 6 + 6 94 97 95 96
HSI: Hyperspectral Imaging; GS: Granny Smith. All dependent results are based on percentage (%) scores.

4. Conclusions

In this study, the fusion of acoustic and HSI sensor data obtained from apples was
investigated to classify CM-infested apples. The features were fused using low- and mid-
level approaches and with the application of AdaBoost, a predetermined best classifier.
The performance of the classifications based on individual raw data was improved by
the fusion methods leading to improved results. The results showed that the combined
selected features (mid-level fusion), selected by the correlation coefficient or PCA methods,
were better than using all the combined features (low-level fusion) in the classification
of CM-infested apples. This improvement is particularly important in the case of the
combined apples, where the data fusion gave accuracy, recall, precision, and F1 scores of
94%, 97%, 95%, and 96% in the classification of CM-infested apples regardless of the cultivar,
respectively. These results prove that sensor/data fusion approach can be implemented
to classify CM-infested apples and consequently help improve the sorting process for
CM-damaged apples from three different cultivars.
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