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Abstract: Synthetic aperture radar (SAR) imagery, notably Sentinel-1A’s C-band, VV, and VH polar-
ized SAR, has emerged as a crucial tool for mapping rice fields, especially in regions where cloud
cover hinders optical imagery. Employing multi-temporal characteristics, SAR data were regularly
collected and parameterized using MAPscape-Rice software, which integrates a fully automated
processing chain to convert the data into terrain-geocoded σ◦ values. This facilitated the generation
of rice area maps through a rule-based classifier approach, with classification accuracies ranging from
88.5 to 91.5 and 87.5 percent in 2017, 2018, and 2022, respectively. To estimate methane emissions,
IPCC (37.13 kg/ha/season, 42.10 kg/ha/season, 43.19 kg/ha/season) and LST (36.05 kg/ha/season,
41.44 kg/ha/season, 38.07 kg/ha/season) factors were utilized in 2017, 2018 and 2022. Total methane
emissions were recorded as 19.813 Gg, 20.661 Gg, and 25.72 Gg using IPCC and 19.155 Gg, 20.373 Gg,
and 22.76 Gg using LST factors in 2017, 2018 and 2022. Overall accuracy in methane emission esti-
mation, assessed against field observations, ranged from (IPCC) 85.71, 91.32, and 80.25 percent to
(LST) 83.69, 91.43, and 84.69 percent for the years 2017, 2018 and 2022, respectively, confirming the
efficacy of remote sensing in greenhouse gas monitoring and its potential for evaluating the impact of
large-scale water management strategies on methane emissions and carbon credit-based ecosystem
services at regional or national levels.

Keywords: IPCC; LST; methane emission; rice; Sentinel 1A; synthetic aperture radar (SAR)

1. Introduction

Rice is the most important staple food, feeding millions of people more than any other
crop and farmed on millions of hectares across South and Southeast Asian countries. Unlike
other crops, rice can grow in damp conditions, making it distinct. However, because of
the anaerobic condition in which it is grown, the crop contributes to global warming by
emitting methane into the atmosphere. It has long been known that methane emissions
from paddy fields contribute significantly to greenhouse gas emissions from anthropogenic
sources [1]. Its emission from rice fields is caused by a unique ecosystem dominated by
microbial-mediated anaerobic activity compared to that of natural wetlands but integrating
agronomic practices of irrigation and fertilizer use. The cultivation systems, viz., irrigated,
semidry, rainfed and deep-water systems, largely influence methane emission. Further,
these emissions vary with the cultivars and nature of inputs, viz., nitrogenous fertilizers
and application of organic manures [2]. An unprecedented increase in the global rice area
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by 40 percent in the last 50 years [3]. Methane (CH4) is a significant greenhouse gas (GHG)
among all the components of the atmosphere. Based on 100-year global warming potentials,
the Inter-governmental Panel on Climate Change (IPCC) estimates that the warming forces
of CH4 are 25 to 30 times greater than those of CO2 per unit of weight [4].

Methane emissions are expected to rise shortly due to rice fields in South and Southeast
Asia [5] contributing to roughly 10–15 percent of worldwide CH4 emissions [6], with an
estimated yearly emission of 50–100 Tg of methane. This means that an increase in rice
production will result in a 36 percent rise in methane emissions from these fields [7].
Rice fields that have been flooded are the third greatest agricultural source of emissions,
accounting for between 10 and 30 percent of the methane produced worldwide by the
anaerobic breakdown of organic waste [8]. On the contrary, upland paddy, which is not
flooded and does not release greenhouse gases into the atmosphere, makes up around
15 percent of the 150 Mha worldwide paddy harvest area. An area of approximately
127 Mha is made up of other paddy fields with rainfed, deep water and irrigated water
regimes; over 90 percent of these are in Asia [9,10], with the maximum extent in India
(42.2 Mha).

Hence, it is crucial to understand the mechanism and spatiotemporal patterns of global
and regional methane emission from rice fields. Global level estimation and monitoring
of methane emission are performed widely to understand its contribution to greenhouse
gases and develop management strategies. Therefore, several nations worldwide, including
China, India, Indonesia, Thailand, and the Philippines, have already started initiatives
to estimate country-specific contributions to the global methane emissions from paddy
fields. These initiatives are coordinated by the International Rice Research Institute (IRRI).
The emission rate may differ within a country or the same rice fields, depending on the
estimation methods used. Based on the recommendations from earlier research [10,11], the
methane emissions from irrigated rice fields in key rice-producing nations such as China,
India, Bangladesh, Indonesia, and Thailand were calculated to be 7.41, 3.99, 0.47, 1.28, and
0.18 Tg yearly, respectively [12].

Conventional methods for estimating methane emissions for larger areas are tedious,
time-consuming and laborious and have become impractical. These constraints warranted
the use of more scientific methods through remote sensing. Remote sensing provides the
scope to be used as a tool to detect and quantify methane emission with recent advances in
SAR sensors capable of providing accurate estimates in rice areas, seasonality and days
of flooding. The emissions from the irrigated rice fields in China, India, Indonesia, the
Philippines, and Thailand were estimated using Geographic Information System (GIS)
tools and models. In addition to the spatial connection of land surface temperature,
precise estimation of methane emission from rice fields at a regional scale depends on an
exact evaluation of the rice acreage and the associated period of flooding in those fields.
Land surface temperature (LST) has been used as one of the important parameters for the
estimation of emitted methane. Land surface temperature (LST) provides a better indication
of energy balance and the greenhouse effect on the earth’s surface and plays a vital role in
the physics of land surface processes on a global scale. LST can be derived from MODIS
land products and used to assess the rate of methane emission from rice fields through
different algorithms [13]. Cloud cover presents a problem in mapping and monitoring
the flooded condition of rice crops. However, there are sustainable solutions available
owing to the recent and upcoming deployments of synthetic aperture radar (SAR) sensors
and advanced automated processing. Therefore, it is now possible to estimate methane
emissions from rice fields spatially to create a greenhouse gas inventory which helps in
recommending mitigation strategies at the regional level.

Considering these aspects, the following goals guided the conduct of this research:
Quantification of CH4 emissions from rice fields using remote sensing and GIS techniques
assimilated with standard integrated flux; assessing CH4 emissions over rice fields using
remote sensing-derived land surface temperature; derivation of spatial maps of CH4
emissions from the rice area at regional scale and assessing accuracy.
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2. Materials and Methods
2.1. Study Area

The present investigation was carried out in Cauvery Delta Zone (CDZ) of Tamil Nadu,
comprising Ariyalur, Cuddalore, Nagapattinam, Thanjavur, Thiruvarur and Tiruchirap-
palli districts during 2017–2018, and seven districts of Tamil Nadu viz., Mayiladuthurai,
Nagapattinam, Thanjavur, Thiruvarur, Sivagangai, Ramanathapuram and Pudukkottai
districts (Figure 1) during 2022. The study areas geographically lie between 78◦15′ and
79◦45′ East longitudes and 10◦00′ and 11◦30′ North latitudes, with an altitude of 90 m. The
study areas were continuously monitored throughout the cropping period (Figure 2).
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2.2. Data Used

The European Space Agency (ESA) and the European Commission (EC) together
initiated the Sentinel-1 mission. The advantage of synthetic aperture radar (SAR) is that it
can collect data in any weather, day or night, even when clouds are present. Sentinel 1A
can provide consistent, dependable wide-area monitoring due to its C-SAR equipment. For
land monitoring, Sentinel 1A SAR data with vertical–vertical (VV) and vertical–horizontal
(VH) polarization were acquired at 12-day intervals. Sentinel 1A features four standard
operating modes that are intended to facilitate system interoperability. The Level 1 ground
range (GRD) product with a temporal resolution of 12 days and a resolution of 20 m was
acquired using the interferometric wide (IW) sweep mode.
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2.2.1. Basic Processing of SAR Data

Terrain-geocoded σ◦ values were obtained from SAR GRD multi-temporal data using
a fully automated processing chain [14]. The MAPscape-RICE 5.6.2 software contains a
module specific to the processing chain. The following steps are included in the basic
processing: (i) strip mosaicking is used to facilitate overall data processing and easier
handling; (ii) co-registration is used to co-register images acquired with the same observa-
tion geometry in slant range geometry; (iii) time-series speckle filtering is used to balance
reflectivity differences between images; (iv) terrain geocoding is used to radiometrically
calibrate and normalize images; (v) anisotropic non-linear diffusion (ANLD) filtering is
used to obtain smoothed homogeneous targets; (vi) atmospheric attenuation is removed
using an interpolator, and (vii) subsetting is used to shorten the processing time for raster
data (Figure 3).
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2.2.2. Retrieving Rice Area Using Multi-Temporal σ◦ Rule-Based Rice Detection

A rule-based rice detection technique was used for the multi-temporal stack of terrain-
geocoded σ◦ images in MAPscape-RICE 5.6.2. Based on field data and knowledge of the
study area, an agronomic approach was used to assess the temporal evolution of σ◦. This
needed prior knowledge of rice maturity, calendar and duration, as well as crop methods.
The crop establishment method and crop maturity were significant factors influencing
the temporal signature, which was dependent on both frequency and polarization. This
suggested that while broad guidelines might be used to identify rice, the criteria for these
guidelines would need to be modified by the agro-ecological zone, planting practices and
rice calendar (Figure 4).
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2.2.3. Use of Temporal Features to Guide Parameter Selection for the Rule-Based Classifier

A basic statistical study of the temporal signature of σ◦ values in the monitored fields
served as the basis for the selection of parameters a, b, c, d, e and f. For every field
under observation, the temporal signature’s mean, minimum, maximum and range were
calculated. Then, we calculated the following: (i) the minimum and (ii) the maximum
of those mean σ◦ values across fields; (iii) the maxima of the minimum σ◦ values across
fields; and (iv) the minimum and (vi) maximum of the range of σ◦ values across fields [14].
These six statistics, which we refer to as temporal features, each directly relate to a single
parameter and succinctly describe the important information in the rice signatures of the
observed fields. Therefore, as seen in Table 1, the values of the six temporal features from the
monitoring sites at each site can be used to inform the selection of the six parameter values.

Table 1. Selection criteria are based on temporal features and site-specific parameters for the rule-
based categorization.

Parameter Relationship between Parameter and Temporal Feature

a = lowest mean a < (i) minimum of the mean σ◦ across all rice signatures

b = highest mean b > (ii) maximum of the mean σ◦ across all rice signatures

c = maximum variation c > (vi) maximum of the range in σ◦ across all rice signatures

d = max value at SoS d > (iii) highest minimum in σ◦ across all rice signatures

e = min value at peak e < (iv) lowest maximum in σ◦ across all rice signatures

f = minimum variation f < (v) minimum of the range in σ◦ across all rice signatures
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It is easier to estimate the parameters tminlength, tmaxlength, and t2 − t1. Tminlength limits
the number of days between a start-of-season detection and the subsequent highest σ◦

value in the temporal signature; since X-band σ◦ saturates before rice flowering, this value
can be set to 40–70 days. Tmaxlength limits the duration between two σ◦ minima in the series;
120 days is a suitable cut-off representing an intensive triple-rice system (three crops in a
single year). t2 − t1 is the maximum duration of agronomic flooding at the beginning of
the season; this can be set to a relatively high value of 40–50 to capture even the longest
land preparation phases.

2.3. Ground Truth Data Collection

Twenty rice fields in each of the research area’s districts were the locations of field
observations conducted over the season. With the farmers’ permission, these fields were
chosen before the scheduled image acquisition time and the start of the rice season. Ground
truth and methane gas were collected from the rice fields in the same week, with respective
acquisition dates. The date of image acquisition, or as close to it as possible, was used for
observations. Handheld GPS receivers were used to record latitude and longitude, along
with field status descriptions and images, plant height, water depth, crop stage, weather
and leaf area index (LAI). Only visits between the seedling and flowering stages were used
to measure LAI, which was recorded non-destructively using a smartphone application
called Pocket LAI [15]. To gather data on the rice variety, source of water, crop management
and cultivation techniques, as well as inputs like fertilizer and pesticide, the farmer was
interviewed at the end of the growing season.

To evaluate the precision of the rice classification, a validation procedure was carried
out for every image. To gather data on land cover between non-rice and rice sites, a random
stratified sampling approach was used. Before harvesting, in-season surveys to validate the
map were carried out throughout the reproductive or ripening phase. For 20 m resolution
imagery, the locations were selected such that the land cover was uniform within a 50 m
radius of each GPS point.

The mean daily methane emission rate for each field was determined by taking gas
samples in the main rice-growing districts of the monitoring fields. The Agro Climate
Research Centre, Tamil Nadu Agricultural University, Coimbatore, has a Shimadzu GC-
2014 gas chromatograph with FID that was used to estimate the amount of methane. Using
1 ppm, 2.3 ppm and 5 ppm standards (Chemtron® Science Laboratories Pvt. Ltd., Mumbai,
India) as the principal standard curve linear over the concentration ranges employed,
the GC was calibrated both before and after each set of observations. The CH4 flux was
calculated using Equation (1) and represented as mg m−2 h−1 [16]. Based on the equation
to estimate methane emission, flux was computed, and the obtained CH4 concentrations
were estimated by peak area [17].

f = (V/A) × (∆C/∆t) (1)

where

f—rate of greenhouse gas emission (mg m−2 h−1)
V—volume of the chamber above soil (m3)
A—cross-section of chamber (m2)
∆C—concentration difference between zero and t times (mg cm−3)
∆t—time duration between two sampling periods (h)

2.4. Rice Map Accuracy Assessment

The rice/non-rice validation points collected at each site were subjected to a standard
confusion matrix. It was noted how accurate the kappa value and the rice/non-rice
classification were overall. The categorized rice map was evaluated for correctness by
comparing it with ground truth data. The rice maps had a spatial resolution of 3 to 15 m.
Nonetheless, through edge detection and locally adaptive smoothing, the ANLD filtering
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procedures lowered the effective resolution. The validation data were collected in areas
with homogeneous land cover in a 15 m radius around each GPS point for sites using
3 m resolution imagery and a 50 m radius for sites using 10 m or 15 m resolution imagery.
This was done to account for the lower resolution and the handheld GPS units’ horizontal
accuracy when compared to the pixel size. The mode value of the rice map pixels within
a window that matched the radius utilized in the validation land cover assessment was
compared to the observed land cover at the GPS validation locations.

Kappa Coefficient

The kappa coefficient, which quantified the classifier’s proportionate (or percentage)
increase over a completely random assignment to classes, was another way to assess classi-
fication accuracy [18]. The following formula was used to estimate the kappa coefficient.

^
K =

NA − B
N2 − B

(2)

If there are r rows in an error matrix, then there are also r columns,

where
A = the sum of r diagonal elements, which is the numerator in the computation of overall
accuracy
B = sum of the r products (row total × column total)
N = the number of pixels in the error matrix (the sum of all r individual cell values)

2.5. Estimation of Methane Emission
2.5.1. Land Surface Temperature (LST)

An empirical model was used to estimate methane emissions. A temperature-dependent
methanogenic activity model was created using the T factor (temperature-related factor).
Experiments showed that the optimal temperature for most methanogens ranged from 30 ◦C
to 40 ◦C [19]. Methane emission from wetlands is described by the following equation:

ECH4 = Eobs × Ft × A (3)

where

Eobs is the observed methane flux from different classes,
Ft is the T factor,
A is area
T factor is defined as follows [19]:

Ft = F(Ts)/
¯

F(Ts) (4)

where

F(Ts) =
e0.334(Ts−23)

1+e0.334(Ts−23)
(5)

The temperature, expressed in degrees Celsius (Ts), was determined for each pixel

in the equation above using the constant emissivity approach.
¯

F(Ts) is the mean of F(Ts)
over land. The coefficients of this exponential equation were taken from Liu [19]. Methane
emission-causing classes were categorized hierarchically using the NDVI layer and the
optical bands of MODIS data (1, 2, and 3). Class statistics were then obtained for each of
the four classes using the categorized image and the F1 image. Data analysis and methane
estimation were performed using a semi-automated process.
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2.5.2. IPCC Tier 1 Method

To estimate methane emissions from rice fields, we used the IPCC Tier 1 technique
(Figure 5) described in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
To calculate methane emission scaling factors, our method made use of secondary data
sources along with details on rice cultural type and crop calendar. By multiplying the
emission factor by the area under cultivation and the duration of the cropping period,
we were able to determine the methane emission rate for each type of rice field. Next,
taking into account the rice area and crop duration of each cultural type, we projected these
values across the country. A standard emission factor for a range of sources, circumstances,
countries, and areas is provided by the Tier 1 technique. In Tamil Nadu, the default
emission factor for rice cultivation is 11 g m−2, sourced from the IPCC Emission Factor
Database 2006. Under some circumstances, this emission factor can be used in rice fields
for the Tier 1 technique:

CH4 rice = Σ EF × T × A × 10−6 (6)

where

CH4 rice = annual CH4 emission from rice cultivation in a region or country (GgCH4 a−1)
EF = Daily emission factor
T = Cultivation period
A = Annual harvested area of rice
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To create a geoprocessing model using ArcGIS 10.8, the model was designed to analyze
emissions from rice crops by considering factors such as cultivation periods, start of
the season (SoS), end of the season (EOS) maps, and harvested area. This analysis was
conducted at different temporal resolutions to determine the minimum and maximum
emissions at various points during the growing season. After completing the analysis, an
accuracy assessment was performed by collecting field samples of methane in the study
area. The methane emission rate was estimated per day m−2 using gas chromatography
and calculated for the entire crop growing season.

3. Experimental Results

Rice is cultivated in India under irrigated and rainfed lowland conditions. The dura-
tion of most rice varieties ranges from 90 to 150 days, with three crop stages: vegetative,
reproductive and maturity. The research effort was taken to map rice areas using multi-
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temporal C band SAR data from Sentinel 1A coupled with state-of-the-art semi-automated
processing chains, in-season field monitoring and end-of-season validation points across
the study area of Tamil Nadu. SAR can detect rice crops and track their growth through σo

values (backscatter coefficient). Many researchers have shown interest in better understand-
ing the relationship between backscatter and crop growth and applying them to detect rice
and monitor crop growth [20–26].

3.1. Radar Backscattering Signature

The temporal backscattering signature (σ◦) for the rice crop from the study area was
generated by utilizing training pixels gathered through ground truth to analyze the SAR
satellite data collected during the cropping season. These signatures were converted into
a dB stack created by stacking 14 and 13 acquisitions from August 2017 to January 2018
during rabi, 2017 and 16 August 2018 to 19 January 2019 during rabi, 2018. A dB stack of
13 satellite acquisitions between August 2022 and January 2023 during the samba, 2022 was
generated, and the band sequential data (BSQ) are presented in Figure 6 with the temporal
signature of rice crop. The backscattering curves of rice showed a minimum at the start of
the season or crop emergence with a value of −20.17 dB, −20.63 dB and −20.20 dB during
2017, 2018 and 2022, respectively (Figure 7). Then, the curve showed a marginal increase in
backscattering during the seedling stage and a steep increase and a peak at the flowering
stage. The mean maximum values were −15.10 dB, −15.13 dB and −15.14 dB during 2017,
2018 and 2022 and are given in Table 2. Detailed analysis of backscattering signatures in
the 30 test sites showed that the minimum values at the start of the season of rice ranged
from −22.03 to −17.69 dB during 2017, −23.40 to −18.51 dB during 2018 and −22.24 to
−20.68 during 2022. The maximum values corresponding to the flowering stage ranged
from −16.10 to −14.20 dB in 2017, −17.52 to −13.62 dB in 2018 and −16.11 to −12.09 in
2022. From the seedling to the blooming stage, the rise in dB related to crop growth varied
from −2.69 to −6.74 dB, with a mean value of −5.07 dB in 2017. The difference between the
maximum and minimum backscattering, or the increased dB from seedling to flowering,
varied from −3.61 to −7.87 dB in 2018, with a mean value of −5.50 dB. In 2022, from
seedling to the flowering stage, dB values varied from −5.68 to −10.15 dB, with a mean
value of −7.23 dB.

Table 2. Temporal dB value for rice crop for the years 2017, 2018 and 2022.

2017 2018 2022

S.No Date of Acquisition dB Value Date of Acquisition dB Value Date of Acquisition dB Value

1 26-Sep −18.69 16-Aug −19.90 19-Aug −16.90

2 08-Oct −20.03 28-Aug −21.27 31-Aug −17.98

3 20-Oct −21.16 09-Sep −21.00 12-Sep −19.01

4 08-Nov −20.63 21-Sep −19.81 24-Sep −19.67

5 01-Nov −20.16 03-Oct −18.56 06-Oct −19.50

6 13-Nov −19.59 27-Oct −17.47 30-Oct −18.17

7 25-Nov −18.26 08-Nov −16.42 11-Nov −16.96

8 07-Dec −17.57 20-Nov −14.81 23-Nov −16.10

9 19-Dec −16.91 02-Dec −14.22 05-Dec −15.55

10 31-Dec −16.18 14-Dec −14.58 17-Dec −15.20

11 12-Jan −16.16 28-Dec −16.02 29-Dec −14.71

12 - - 07-Jan −18.88 10-Jan −14.15

13 - - 19-Jan −19.73 22-Jan −14.88
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Rice Area Map

Rice area maps and statistics were derived for the study area covering six districts viz.,
Ariyalur, Cuddalore, Nagapattinam, Thanjavur, Thiruvarur and Tiruchirappalli in Cauvery
Delta Zone during 2017–2018 and seven districts of Tamil Nadu viz., Mayiladuthurai,
Nagapattinam, Thanjavur, Thiruvarur, Sivagangai, Ramanathapuram and Pudukkottai
districts during 2022 using multi-temporal SAR imagery from Sentinel 1A (Figure 8). Late
rice and early rice were combined into one class. In the study area, a total of 530,366 ha
of rice area were delineated during 2017 from the multitemporal Sentinel 1A SAR data
using a parameterized classification integrating multi-temporal features. The contiguous
nature of the rice area facilitated an accurate estimation of the rice area in these districts,
with Thiruvarur recorded as the highest area of 132,258 ha, followed by Thanjavur and
Nagapattinam with an area of 126,226 and 119,411 ha, respectively. Cuddalore accounted
for 99,170 ha. Tiruchirappalli and Ariyalur districts had less area under irrigation through
the Cauvery River and registered an area of 31,516 and 21,785 ha, respectively.

During 2018, a total rice area of 467,134 ha across the six districts was delineated
for the Cauvery delta zone. Among the districts, Thiruvarur recorded the highest area
of 126,019 ha, followed by Thanjavur and Nagapattinam, with 124,618 and 105,107 ha,
respectively. Cuddalore accounted for 77,312 ha. Tiruchirappalli and Ariyalur districts
had less area under irrigation through the Cauvery River and registered an area of 23,545
and 10,532 ha, respectively. For the year 2022, a total rice area of 599,183 ha across
the seven districts was delineated. Among the districts, Ramanathapuram recorded the
highest area of 136,125 ha, followed by Thanjavur and Thiruvarur, with 117,907 and
110,512 ha, respectively. Sivagangai and Pudukkottai accounted for 66,314 ha and 65,533
ha. Mayiladuthurai and Nagapattinam districts had less area, of 54,125 ha and 48,667 ha,
respectively.
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A confusion matrix was formed to assess the accuracy of rice area maps by conducting
ground truth collection on a rice/non-rice basis, where all land types other than rice classes
were classified as non-rice classes. In total, 200 validation points covering 125 rice and
75 non-rice points were collected during 2017–2018 and used for validation of the rice
area map of the Cauvery Delta Zone. In 2022, 400 validation points covering 367 rice and
33 non-rice points were used for the validation of the rice map of the study area. Rice
points were classified with an accuracy of 89.6, 88.8 and 87.2 percent while non-rice points
were classified with an accuracy of 98.7, 96.0 and 88.0 percent in 2017, 2018 and 2022,
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respectively. Considering the efficiency of the methodology utilizing SAR data, the overall
accuracy was 88.5, 91.5 and 87.5 percent, with an average reliability of 88.1, 90.5 and 86.0
percent during 2017, 2018 and 2022, respectively. The kappa coefficient was 0.86, 0.83 and
0.75, indicating good accuracy levels of the products (Table 3).

Table 3. Confusion matrix for accuracy assessment of rice classification during 2017, 2018 and 2022.
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Predicted class from the map

2017 2018 2022

Class Rice Non-Rice Accuracy (%) Rice Non-Rice Accuracy (%) Rice Non-Rice Accuracy (%)

Rice 112 13 89.6 111 14 88.8 225 33 87.2

Non-rice 1 74 98.7 3 72 96.0 17 125 88.0

Reliability (%) 99.0 77.1 93 97.4 83.7 91.5 93.0 79.1 87.5

Average
accuracy (%) 90.5 92.4 87.6

Average
reliability (%) 88.1 90.5 86.0

Overall
accuracy (%) 88.5 Good Accuracy 91.5 Good Accuracy 87.5 Good Accuracy

Kappa index 0.86 0.83 0.75

3.2. Estimation of Methane Emission from Sampling Sites at Field Scale

During 2017–2018 and 2022, 30 and 40 fields were continuously monitored for rice
growth observations, backscattering signatures, SoS, days of flooding and estimation of
methane emission spreading across the study area. Gas samples were collected at the
flowering stage and analyzed for methane emission using a portable gas analyzer (Figure 9)
in three locations of the sampling sites. The mean daily methane emission rates (kg/ha) for
the corresponding fields are given in Tables 4–6.
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Table 4. Field-level estimation of methane emission during 2017.

S.No. Place District Methane
Measured (ppm)

Methane Emission
(kg/ha/day)

Total Methane Emission
(kg/ha/season)

1. Palayangudi Thiruvarur 2.15 0.48 41.61

2. Keeramber Nagapattinam 2.07 0.46 40.18

3. Adichapuram Thiruvarur 2.02 0.45 39.23

4. Karikottai Thiruvarur 2.04 0.45 39.48

5. VaduvurAgraharam Thiruvarur 2.01 0.45 38.91

6. Raghavambalpuram Thanjavur 1.88 0.42 36.46

7. Anthagudi Nagapattinam 2.12 0.47 41.13

8. Kattur Thanjavur 1.94 0.43 37.51

9. ADAC & RI Tiruchirappalli 1.84 0.41 35.70

10. Navalurkottapattu Tiruchirappalli 2.38 0.53 46.18

11. Aravoor, Thiruvarur 1.68 0.37 32.58

12. Perumbur Thanjavur 1.93 0.43 37.40

13. Kudalur Thanjavur 1.84 0.41 35.70

14. Simizhi Thiruvarur 1.78 0.40 34.57

15. Uthirangudi Thiruvarur 2.53 0.56 49.02

16. Varagur Thanjavur 2.46 0.55 47.60

17. Melattur Thanjavur 3.00 0.67 58.04

18. Tirukkannapuram Nagapattinam 2.60 0.58 50.46

19. Keelanbil Tiruchirappalli 1.86 0.41 36.02

20. Ariyur Tiruchirappalli 1.74 0.39 33.66

21. Adikudi Tiruchirappalli 1.84 0.41 35.67

22. Thiruvaiyaru Thanjavur 3.00 0.67 58.14

23. Ambal Nagapattinam 3.02 0.67 58.55

24. Palinganatham Ariyalur 2.15 0.48 41.74

25. Bapurasapuram Thanjavur 2.21 0.49 42.76

26. Katchukattu Thanjavur 1.75 0.39 33.86

27. Edakkudi Nagapattinam 2.59 0.58 50.15

28. Annavasal Nagapattinam 2.48 0.55 48.03

29. Tiruchampalli Nagapattinam 1.96 0.44 37.94

30. Vanadirajapuram Nagapattinam 1.75 0.39 34.00

Mean 2.20 0.5 41.7

Minimum 1.68 0.37 32.58

Maximum 3.02 0.67 58.55
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Table 5. Field-level estimation of methane emission during 2018.

S.No. Place District Methane
Measured (ppm)

Methane Emission
(kg/ha/day)

Total Methane Emission
(kg/ha/season)

1. Palayangudi Thiruvarur 2.01 0.49 38.9

2. Keeramber Nagapattinam 1.94 0.47 37.6

3. Adichapuram Thiruvarur 1.89 0.46 36.7

4. Karikottai Thiruvarur 1.98 0.48 38.3

5. VaduvurAgraharam Thiruvarur 1.95 0.47 37.8

6. Raghavambalpuram Thanjavur 1.79 0.43 34.7

7. Anthagudi Nagapattinam 2.02 0.49 39.2

8. Kattur Thanjavur 1.84 0.45 35.7

9. ADAC & RI Tiruchirappalli 1.81 0.44 35.0

10. Navalurkottapattu Tiruchirappalli 2.34 0.57 45.3

11. Aravoor, Thiruvarur 1.65 0.40 31.9

12. Perumbur Thanjavur 1.89 0.46 36.7

13. Kudalur Thanjavur 1.81 0.44 35.0

14. Simizhi Thiruvarur 1.75 0.42 33.9

15. Uthirangudi Thiruvarur 2.48 0.60 48.1

16. Varagur Thanjavur 2.41 0.58 46.7

17. Melattur Thanjavur 2.85 0.69 55.3

18. Tirukkannapuram Nagapattinam 2.48 0.60 48.1

19. Keelanbil Tiruchirappalli 1.77 0.43 34.3

20. Ariyur Tiruchirappalli 1.65 0.40 32.1

21. Adikudi Tiruchirappalli 1.72 0.42 33.3

22. Thiruvaiyaru Thanjavur 2.80 0.68 54.3

23. Ambal Nagapattinam 2.82 0.68 54.7

24. Palinganatham Ariyalur 2.07 0.50 40.1

25. Bapurasapuram Thanjavur 2.12 0.51 41.1

26. Katchukattu Thanjavur 1.68 0.41 32.6

27. Edakkudi Nagapattinam 2.54 0.61 49.2

28. Annavasal Nagapattinam 2.43 0.59 47.1

29. Tiruchampalli Nagapattinam 1.92 0.46 37.2

30. Vanadirajapuram Nagapattinam 1.72 0.42 33.3

Mean 2.07 0.50 40.13

Minimum 1.65 0.40 31.94

Maximum 2.85 0.69 55.28



Agriculture 2024, 14, 496 15 of 23

Table 6. Field-level estimation of methane emission during 2022.

S.No Place District Methane Measured
(ppm)

Methane Emission
(kg/ha/day)

Total Methane Emission
(kg/ha/season)

1. Visavanoor Sivagangai 3.00 0.28 36.45

2. Manakkudi Nagapattinam 11.29 0.29 38.26

3. Nalam Sethi Thiruvarur 8.64 0.36 46.78

4. Vellur siruvarai Pudukkottai 6.29 0.35 45.65

5. Marudangavayal Thanjavur 7.21 0.45 58.44

6. Okkanadukeelayur Thanjavur 6.07 0.47 60.54

7. Kulamanickam Thiruvarur 5.54 0.45 58.79

8. Silliyanvagaikkulam Ramanathapuram 7.14 0.30 38.75

9. Mithiravayal Sivagangai 9.04 0.46 60.25

10. Melaperumazhai Thiruvarur 3.07 0.31 40.78

11. Vakranallur Thiruvarur 9.49 0.41 52.74

12. Pandaravadaimappadugai Mayiladuthurai 4.49 0.28 39.01

13. Eginivayal Pudukkottai 6.08 0.35 45.78

14. Perungudi
Haridwaramangalam

Thiruvarur 10.06 0.43 55.65

15. Killiyur Mayiladuthurai 9.93 0.31 40.12

16. Athankothangudi Ramanathapuram 5.19 0.27 34.57

17. Kalari Ramanathapuram 12.83 0.23 30.51

18. Vallam Ramanathapuram 11.68 0.28 34.12

19. Kattanur Sivagangai 11.81 0.29 35.25

20. Sethugudi Sivagangai 4.78 0.36 34.58

21. Melamanakkudi Sivagangai 3.00 0.35 32.89

22. Pirantani Pudukkottai 11.29 0.45 41.81

23. Puravasagudy Pudukkottai 8.64 0.47 43.52

24. Kirathur Pudukkottai 6.29 0.45 36.78

25. Edaiyur Thiruvarur 7.21 0.30 44.29

26. Rayapuram Thiruvarur 6.07 0.46 39.78

27. Venmanacheri Nagapattinam 5.54 0.31 45.78

28. Pillali Nagapattinam 7.14 0.41 45.78

29. Gopurajapuram Nagapattinam 9.04 0.28 36.78

30. Alalasundram Mayiladuthurai 3.07 0.35 40.77

31. Thathangudi Mayiladuthurai 9.49 0.43 48.26

32. Annappanpettai Thanjavur 4.49 0.31 42.08

33. Retnakottai Pudukkottai 6.08 0.27 45.72

34. Kumilakudi Thanjavur 10.06 0.23 43.45

35. Athiyur Ramanathapuram 9.93 0.26 32.51

36. Padirankottai Thenpathi Thanjavur 5.19 0.27 46.12

37. Sathanur Thanjavur 12.83 0.27 34.89

38. Keelapoongudi Sivagangai 11.68 0.25 32.29

39. Neerpalani Pudukkottai 11.81 0.32 38.75

40. Maniambalam Pudukkottai 4.78 0.33 30.25

Mean 7.04 0.32 42.23

Minimum 3.00 0.23 30.25

Maximum 12.83 0.47 60.54
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The measured methane ranged from 1.68 to 3.02 ppm and 1.65 to 2.85 ppm among the
30 observed fields, with a mean of 2.20 and 2.07 ppm during 2017 and 2018, respectively.
During 2022, the measured methane across 40 observed fields ranged from 3 to 12.83 ppm,
with a mean of 7.04 ppm. The methane emission per day was found to be in the range
of 0.37 to 0.67 kg/ha/day, 0.40 to 0.69 kg/ha/day and 0.28 to 0.46 kg/ha/day in the
observation sites, with a mean of 0.50 kg/ha/day, 0.50 kg/ha/day and 0.32 kg/ha/day
during 2017, 2018 and 2022. Total methane emission, which was the major contribut-
ing factor for methane flux in the atmosphere, was found to be in the range of 32.58 to
58.55 kg/ha/season, 31.94 to 55.3 kg/ha/season and 30.25 to 58.44 kg/ha/season, with a
mean value of 41.7 kg/ha/season, 40.1 kg/ha/season and 42.23 kg/ha/season across the
study sites during 2017, 2018 and 2022, respectively.

3.3. Spatial Estimation of Methane Emission Using IPCC Factor

The spatial variation in methane emission from rice fields is influenced by various
agronomic and environmental factors and their interaction with the whole system involving
crop, soil and atmosphere [27]. Spatial overlap of land types or crop cover types can be
minimized by high-resolution satellite products. Efforts were made to integrate high-
resolution Sentinel 1A data (5–20 m) and spatially estimate rice area and days of flooding
to generate a regional methane emission inventory through this study (Figure 10). Further
precise estimation of rice area and days after flooding could be achieved since SAR data can
overcome the issue of cloud cover during the cropping season [28,29]. Methane emission
from paddy fields was estimated using the IPCC method at the district level during 2017,
2018 and 2022, and the statistics are presented in Tables 7 and 8. The rate of methane
emission was found to be in the range of 35.69 to 38.29 kg/ha, 36.23 to 45.62 kg/ha and 36.56
to 47.22 kg/ha across the districts, with a mean of 37.13 kg/ha, 42.10 kg/ha and 43.19 kg/ha
during 2017, 2018 and 2022. The maximum rate of methane emission was observed in
Cuddalore (38.29 kg/ha), Thiruvarur (45.62 kg/ha) and Thanjavur (47.22 kg/ha) districts
during 2017, 2018 and 2022. Considering both the area and rate of methane emission,
Thiruvarur district recorded the largest quantities of methane emission of 4.822 Gg from
132,258 ha of rice area at the rate of 36.46 kg/ha during 2017 and 5.749 Gg from 126,019 ha
of rice area at the rate of 45.62 kg/ha during 2018. In terms of both the area and rate of
methane release, the district of Thanjavur had the highest amount of methane emissions,
with 5.57 Gg emitted from 117,907 ha of rice fields at a rate of 47.22 kg/ha. The cumulative
methane emission assessed through the IPCC method was 19.813 Gg, 20.661 Gg and
25.72 Gg in 2017, 2018 and 2022, respectively.Agriculture 2024, 14, x FOR PEER REVIEW 16 of 23 
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Table 7. District-wise methane emission based on IPCC and LST factor in Cauvery Delta Zone.

IPCC LST

S.No. Districts
Rice Area

(ha)
Methane

Emission (kg/ha)
Total Methane
Emission (kg)

Total Methane
Emission (Gg)

Methane Emission
(kg/ha)

Total Methane
Emission (kg)

Total Methane
Emission (Gg)

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

1. Ariyalur 21,785 10,532 36.92 37.16 804,372 391,388 0.804 0.391 36.08 36.28 786,090 381,725 0.786 0.382

2. Cuddalore 99,170 77,312 38.29 44.36 3,796,779 3,429,358 3.797 3.429 37.50 43.82 3,719,244 3,387,048 3.719 3.387

3. Nagapattinam 119,411 105,107 37.42 45.22 4,468,778 4,752,809 4.469 4.753 35.80 44.44 4,274,388 4,670,385 4.274 4.670

4. Thanjavur 126,226 124,618 38.00 44.02 4,796,328 5,485,202 4.796 5.485 36.97 43.42 4,666,110 5,409,607 4.666 5.410

5. Thiruvarur 132,258 126,019 36.46 45.62 4,822,227 5,748,680 4.822 5.749 34.80 45.15 4,602,092 5,687,922 4.602 5.688

6. Tiruchirappalli 31,516 23,545 35.69 36.23 1,124,791 853,107 1.125 0.853 35.14 35.52 1,107,519 836,242 1.108 0.836

Total/Mean 530,366 467,134 37.13 42.10 19,813,274 20,660,543 19.813 20.661 36.05 41.44 19,155,443 20,372,930 19.155 20.373

Table 8. District-wise methane emission based on IPCC and LST factor during 2022.

IPCC LST

S.No District Rice Area (ha) Methane
Emission (kg/ha)

Total Methane
Emission (kg)

Total Methane
Emission (Gg)

Methane
Emission (kg/ha)

Total Methane
Emission (kg)

Total Methane
Emission (Gg)

1. Mayiladuthurai 54,125 44.83 2,426,151 2.43 38.57 2,087,674 2.09

2. Nagapattinam 48,667 42.46 2,066,399 2.07 35.91 1,747,584 1.75

3. Pudukkottai 65,533 46.79 3,066,448 3.07 42.33 2,773,899 2.77

4. Ramanathapuram 136,125 36.56 4,976,954 4.98 34.25 4,661,966 4.66

5. Sivagangai 66,314 38.78 2,571,902 2.57 35.61 2,361,367 2.36

6. Thanjavur 117,907 47.22 5,567,912 5.57 40.98 4,832,181 4.83

7. Thiruvarur 110,512 45.69 5,048,901 5.05 38.83 4,290,825 4.29

Total/Mean 599,183 43.19 25,724,667 25.72 38.07 22,755,496 22.76
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3.4. Spatial Estimation of Methane Emission Using LST T-Factor

Research studies on spatial estimation of methane through satellite data mainly fo-
cus on a global scale, with coarse resolution imageries from MODIS, GOSAT, and SCIA-
MACHY [30–32]. This factor limits the utilization and inferences on emissions from dif-
ferent land cover types having large spatial overlaps [33]. The rate of methane emission
was based on the LST T-factor method across different districts of the study area during
2017, 2018 and 2022, and is given in Tables 7 and 8 and depicted in Figure 11. The mean
values for the methane emission rate during 2017 for the study districts ranged from 34.80
to 37.50 kg/ha across the Cauvery Delta, with a mean of 36.05 kg/ha. Among the dis-
tricts, Cuddalore district recorded the highest mean methane emission rate of 37.50 kg/ha,
followed by Thanjavur and Ariyalur districts with the values of 36.97 and 36.08 kg/ha,
respectively. Nagapattinam and Tiruchirappalli registered a mean methane emission rate
of 35.80 and 35.14 kg/ha, respectively. The lowest mean rate was observed in Thiruvarur
district, with a value of 34.80 kg/ha.

During the year 2018, the mean values for the rate of methane emission for the study
districts ranged from 35.52 to 45.15 kg/ha across the Cauvery Delta, with a mean of
41.44 kg/ha. Among the districts, Thiruvarur district recorded the highest mean methane
emission rate of 45.15 kg/ha, followed by Nagapattinam and Cuddalore districts with the
values of 44.44 and 43.82 kg/ha, respectively. Thanjavur and Ariyalur districts registered a
mean methane emission rate of 43.42 and 36.28 kg/ha, respectively. The lowest mean rate
was observed in Tiruchirappalli district with a value of 35.52 kg/ha.

During the year 2022, the mean values for the rate of methane emission for the study
districts ranged from 34.25 to 42.23 kg/ha, with a mean of 38.07 kg/ha. Among the districts,
Pudukkottai district recorded the highest mean methane emission rate of 42.33 kg/ha,
followed by Thanjavur and Thiruvarur districts with values of 40.98 and 38.83 kg/ha,
respectively. The lowest mean rate was observed in Ramanathapuram district with a value
of 34.25 kg/ha. Considering both area and rate of methane emission, Thanjavur district
recorded the largest quantities of methane emission, of 4.666 Gg from 126,226 ha of rice
area during 2017, and Thiruvarur district recorded 5.688 Gg from 126,019 ha of rice area
during 2018. During 2022, Thanjavur district recorded the largest quantities of methane
emission, of 4.83 Gg from 117,907 ha of rice area.Agriculture 2024, 14, x FOR PEER REVIEW 19 of 23 
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3.5. Validation of Methods of Methane Emission Estimation

Different methods (IPCC and LST) of estimation of methane emission from paddy
fields tested during 2017, 2018 and 2022 were validated against the observed values from
the sampling sites, and the statistical parameters RMSE, NRMSE and percent agreement
were worked out and given in Table 9. The comparison of values for methane emission
using IPCC and observed values resulted in a mean RMSE of 6.80, 3.38 and 8.04 kg/ha and
NRMSE of 14.29, 8.68 and 19.75 percent, respectively. The percent agreement mean was
85.7, 91.32 and 80.25 percent during 2017, 2018 and 2022, respectively. Using the LST factor,
the mean RMSE values recorded were 7.71, 3.31 and 6.70 kg/ha, and those of NRMSE were
16.31, 8.57 and 15.31 percent, with the agreement of 83.69, 91.43 and 84.69 percent during
2017, 2018 and 2022, respectively.

Table 9. Comparison of errors and agreements among the methods used for methane emission
estimation during 2017–2018 and 2022.

Comparison
2017 2018 2022

IPCC LST IPCC LST IPCC LST

RMSE (kg/ha) 6.80 7.71 3.38 3.31 8.04 6.70

NRMSE (%) 14.29 16.31 8.68 8.57 19.75 15.31

Agreement (%) 85.71 83.69 91.32 91.43 80.25 84.69

4. Discussion
4.1. Radar Backscattering Signature

The primary variation corresponds to the growth from seedling to the maximum
tillering stage; as the growth advanced, the backscatter from the rice crop increased till the
flowering stage. In all of the fields, the values tended to drop farther from flowering to
maturity. Significant temporal behavior and a large dynamic range (−20.63 to −15.10 dB)
during the growth period were observed by many researchers [34–36]. Moreover, short
wavelengths, especially at a larger incident angle, were sensitive enough to detect even
very small rice seedlings just after transplanting. The correlation between σo and rice
biophysical parameters showed that lower frequencies (X-band) were more closely related
to fresh weight, LAI and plant weight than other parameters. On the other hand, σo derived
from the C band can provide information on par with NDVI [37].

Rice Area Estimation

SAR sensors have great potential in precisely detecting rice fields due to specular
features exhibited under flooded surface conditions [38]. Many researchers have shown
interest in better understanding the relationships between backscatter and crop growth
and applying them to detect rice and monitor crop growth [39,40]. The rice area was
estimated [41] using the land surface water index (LSWI) and enhanced vegetation index
(EVI), and the high-temperature damaged rice area was mapped by integrating the rice
map with MODIS LST, vegetation indices, DEM data and daily maximum–minimum air
temperature. It was validated using certified agriculture statistics with an error rate under
8 percent. Landsat is primarily used in many remote sensing data observations but lacks
quality parameters due to cloud cover and other factors. A phenology-based algorithm
combining Landsat and MODIS data was used [42] in southern China to map paddy and
multi-cropping patterns. In Poyang Lake Plain, the algorithm produced 93.66 percent
overall accuracy and a kappa coefficient of 0.85 compared to ground truth data.

AL-Zubaidi [43] analyzed nine vegetation indices to identify excellent vegetation
spectral indices for rice area estimation. The result showed that the rice growth vegetation
index (RGVI) had the lowest error rate predicted (4.3 percent) against reference data, while
the infrared percentage vegetation index (IPVI) predicted the highest error rate of 30.3 per-
cent for rice area mapping. The rice area was estimated [44] using Sentinel 2 satellite
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data and the supervised closest neighborhood object-based classification approach. The
overall accuracy of 95 percent and the kappa coefficient of 0.93 were achieved through this
method. All of the preceding research was carried out utilizing optical data, which was
unsuitable during the monsoon seasons due to approximately 90 percent of the data being
obscured by clouds. Consequently, we turned to Sentinel 1A SAR microwave data, capable
of penetrating clouds, enabling us to delineate the rice area with greater precision.

4.2. Estimation of Methane Emission

Methane emission from rice fields was directly proportional to the area under the rice
culture type and total crop duration. Earlier allocations of areas to rice cultural types were
based on statistical data for harvested rice areas or country-specific reports to calculate
the methane emission values [10,12,45]. Changes in agronomic and environmental factors
and their interaction with the system determined the methane emission [46]. Chhabra
et al. [47,48] generated the spatial and temporal pattern of methane emission from the rice
fields of India using satellite remote sensing and Geographic Information System (GIS)
techniques. Multidate SPOT VGT 10-day NDVI composite data for a whole year were used
to map the rice area and delineate single- and double-cropped rice areas, crop calendar and
growth stages.

5. Conclusions

This study introduced a state-of-the-art methodology for methane emission estima-
tion in rice cultivation, leveraging multi-temporal C-band synthetic aperture radar (SAR)
data from Sentinel-1A along with advanced processing techniques, employed to estimate
methane emissions over major rice growing areas in Tamil Nadu. The proposed method-
ology excels in its precision and adaptability, utilizing advanced processing techniques
and innovative approaches. This research delved into the backscattering signature (σ◦) of
rice crops, using ground truth data and SAR satellite information from cropping seasons.
The temporal backscattering curves revealed distinctive patterns, with minimum values
at crop emergence at the start of the season or crop emergence with a value of −20.17 dB,
−20.63 dB and −20.20 dB during 2017, 2018 and 2022, respectively, and peak values dur-
ing flowering. Then, the curve showed a marginal increase in backscattering during the
seedling stage and a steep increase and a peak at the flowering stage. Rice area maps
and statistics were generated for the Cauvery Delta Zone (2017–2018) and Tamil Nadu
(2022). In 2017, the study identified 530,366 hectares of rice area, with Thiruvarur having
the largest at 132,258 hectares. By 2018, the total area was 467,134 hectares, and Thiruvarur
led again with 126,019 hectares. In 2022, across seven districts, Ramanathapuram recorded
the largest rice area at 136,125 hectares. Thanjavur and Thiruvarur followed with 117,907
and 110,512 ha. Validation points and a confusion matrix demonstrated the accuracy of rice
area maps, with an overall accuracy ranging from 88.5% to 91.5% during different years.
The kappa coefficient affirmed the reliability of the methodology. This comprehensive
approach utilizing SAR data provides valuable insights into monitoring and managing
rice cultivation in the region. Beyond rice area mapping, the methodology extended to
estimating methane emissions by using the IPCC factor and land surface temperature (LST)
T-factor methods, providing valuable insights into the spatial and temporal patterns of
greenhouse gas emissions from rice fields.

Methane emissions were spatially estimated at the district level, indicating variations
across districts and years. In 2017, the emissions ranged from 35.69 to 38.29 kg/ha, totaling
19.813 Gg. In 2018, the range was 36.23 to 45.62 kg/ha, totaling 20.661 Gg. In 2022, emissions
varied from 36.56 to 47.22 kg/ha, totaling 25.72 Gg. The LST method showed rates ranging
from 34.80 to 37.50 kg/ha in 2017, 35.52 to 45.15 kg/ha in 2018, and 28.8 to 51.4 kg/ha in
2022. Validation against observed values indicated the reliability of both methods, with
the IPCC method showing mean RMSE of 6.80, 3.38, and 8.04 kg/ha in 2017, 2018, and
2022, respectively. The LST method had mean RMSE of 7.71, 3.31, and 6.70 kg/ha for the
same years. Overall, this study contributes valuable insights into the spatial and temporal
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dynamics of methane emissions from rice cultivation, offering a scientific basis for informed
decision-making, policy-making and the development of effective mitigation strategies in
the context of global climate change.
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