
Citation: Nezhad, S.K.; Barooni, M.;

Velioglu Sogut, D.; Weaver, R.J.

Ensemble Neural Networks for the

Development of Storm Surge Flood

Modeling: A Comprehensive Review.

J. Mar. Sci. Eng. 2023, 11, 2154.

https://doi.org/10.3390/

jmse11112154

Academic Editor: Barbara Zanuttigh

Received: 5 October 2023

Revised: 27 October 2023

Accepted: 7 November 2023

Published: 11 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Review

Ensemble Neural Networks for the Development of Storm
Surge Flood Modeling: A Comprehensive Review
Saeid Khaksari Nezhad *,† , Mohammad Barooni †, Deniz Velioglu Sogut and Robert J. Weaver

Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA;
mbarooni2018@my.fit.edu (M.B.); dvelioglusogut@fit.edu (D.V.S.); rjweaver@fit.edu (R.J.W.)
* Correspondence: skhaksarinez2021@my.fit.edu
† These authors contributed equally to this work.

Abstract: This review paper focuses on the use of ensemble neural networks (ENN) in the develop-
ment of storm surge flood models. Storm surges are a major concern in coastal regions, and accurate
flood modeling is essential for effective disaster management. Neural network (NN) ensembles have
shown great potential in improving the accuracy and reliability of such models. This paper presents
an overview of the latest research on the application of NNs in storm surge flood modeling and
covers the principles and concepts of ENNs, various ensemble architectures, the main challenges
associated with NN ensemble algorithms, and their potential benefits in improving flood forecasting
accuracy. The main part of this paper pertains to the techniques used to combine a mixed set of
predictions from multiple NN models. The combination of these models can lead to improved
accuracy, robustness, and generalization performance compared to using a single model. However,
generating neural network ensembles also requires careful consideration of the trade-offs between
model diversity, model complexity, and computational resources. The ensemble must balance these
factors to achieve the best performance. The insights presented in this review paper are particularly
relevant for researchers and practitioners working in coastal regions where accurate storm surge
flood modeling is critical.

Keywords: deep learning; storm surge prediction; ensemble model; sea level rise

1. Introduction

Rising sea levels increase the risk of coastal flooding depending on the relative rate of
mean sea/land level changes [1–3]. The impacts are linked to concurrent near-term trends
as well as gradual escalation of long-term coastal inundation risk over time [4]. Estuaries
and coastal areas should adapt to changing climate and implement the necessary mitigation
measures. A complex process such as a storm surge is sensitive to abrupt changes in several
storm parameters, such as intensity, surface atmospheric pressure at the center of the storm,
maximum sustained wind speed, size, and forward speed, in addition to the effects driven
by the characteristics of dynamic coastal settings, such as shoreline geography, estuaries,
and bay barriers [5]. The interdependency of these different factors make it notoriously
hard to predict the timing and intensity of the hydrodynamic response (e.g., water levels
and currents) [6–9]. Parametric models conventionally incorporate historical or synthetic
hurricanes using storm size, intensity, and track, allowing for the prediction of storm surge
heights and overland flooding [10,11].

During a storm surge event (caused by tropical or extratropical cyclones), the potential
impacts extend beyond the surge itself and could exacerbate flooding and structural dam-
age. This can be further intensified by the surface gravity waves due to the superimposed
storm tide [12]. Wave driven set-ups can contribute up to 30% of the total increase in water
level (including both typical fluctuations and any additional rise) along the coast [13]. The
combination of elevated water levels along with the destructive power of waves poses
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a tremendous danger to densely populated areas adjacent to coastal waters. The U.S.
Atlantic and Gulf Coasts, for example, are expected to experience a sea level rise of, on
average, 0.25–0.30 m in 30 years (2020–2050) [14]. This further increases the vulnerability
of coastal regions to compound flooding (CF), where the interaction of rainfall, rivers,
and ocean storm surges combine and create a cataclysmic force [15]. To overcome these
challenges, physics-based approaches, such as hydrodynamic models, have been used to
estimate hydrological processes and flood hazards/the probability of particular events
that require land–atmosphere–ocean coupling [16]. Although these models explain the
nature of flooding phenomena and show great skill for a wide variety of flood predic-
tion scenarios, they usually deal with the physical dynamics and require various types of
datasets, as the occurrence of floods varies with time and space [17,18]. This requires a large
amount of computation, which makes short-term predictions very challenging. The reader
is kindly referred to [17,19,20] for the comprehensive studies related to the development of
physics-based models, their challenges, and capabilities.

Hydrodynamic modeling has also been extensively used to investigate the spatial
and temporal variability of storm surges. Hydrodynamic models are widely utilized to
describe coastal ocean processes and near-shore circulation and to simulate future scenarios
of possible storm surge flooding [21]. These models are well-developed to account for the
inherent uncertainties associated with sea level rise and storm surges. They also consider
the relative impacts of different meteorological forces in total water levels [22,23]. However,
these models are computationally demanding and time consuming. This limits their ability
to simulate large complex domains or ensembles of events.

Some parametric models, such as the Bayesian model averaging, autoregressive inte-
grated moving average, and peak over threshold methods, are among the most preferred
methods to predict the statistical behavior of storm surge flooding [24,25]. However, these
models are, at times, computationally demanding and typically sophisticated. Furthermore,
generalizing the potential impacts of a storm surge for a particular geographical area to
other areas with different parameters and settings is not a reliable approach [23]. Flood
prediction requires constructing a minimum of a decade of non-tidal residual data from
measurement by sea-level gauges [26]. In small datasets, i.e., those with a lack of large-
sample observational data, even a few outliers will significantly alter the model or affect
the correlation among the predicting variables [27].

Low-fidelity numerical storm surge models such as SLOSH (Sea, Lake, and Over-
land Surges from Hurricane) [28] are used by emergency managers and researchers to
assist in forecasting the hydrodynamic response to a predicted hurricane track, size, and
intensity. These models have significant uncertainty when used for forecasting [29,30].
Coupling ADCIRC (ADvanced CIRCulation model) [31] with WAM (WAve prediction
Model) [32], STWAVE (Steady-State Spectral Wave Model) [33], or SWAN (Simulating
WAves Nearshore) [34] is a widely used method for generating high-resolution storm surge
models of specific regions [35,36]. Considering their additional wave forcing processes,
finer mesh sizes, and smaller time steps, high-fidelity models are computationally more
expensive [37]; thus, the accurate and quick assessment of hurricane-induced flooding has
always been a challenging task.

Surrogate models are another approach to overcome this huge obstacle by simplifying
approximations of more complex, higher-order models [10]. The Surge and Wave Island
Modeling Study (SWIMS) [38] in the USACE, for example, developed a fast surrogate model
by simulating hundreds of hurricanes to predict peak storm surges and hurricane responses
in only a couple of seconds, which is an advantage over high-fidelity coupled simulations.
Considering this issue, in a national-scale effort, the U.S. Army Engineer Research and
Development Center developed a statistical analysis and probabilistic modeling tool named
the StormSim Coastal Hazards Rapid Prediction System (StormSim-CHRPS) [39]. The tool
preserves the accuracy of the high-fidelity hydrodynamic numerical simulation methods,
such as ADCIRC, while significantly reducing computational demands, making it more
convenient for real-time emergency management applications. The intricate input/output
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relationships inherent in high-fidelity numerical models are approximated using a machine
learning method called Gaussian process metamodeling (GPM), enabling the rapid pre-
diction of the peak storm surge and hurricane responses within seconds and for different
hurricane scenarios.

Lee et al. [37] sought to enhance coastal resilience by providing a rapid storm surge
prediction surrogate model called C1PKNet, a combination of a convolutional neural
network model (CNN), principal component analysis, and a k-means clustering method,
which was trained efficiently on a dataset of 1031 high-fidelity storm surge simulations.
The resulting model is capable of predicting peak storm surges from realistic tropical
cyclone track time series. A few studies, such as [40,41], even consider global warming,
earth–moon–sun gravitational attractions, and storm surges to estimate the coastal sea
level at an hourly temporal scale. The model in [40] was developed using an artificial
neural network (ANN) approach called long short-term memory (LSTM) and trained on the
ECMWF (European Center for Medium-Range Weather Forecasts) reanalysis dataset, ERA5
(more information on raw input data generation using ERA5 is available in Section 5.1).

To the best of our knowledge, only a limited number of researchers, such as [37,42–44]
aimed to assess the concept of ANN ensemble learning for storm surge prediction. Braakmann-
Folgmann et al. [43], for example, developed a combined convolutional and recurrent neural
network to analyze both the spatial and the temporal evolution of sea level anomalies in the
northern and central Pacific Ocean. They show how neural network architectures outperform
simple regression to improve predictions for the future sea level. A novel deep learning
architecture was implemented by [44] in contrast to a primitive model called the general ocean
circulation model ensemble or NEMO (Nucleus for European Modelling of the Ocean). Their
aim was to reduce the uncertainty associated with accurate sea level predictions and also to
show the importance of sea level and atmospheric inputs for shorter forecast times. In the
latter study, the ensemble ANN method for sea level forecasting known as HIDRA (HIgh-
performance Deep tidal Residual estimation method using Atmospheric data) implements
variants of temporal convolutional networks (TCN) and LSTM to encode temporal features of
atmospheric and sea-level data. The dataset was trained on a 10-year (2006–2016) time series
of atmospheric surface fields using a single member of the ECMWF atmospheric ensemble.

More recent papers such as [42,43] investigated the capability of different combina-
tions of neural network (NN) models to predict surge levels. The fundamental core of this
research revolves around selecting the best NN architecture for an ensemble approach to
outperform a simple probabilistic model. Tiggeloven et al. [43], for example, combined a
CNN-LSTM (ConvLSTM) model to capture the spatio-temporal dependencies for peak wa-
ter level observations. This research has important implications for the sensitivity analysis
of predictor variables and investigates how uncertainty in the predictions changes with in-
put or architecture complexity. Tropical cyclones can also be parametrically represented via
the joint probabilities method (JPM) [45]. However, the parametric description of complex
systems, such as large-scale, non-frontal, low-pressure tropical cyclones, is intrinsically
difficult to determine. As an alternative approach to these models, data-driven methods
such as multiple linear regression [26,46], decision tree, ANN [40,42,43,47–50], and support
vector machine [51,52] have been widely used for the prediction of storm surge heights.
In most of studies where data-driven surrogate models are trained with physics-based
simulations, such as ADCIRC [37,42,52], a major hurdle is the lack of sufficiently long
datasets for training, validating and testing the surrogate models. As [53] explains, a long
record in a storm surge reconstruction dataset is critical to capture as many storm events as
possible; thus low-probability, high-impact, extreme events could be accounted for.

This review paper is structured as follows. Section 2 highlights the general concept of
neural network ensembles and introduces several challenges and limitations. A theoretical
framework for the geometry of neural networks, transfer learning, and their application
to storm surge prediction models and different ensemble generation methods (i.e., how
to combine the predictions from multiple models) are presented in Section 3. Section 4
discusses the less-debated topic of ensemble pruning and fine-tuning, the next stage after
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ensemble generation. Section 5 introduces data preparation considerations on developing
an ensemble of neural networks, and different sources of datasets commonly used to predict
storm surge levels are presented as well. Section 6 discusses some important factors and
parameters regarding the best model selection and how the performance of the selected
ensemble is evaluated. Finally, in Section 7, a summary is presented.

2. Neural Network Ensemble

Ensemble learning refers to techniques that involve combining the predictions of
several base estimators based on classification or regression problems, aiming at improving
predictability. This approach has gained a lot of attention in recent years, and the reported
results regarding sea level rise projections have been satisfactory, such as in [7,44,54].
Ensembles have been reported to achieve higher certified robustness than single machine
learning algorithms, as discussed in Section 2. Therefore, coastal hydrodynamic modeling
techniques have been applied in ensemble with data-driven models such as deep learning
techniques, especially neural networks, to develop ocean circulation and flood simulation
models. This is due to the popularity and application of the finite element methods in
numerical hydrodynamic models and their adequate modeling resolution [55–57]. These
numerical models are conventionally applied to probabilistic coastal ocean forecast systems
such as Surge Guidance System Forecasts (ASGS) or NOAA P-Surge to accommodate
thousands of simulations [58].

Various types of neural networks are helpful to solve regression prediction problems
where the aim is to predict the output of a continuous value such as water levels. Multilayer
perceptrons (MLPs), a classical type of neural network, can reconstruct and validate atmo-
spheric forcing, such as maximum sustained wind speed [59–61]. Convolutional neural
networks (CNNs) have been developed to capture spatial and temporal dependencies for
surge-level observations on a grid-based dataset and could potentially identify and predict
regional and global patterns in storm and climate datasets [62]. They can also extract water
bodies from remote sensing images [63]. Recurrent neural networks (RNNs) could be
helpful in modeling storm behavior and time series of water levels in a sequence prediction
framework [43], which requires a longer training time (not dependent on a fixed input size)
compared to CNNs. Long short-term memory (LSTM), a subtype of RNN, is a successful
model and has been used to capture long-term temporal dependencies of meteorological
forcing [64,65] and to analyze the rapid intensification and occurrences of cyclones [66]. A
diverse set of base learners (individual learners of the ensemble), such as MLPs, CNNs,
and RNNs with appropriate training and tuning, is one empirical way to improve model
performance by generating more complex models [67].

The focus of this paper is to introduce ensemble methods that can predict storm surge
levels using a supervised ANN. Some challenges associated with using ANNs are the
inability to capture peak water levels (due to the complex and nonlinear nature of the
physical processes) [65,68], long-term processes (which are unavailable due to instrument
failures, insufficient data, or sparse observational records), and predictions of storm surges
at ungauged sites [43,69]. However, when utilized appropriately, ANN ensemble models
have the potential to provide better and faster results than finite element hydrodynamic
models. Figure 1 emphasizes the essential need for rapid prediction models, e.g., ENNs,
by presenting a benchmark for the Aransas Wildlife Refuge station in Texas during and
following Hurricane Harvey in 2017 [39]. This descriptive example compares storm surge
predictions from a rapid empirical prediction model against water level observations
from NOAA tide gauges and predictions from operational ADCIRC runs performed at
the U.S. Army Engineer Research and Development Center’s Coastal and Hydraulics
Laboratory (ERDC-CHL). Hurricane Harvey started as a modest tropical storm in August.
However, after re-forming over the Bay of Campeche, it intensified rapidly into a category
4 hurricane. Harvey made its landfall along the central Texas coast and then stalled for
four days, resulting in unprecedented rainfall, exceeding 1520 mm and resulting in a surge
reaching 1.4 m across southeastern Texas [70]. Figure 1 also highlights the rate of change
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and meteorological and oceanographic observations during the hurricane. Forecasts are
typically updated at 6 hour intervals. However, for unusual storm scenarios comparable
to Hurricane Harvey with rapid approach trajectories or extended durations within flood
plains, the expected update intervals can be reduced to 3 h or even shorter.

A thorough and extensive literature review can be found in [1,71], where machine
learning models are compared to traditional physically based models.
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Figure 1. (a) Best track positions and storm surge predictions from the empirical CHRPS model
compared to water level observations from select NOAA tide gauge and storm surge predictions
from operational ADCIRC simulations performed at CHL [39]. (b) Winds. (c) Hourly heights.
(d) Barometric pressure. (e) Air temperature. (f) Sea surface temperature in Aransas Wildlife Refuge
station, TX, for Hurricane Harvey (August 2017).

3. Theoretical Framework
3.1. Neural Network Architectures

The NN architecture consists of individual members called neurons, which are com-
bined to simulate the biological behavior of the brain to solve real-world problems [37,41].
Neural networks are not an exclusive standardized method; instead, they involve learning
algorithms and architectures that can be applied to a wide range of supervised flood and
storm surge forecasting models. These models use a set of individual independent vari-
ables, such as tidal and meteorological data points, and a real value dependent variable
that represents the phenomenon, such as storm surge levels [42,43,72]. A general scheme
is shown in Figure 2 based on a fully connected MLP representation. In the basic MLP
architecture, the input layer is connected to one or multiple hidden layers and finally to the
output layer to construct a fully connected system. The information is primarily processed
in the forward direction (feed-forward) and is put through a linear transformation using
a weights matrix [47,73]. An activation function defines how the weighted sum of the
input vector is transformed to the neurons of the next layer [47]. The choice of activation
function in both the hidden and output layers significantly influences the performance
of the NN model in learning from the training dataset and predicting storm surge events.
Empirical testing and cross-validation are essential to determine the most appropriate
activation function that can effectively capture non-linear relationships within the data.
Table 1 presents some frequently used activation functions specifically tailored for storm
surge prediction models, as well as the relationship between each activation function and
its corresponding Python library. The elementwise activation function is usually shifted
with a bias to adjust the final output matrix. Different model configurations associated
with learning processes and choices of the right dimensions of the NN structure, including
the number of hidden layers, learning rate, batch size, choice of the activation function and
loss function, etc., are referred to as hyperparameters [74–76]. Table 2 presents a summary
of the major hyperparameters in NN models. These tuning parameters pertain to the
physical components, training/optimization procedures, and regularization effect in a
neural network.

In order to train a MLP feed-forward NN model, a backpropagation NN (BPNN)
is widely used. This algorithm has been identified as one of the simplest and the most
powerful ML prediction tools suitable for flood time series and short-term storm surge
predictions [77–80]. In a BPNN algorithm, the gradient of the loss function (the vector
of the partial derivatives) is calculated through a method called chain rule to adjust each
weight and its contribution to the overall error. Further details of BPNN algorithms can be
found in Appendix A.
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Figure 2. Flow diagram of transfer learning in NN, including the reuse of a pre-trained model on a
new problem.

Table 1. Frequently used activation functions in ANN storm surge prediction models.

Activation Function Equation Python Library Applications

ReLU (Rectified Linear Unit) f (x) = max(0, x) tensorflow, keras MLP, CNN
Sigmoid f (x) = 1

1+e−x tensorflow, keras RNN
Tanh (Hyperbolic Tangent) f (x) = ex−e−x

ex+e−x tensorflow, keras RNN

Softmax f (xj) =
exj

∑K
k=1 exk

tensorflow, keras Classification, normalizing the output

Leaky ReLU f (x) = max(αx, x) tensorflow, keras MLP, CNN

Table 2. Classification of major hyperparameters in NN models .

Physical Components Training/Optimization Procedures Regularization

Number of hidden layers within
the network Defining the optimizer algorithm Degree of regularization

(lambda)

Number of hidden Neurons Configuring the learning rate Number of active neurons
(dropout rate)

Choice of key activation function Defining the main type of loss function
Choice of evaluation metric for regression problem
Number of training samples (mini-batch)
Setting the random initialization
Number of training cycles (epochs)

3.2. Transfer Learning

In some scenarios, the NN algorithms use different sources of information such as
historical tropical cyclones, topography, meteorological forcing, and other sources to make
a complex network. Training an ensemble of NN models on such a massive volume
of raw data can be computationally expensive [81]. On the other hand, when datasets
are expensive or difficult to collect or data are scarce for a specific problem (such as the
short-term analysis of hurricane tracks) [64,82], obtaining a training dataset to discern a
meaningful pattern could be problematic. Transfer learning, as shown in Figure 3, is a
functional method of tackling these problems through, i.e., building a high performance NN
model while reducing training time [83]. This is performed by obtaining a high-accuracy
and large pre-trained model from a related source and transferring the knowledge from the
trained data to the target domain in a time-saving way [84]. Surge time series data over long
time scales are usually subject to seasonal variability known as seasonality [85–87] (which
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can be simply defined using a Fourier transform and finding the seasonal frequencies).
Removing seasonality from the time series data might happen during data preparation
(which is further discussed in Section 5). Extractions of sparse time series samples from
short-term extreme impacts during dominant seasons could be limited in size, implying that
the insufficient training data are unable to represent the target efficiently [85]. Therefore,
transferring knowledge from a diverse, large-scale, and pre-trained dataset of a time series
of a similar task (with minor adjustments) could be reasonable [88] when a NN model is
adapted to forecast a new time series, thus avoiding the need for additional training [83].

Training Samples

Timestamp

Multivariate Timeseries

Target Domain

Labeled data from
similar tasks

Pre-trained network

Retraining and �ine-tuning

Target Data

Figure 3. Flow diagram of transfer learning in NN involving the reuse of a pre-trained model on a
new problem.

3.3. Ensemble Generation Methods

Ensemble neural networks basically consist of [54]: (1) generating multiple base
learners (weak classifiers) and (2) combining the predictions to make a strong learner. The
notion is that various classes of neural networks are created as base learners and then
combined as a strong learner to predict the storm surge [55]. When ensemble members
employ a single-type base learning algorithm but are generated upon a different subset of
training data, they are classified as homogeneous [67,89]. Heterogeneous ensembles, on the
other hand, consist of classifiers (base learners) of different types, such as MLP, CNN, or
LSTM, which are usually trained on the same dataset [67,90]. These ensemble models are
designed such that base learners are generated in sequential or parallel format. The basic
motivation of the former is to create successive learning algorithms over iterations where
predictions of a base learner are corrected and fine-tuned, then provided to the subsequent
base learners. In the latter, the base learners are generated in parallel and independent
from each other. Predictions of the diverse base learners are then combined using ensemble
learning techniques such as bagging and stacking. These methods can potentially reduce
the inference time (the amount of time taken for a forward propagation) and increase the
overall performance [91].

Generating NN ensembles that predict storm surge heights from historical, synthetic,
or predicted hurricanes and/or are able to estimate overland flooding (or surge-induced
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maximum inundation) requires supervised algorithms to learn how to fit the input labeled
data into a continues function [89,91]. This raises the question of how to incorporate
predictions from different models. In this regard, three leading algorithms for combining
weak learners are recognized.

Bootstrap aggregating (bagging): To ensure diversity among base learners, one notion
is to train each learner on a distinct subset of the available training data. An autonomous
training process can be conducted in parallel for each learner through a popular subsam-
pling ensemble method known as bootstrap aggregation, more commonly referred to as
bagging [91,92]. This method uses randomly generated training sets (extracted from the
initial preprocessed dataset) to obtain an ensemble of predictors and subsequently trains an
integrated neural network associated with training sets (Figure 4). Bagging can consider-
ably reduce variance and is an efficient solution to overfitting [92–94] (i.e., it helps with the
generalization of a NN ensemble model to unseen data). Given a series of extreme flood-
ing events in coastal regions with noisy data obtained from the tide stations, particularly
during times when a storm surge coincides with normal high tide, the bootstrap learning
approach could effectively combine uncertainties originating from various measurements.
In a meteorological forecast of the storm’s behavior, for instance, this approach involves
random sampling of the initial training dataset through standard bagging resampling with
replacement, thus resulting in a low-variance ensemble model [95]. In a regression problem,
assuming that the model is trained on the input vector of A = ([x1, y1], [x2, y2], . . . , [xn, yn]),
to learn the mapping yi = f (xi), i = 1, . . . , n, bootstrap aggregation takes the average of
the predictions yi from a collection of bootstrap samples A∗j , j = 1, . . . , m. Each sample
is independent and drawn uniformly among A∗1 , . . . , A∗m with replacement; thus, all the
samples are independent and identically distributed (i.i.d) [92]. The aggregated (bagged)
prediction for each base learner is expressed by

ybs =
∑m

j=1 A∗j (x)

m
(1)

where A∗1(x), . . . , A∗m(x) are the predictions from the i.i.d samples. This method limits
the variance through building different base learners of diverse datasets [96] and helps to
create a more stable and robust overall model. This can be particularly useful in situations
where the data are noisy or where there is high variability in the predicted outcome, such
as in predicting the effects of category 4 and 5 storms. Since ensemble models with low
correlations are preferred in these predictions, the sampling with replacement method
allows more difference in the training dataset and, in turn, results in greater differences
between the predictions of the base learners. It is worth mentioning that the bagging
process, depending on its number of iterations or combination with time series, could be
computationally demanding to fit, as explained in [97]. Figure 5 shows a pseudo-code
for a bagging NN ensemble algorithm; note that this is a simple example, and the actual
implementation of bagging in neural networks may vary depending on each specific case
and library. Additionally, this example does not cover how to handle the overfitting
problem that might occur on these models.

Boosting: This ensemble approach works in a forward stagewise process and learns
the predictions from the previous weak learner by adjusting the weighted data and fitting
the model to an updated training dataset in a sequential order [98] (Figure 6). In the case of
regression, the final output is usually built as the weighted average of a sequence of the
fitted base learners [96,99]. A boosting algorithm reduces the bias owing to the progressive
refinement of the base learner over time [100]. The AdaBoost algorithm, short for Adaptive
Boosting, is one of the most popular boosting algorithms [101]. In this approach, instead of
dividing a training dataset, multiple classifiers are iteratively constructed from the entire
dataset. Using the neural network ensemble model, the subsequent component highlights
the false prediction of the previous step to transform a weak learner into a strong learner. In
other words, training data inaccurately predicted by the former NN become more influential
in the training of the latter NN [92]. This learning approach could be extended to neural
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network ensembles aiming at predicting storm surges or generating a mean estimation of
residual water levels [102]. Figure 7 shows a pseudo-code based on the AdaBoost algorithm
[99]. It is important to note that the actual implementation of boosting in neural networks
may vary depending on the case and library that is implemented. Additionally, there are
other boosting algorithms, such as Gradient Boosting [103] or XGBoost [104], that have
some variations in their pseudo-code.

Original Dataset

Bootstrap 1

Bootstrap 2

Bootstrap n

Base Classi�iers

Storm Surge 
Height

Bagged Classi�iers

Final Prediction

Random Sampling

Training Stage

P1

P2

P3

Figure 4. A general scheme of the bagging ensemble approach.

Step 1: Initialize the ensemble
 ensemble_models = []
Step 2: Build base ensemble models 
 for i in range(num_ensemble_models):
    # Sample dataset with replacement to create a new training set
     sample_data = random.sample(original_data, len(original_data))
     # Train a model on the sampled dataset
     model = train_neural_network(sample_data)
     # Add the trained model to the ensemble
     ensemble_models.append(model)
Step 3: Make predictions
 def ensemble_predict(ensemble_models, input_data):
      predictions = []
      for model in ensemble_models:
           predictions.append(model.predict(input_data))
          # Average the predictions to get the final ensemble prediction
      ensemble_prediction = np.mean(predictions)
      return ensemble_prediction

Figure 5. A simplified pseudo-code of an ensemble learning algorithm for bagging.
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Original Dataset Create Base Classi�ier

Calculate the accuracy 

Random Sampling

Training Stage

resampling

Storm Surge 
Height

Final Prediction

Figure 6. A general schematic of the boosting ensemble approach.

Step 1: Initialize the ensemble with a base model
 ensemble_models = [base_model]
Step 2: Expand ensemble
 for i in range(num_iterations):
      # Predictions with current ensemble
      ensemble_predictions = ensemble_predict(ensemble_models, data)
      # Calculate the error of the ensemble predictions
      error = calculate_error(ensemble_predictions, data_labels)
      # Train a new neural network to predict the error
      new_model = train_neural_network(error)
      # Add the new model to the ensemble with a weight
      ensemble_models.append((new_model, weight))
Step 3: Make predictions
 def ensemble_predict(ensemble_models, input_data):
   # Get weighted predictions   
  predictions = []
      for model, weight in ensemble_models:
   prediction = weight * model.predict(input_data)
           predictions.append(prediction)    
      # Sum the predictions to get the final ensemble prediction
      ensemble_prediction = np.sum(predictions)
      return ensemble_prediction

Figure 7. A simplified pseudo-code of an ensemble learning algorithm for boosting.

Assuming that each of n base learners make a prediction yi out of a random sample,
the weighted average of the boosted model would be [105]

ybt =
∑n

j=1 βyi(x)

n
(2)

where β is the shrinkage coefficient that controls the rate at which the boosting algorithm
reduces the error. β is similar to the learning rate hyperparameter in NN.

When using synthetic storm data to support the incomplete dataset (or data which
cannot capture an event resulting from instrument failures), it is possible that the generated
dataset could be more biased and less accurate than real-world data, such as in tide
stations [88,106]. Boosting algorithms focus on weak learners to determine which factors
are contributing to false outcomes and treat those factors carefully in testing data, decreasing
the bias error.
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Stacking: Stacked generalization, also known as stacking, is a heterogeneous ensemble
strategy proposed by Wolpert [106] to train a set of diverse weak learners in parallel with
greater predictive accuracy. Base learners (also called level 0/first-level learners) serve as
input to run a combiner or meta-learner (also called the level 1/second-level/super learner)
(Figure 8). Both the precision and diversity of base learners are crucial to the performance
of a stacking ensemble such that various base learners could construct a well-functioning
model with improved results [107].

Original Dataset

Model 1

Model 2

Model n

Training subsets Level 0
base learners

P1

P2

Pn

Meta-model Storm Surge 
Height

Level 1
Meta learner

Predictions

Final prediction

Figure 8. A general scheme of the stacking ensemble approach.

The predictive performance of a stacking ensemble is influenced by the number of
individual base learners [107,108]; however, there are only a few NN combinations available
(as explained in Section 3.3) to investigate the accuracy of combined predictions associated
with different combinations of base learners. Choosing the optimal subset of stacked base
learners is explained in [109–111]. Figure 9 shows a pseudo-code for the stacking ensemble
algorithm. It is to be noted that the provided snippet code is a basic instance, and the actual
implementation of stacking in neural networks might differ according to each specific case
and the implemented methods. Other stacking ensemble algorithms include Blending [112]
and Super Learner [113], which have some variations in this pseudo-code. Let ym

i = f (xi)
represent the mapping function applied to the model m with N = 1, . . . , i observations
in the training set N, where predictions from a set of heterogeneous weak learners (sub-
models) m = 1, 2, . . . , M are combined as new training data for the metalearner. The
stacking weights are defined as the minimum value of the Euclidean distance between the
weighted prediction and the target yi [114]

Wst = arg min

 N

∑
i=1

[
yi −

M

∑
m=1

W(m). y(m)
i

]2
 (3)

which leads to the final stacked ensemble prediction yst =
M
∑

m=1

(
Wst . y(m)

)
.

Here, the learning method to train the metalearner is based on the most common form
of regression analysis, linear regression. High-fidelity ocean circulation models such as
ADCIRC predict a skewed distribution of the peak storm surge height at the early stages or
with biased subsets of training datasets [42]. Stacking ensembles can help to mitigate the
effects of data bias and improve the overall performance of the model since they take into
account the strengths and weaknesses of sub-models and make robust predictions to the
biases that may be present in any individual subset.
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Step 1: Initialize the ensemble with base models
 ensemble_models = [base_model_1, base_model_2, ...]
Step 2: Generate meta-features based on base model predictions
 meta_features = []
 for model in ensemble_models:
      predictions = model.predict(original_data)
      meta_features.append(predictions)
 meta_features = np.concatenate(meta_features, axis=1)
Step 3: Train a new neural network on the meta-features
 meta_model = train_neural_network(meta_features, original_data_labels)
Step 4: Add the meta-model to the ensemble
 ensemble_models.append(meta_model)
Step 5: Make predictions
 def ensemble_predict(ensemble_models, input_data):
      base_predictions = []
      for model in ensemble_models[:-1]:  
           base_predictions.append(model.predict(input_data))
     meta_features = np.concatenate(base_predictions, axis=1)
      ensemble_prediction = ensemble_models[-1].predict(meta_features)
      return ensemble_prediction

Figure 9. A simplified pseudo-code of ensemble learning algorithm for stacking.

An overview of six different studies is outlined in Table 3, summarizing the utilization
of ensemble approaches and evaluation metrics, along with the data collection sources
for each study. A comparative analysis is illustrated in Figure 10 based on a qualitative
reference value (rv) and a representative skill metric (sm) across the different studies
summarized in Table 3.

Relative Score =
rv− sm

rv
(4)

1 2 3 4 5 6

2

4

6

8

10
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�v
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Run�me Resource U�liza�on Scalability Model Complexity

Study #

Figure 10. Qualitative assessment of studies numbered 1 to 6 from Table 2.
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Table 3. Comparative analysis of ensemble approaches, evaluation metrics, and data collection in
different studies (2015–2022).

Study
Number Target Goal Methodology Ensemble

Approach
Evaluation
Metric Data Collection

1 [42]
Low-probability peak
storm surge height
due to TCs

ANN and coupled
ADCIRC + SWAN
simulations

GBDTR and
AdaBoost
Regressor

RAE, MRAE,
and RMSE

Synthetic TCs + Historical
typhoon data in the New
York metropolitan area

2 [115] Storm tide and resur-
gence

Hydrodynamic and
Hydrologic Ensemble
Forecast

Stacking (super-
ensemble)
based on
RMSE and bias
correction

RMSE,
PRE,
and COU

US mid-Atlantic and North-
east coastline wind and tide
data

3 [43] Hourly surge time se-
ries at the global scale

ANN, CNN, LSTM,
and ConvLSTM

Bootstrap
aggregation

RMSE
and CRPS

GESLA Version 2 tide station
database

4 [37] Peak storm surges from
TC track time series

C1PKNet (1D CNN,
principal component
analysis, and k-means
clustering)

Average
of ten trained
C1PKNet
model
predictions

MSE and CC NACCS synthetic TC surge
database

5 [83] Real time and accurate
storm surge

CNN and LSTM,
transfer learning – RMSE, MAE,

and CC

Storm surge level time series
in the southeastern coastal re-
gion of China

6 [116] Rapid prediction of
storm surge time series

ANN and CSTORM-
MS coupled model – RMSE and CC Synthetic storms in the Gulf

of Mexico

GBDTR = Gradient Boosted Decision Tree Regressor; RAE = relative absolute error; MRAE = mean relative
absolute error; RMSE = root-mean-square error; MAE = mean absolute error; CC = correlation coefficient;
PRE = peak relative error; COU = coverage of observation uncertainties; CRPS = continuous ranked probability score.

4. Ensemble Pruning and Fine-Tuning

An ensemble model is a systematic process of combining individual diverse base
predictive learners to produce robust and accurate predictions. The concept of an ensemble
model might be potent enough for the default parameters to shine; however, many studies,
such as [117–122], acknowledge that the accuracy could be improved further through
tuning. An intuitive approach is to alter the network’s setup in a process known as pruning.
This is followed by fine-tuning the hyperparameters of the diverse base learners through the
regular process of developing the networks. Pruning entails reducing trivial (or redundant)
parameters from an existing network systematically [123]. In the case that the model has
poor performance after pruning, the hyperparameters are fine-tuned, i.e., the parameters
of each individual model are adjusted, and then the models are retrained to restore the
best possible accuracy [121]. The result is an ensemble of relatively accurate and robust
fine-tuned models with a lower correlation between the independent predictions and
residuals [119]. A general scheme on pruning and fine-tuning steps in a neural network
ensemble is shown in Figure 11.

Pruning: The main idea of pruning networks is to reduce the complexity and energy
required to implement large trained networks and make predictions on new input data in
real time [124]. This could be a crucial stage in predicting storm surge time series [54,55],
such that accurate real-time predictions of storm surge can help emergency management
officials issue evacuation orders, take preemptive measures to protect infrastructures, and
minimize the economic impact of the storm. Typically, the initial network is large and
tends to achieve higher accuracy; generating a smaller network with comparable preci-
sion is preferable. This approach has seen a significant amount of growth over the past
decade [123]. However, a handful of studies, such as [125–127], addressed the process of
ensemble pruning, especially in predicting time series of water surface elevations during
or after storms. One major reason is that some ensemble techniques, such as the Adaboost
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algorithm, inherently mitigate overfitting by independently optimizing input parameters
to reach an optimal value. Once the accuracy of individual base learners slightly surpasses
random guessing, the final model is proven to reduce generalization error, yielding en-
hanced performance as a strong learner [123]. Furthermore, NN ensemble pruning can also
be interpreted as a special type of stacking technique (as introduced in Section 3) in which
a meta-learner is applied to improve the predictive performance of the models [128].

NNE Performance Evaluation

Selective Removal of
Weights and Connections

Re-evaluation of Pruned
Network on Validation Set

Re-training
for Improved
Accuracy ?

Yes

Creating a Representative
Subset of dataset

No Network Initialization
with Learned Weights

Training with Adjusted
Learning Rate and
Overfitting Control

Target Accuracy 
Achieved ? YesNo

Fine-tuningPruning

Figure 11. General process of pruning and fine-tuning in a neural network ensemble.

The major pruning techniques that are applicable to NN ensembles are as follows:
(1) weight decay [129], which involves adding a regularization term to the loss function
that penalizes the complexity of the ensemble; (2) an error-based approach [130], which
involves calculating the prediction errors of each network in the ensemble and removing
the networks with the highest error rates; and (3) neuron pruning [131], which involves
removing the neurons in each network of the ensemble that have the least impact on the
network’s output.

Fine-tuning: Once a pruned ensemble is created, the next common stage is to perform
fine-tuning, where the network is retrained using the pruned architecture, possibly with a
smaller learning rate and fewer training epochs. Fine-tuning can help restore some of the
accuracy lost during pruning and can lead to better generalization performance [132].

Tuning methods cannot be overlooked since less complex but fine-tuned real-time
predictive models could possibly result in accurate predictions of water level and flood
extent [118,119]. which are essential for real-time monitoring and timely warnings of poten-
tial floods. When constructing predictive models, finding a set of optimal hyperparameters
for each individual learner is a challenge. Tuning the base models (learners) individually
and tuning all the models in an ensemble simultaneously are the two fundamental methods
to determine the optimal parameters [67]. In the former approach, the hyperparameter
tuning process for each base model is often carried out as an independent procedure based
on unique sets of hyperparameters. To illustrate, different base models in an ensemble
may use different types of activation functions, optimization algorithms, regularization
techniques, or learning rates. Tuning these hyperparameters separately can help ensure
that each model is individually optimized and contributes to the overall performance of the
ensemble. This conventional approach is described in [133,134]. It is important to note that
the hyperparameter tuning process should also take into account the interactions between
the base models in the ensemble [128,133] (the later approach). The weights assigned to
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each base model have a significant impact on the overall performance of the ensemble, so
these weights may also need to be tuned in conjunction with the hyperparameters of each
individual model. Such a kind of connection is usually more compatible with probabilistic
approaches, such as Bayesian optimization [135]. This method usually involves modeling
the objective function (e.g., accuracy) as a Gaussian process [136], which can be more effi-
cient than other fine-tuning methods, such as grid search [137] and random search [138],in
some cases, as it leverages previous evaluations of the objective function to better guide the
search process [139].

5. Data Preparation

Data preparation in neural network ensembles refers to the process of preprocessing
and organizing raw data before training a group of neural networks together as an en-
semble [140]. The goal of this crucial step is to ensure that the input data are consistent,
relevant, and suitable for use by the ensemble, which can lead to better model performance
and more accurate predictions. A dataset in a traditional ANN can be represented as a
set of input–output pairs, where the input is a vector of features and the output is a scalar
target value [47]. In a regression problem such as water level prediction, a dataset of size N
would be stored as follows: 

x11 x12 . . . x1j
x21 x22 · · · x2j

...
. . .

...
xi1 · · · xij

 (5)

Each ith row is an observation in the dataset, and each jth column represents an
individual component of an observation in the dataset

(
xij ∈ R

)
. In contrast to an ANN, the

input xi in convolutional neural networks is a 2D or 3D matrix of pixel values representing
an image with dimensions (height, width, and channels), and a set of convolutional filters
are applied to detect patterns in the image [141]. However, they can also be applied to time
series data by treating the time dimension as a spatial dimension; thus, the input would be
a 1D sequence of data points and a set of 1D filters, which are applied to detect patterns
in the time series [142]. By structuring the time series as a sequence, a CNN can detect
local patterns that correspond to different storm events or meteorological conditions over
shorter time intervals [62].

5.1. Raw Input Data

Datasets are an integral part of ensemble models, and major improvements in the final
prediction highly depend on the availability of high-quality input and training datasets.
There is a diverse assortment of sources and domains that provide data on the oceans and
coasts of the United States. These data can be utilized to improve hurricane prediction
models and create strategies for coping with the impact of climate change on coastal
communities, including rising sea levels [143,144]. With current developments, researchers
can generate various independent records of tropical cyclone datasets from the measured
tide and oceanographic data (Table 4) or take advantage of hindcasting (a retrospective
analysis of past weather conditions) and reanalyzing archives (a more comprehensive
and detailed reconstruction of observations combined with numerical models), such as
high-resolution temperature, pressure, humidity, and wind datasets from a forecast system
(Table 4). Some systems are adept at computing random, short-crested waves in coastal
regions using third-generation wave models, such as WAVEWATCH III, WAM, or SWAN,
or coupling them with other finite-element-based hydrodynamic models [35,36], such as
ADCIRC. Atmospheric and tidal forcing is commonly applied to high-resolution wave
models such as ADCIRC or SWAN [37,52] to simulate the behavior of ocean waves under
different storm conditions and generate synthetic storm datasets that can be used for
assessing flood risk and improving coastal management strategies [11].
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Ensemble NN models have high variability in their input data type and are commonly
considered heterogeneous. While homogeneity could be a desirable property of the in-
put data (in terms of the features and their scales) for neural networks, a heterogeneous
dataset in a regression problem such as storm surge prediction may work better [145]
because it includes a variety of features that capture different aspects of the storm and its
effects on the surge. This helps the neural network learn more robust and diverse features
that can be better generalized to new, unseen data [92,94]. Table 4 presents brief descrip-
tions and features of the ocean datasets that have been extensively used to predict storm
surge levels and flood extents. These datasets address a wide range of features, including:
(1) storm characteristics, such as storm intensity, wind speed and direction, and track;
(2) oceanographic features, such as water temperature, salinity, and currents; (3) meteoro-
logical features, such as air pressure, temperature, and humidity; (4) geographical features,
such as the shape and slope of the coastline, the depth of the ocean floor, islands, and
shoals, and (5) historic storm surge records, including the timing, intensity, and duration of
the surge. Common points and major differences between these datasets are outlined in
Table 5.

Table 4. Description and main features of the most widely used storm and flood datasets. The symbol
3 indicates that the feature is included, while the symbol 7 signifies that the feature is not included.

Dataset Description Features Source

North Atlantic Coast
Comprehensive
Study (NACCS)

A combined set of 1050 syn-
thetic tropical and 100 syn-
thetic extratropical storms us-
ing the coupled ADCIRC/ST-
WAVE models

3 Consistent across the entire North
Atlantic Coast region.

The U.S. Army
Corps of Engineers
(USACE) [146]

3 Covers storm surge, sea level rise,
and erosion
3 Easily accessible
7 Coarse spatial resolution
7 Limited temporal scope
7 Relies on certain assumptions and un-
certainties

ECMWF Re-Analysis
(ERA5)

The latest generation of atmo-
spheric reanalysis of the global
climate with detailed informa-
tion on a wide range of atmo-
spheric variables.

3 High temporal and spatial resolution

Copernicus Climate
Change Service (C3S),
the joint C3S-NOAA
project [147,148]

3 Covers a wide range of atmospheric
variables
3 Publicly available
7 Complex and may require advanced
technical skills
7 Limited vertical resolution (137 pres-
sure levels)

Global Extreme Sea-
Level Analysis Version 2
(GESLA-2)

Provides 39148 years of sea
level data from 1355 station
records, with information on
extreme sea levels, including
storm surges, tidal cycles, and
rise in sea level.

3 Covers a wide range of extreme sea-
level events

University of Hawaii
and the National
Oceanic and Atmo-
spheric Administra-
tion (NOAA) [2]

3 Consistent across the entire globe and
different geographic locations
3 Publicly available
7 Gaps in the data particularly for re-
mote or sparsely populated regions.
7 Relies on certain assumptions and un-
certainties
7 Limited information on coastal mor-
phology and human activities
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Table 4. Cont.

Dataset Description Features Source

NOAA Global Real Time
Ocean Forecasting Sys-
tem (RTOFS global

provides nowcasts (analyses of
near-present conditions) and
forecast guidance on up to
eight days of ocean tempera-
ture and salinity, water veloc-
ity, sea surface elevation, sea ice
coverage, and sea ice thickness.

3 Provides high-quality and updated
oceanographic and meteorological data
in real time

National Centers
for Environmental
Prediction (NCEP),
NOAA [4]

3 Global coverage
3 High spatial and temporal resolution
3 Integration with other models for a
more comprehensive understanding of
storm surge
7 Limited data availability for a partic-
ular area or time period
7 Relies on certain assumptions and un-
certainties
7 Requires significant computational
resources

Coastal Hazards System
(CHS)

National coastal storm hazard
data resource for probabilis-
tic coastal hazard assessment
(PCHA) results and statistics,
including measurements of wa-
ter level, wind speed, and wave
height

3 High-quality data

Pacific Coastal and
Marine Science Cen-
ter of the United
States Geological
Survey (USGS) [149]

3 High spatial resolution with detailed
information about storm surge patterns
3 Provides historical data
7 Limited to the coastal areas of the
United States
7 Limited temporal resolution for pre-
dicting a storm surge during an ongoing
event
7 Needs to be integrated with other
models to make accurate predictions

The Sea, Lake and Over-
land Surges from Hurri-
canes (SLOSH) model

Uses a combination of histori-
cal storm data, topographical
data, and numerical algorithms
to simulate the impact of a hur-
ricane on coastal areas and pre-
dict storm surge heights and
flooding potential associated
with hurricanes.

3 Specifically designed and tested for
storm surge prediction

National Oceanic
and Atmospheric
Administration
(NOAA) [150]

3 Can be customized to specific geo-
graphic areas
3 Can be integrated with other models,
such as atmospheric and wave models
7 Resource-intensive
7 Limited data availability (requires in-
put data, such as atmospheric pressure
and wind speed)
7 Limited spatial resolution
7 Relies on certain assumptions and un-
certainties

National Water Level
Observation Network
(NWLON)

A network of tide gauges that
can be used for storm surge pre-
diction.

3 Specifically designed and tested for
storm surge prediction

National Oceanic and
Atmospheric Admin-
istration’s (NOAA)
Center for Opera-
tional Oceanographic
Products and Services
(CO-OPS) [151]

3 Provides historical data
3 Wide geographic coverage through-
out the United States
7 Limited spatial resolution
7 Lack of a comprehensive model for
predicting storm surge (needs to be inte-
grated with other models)
7 Limited data availability in all coastal
regions
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Table 5. General comparison between the datasets in Table 4. The symbol 3 indicates that the feature
is included, while the symbol 7 signifies that the feature is not included.

NACCS ERA5 GESLA2 RTOFS CHS SLOSH NWLON

Spatial reso-
lution 0.25 degrees 0.25 degrees 0.25 degrees 0.08 to 0.25 degrees 0.02 to 0.05 degrees 0.02 to 0.05 degrees 0.08 to 0.33 degrees

Temporal
resolution 6 h Hourly Monthly Hourly Hourly Hourly Hourly

Coverage North Atlantic
Coast region Global Global Global Coastal areas of the

United States

Atlantic and Gulf
coasts of the
United States

Coastal areas of the
United States

Availability Open access

Open access
(needs license
for real-time
products)

Open access Open access Limited access Limited access Open access

Complexity Highly complex Highly complex Complex Complex Fairly complex Complex Fairly complex

Possible
data gap

Incomplete cov-
erage or missing
data for certain
time periods

Missing or incom-
plete weather sta-
tion data in cer-
tain regions or pe-
riods

Limited or no
data on certain
sea levels and
time periods

Incomplete cover-
age or missing data
for certain time
periods

Incomplete cover-
age or missing data
for certain time
periods

Missing or incom-
plete data for cer-
tain hurricanes or
regions

Incomplete cover-
age or missing data
for certain time
periods

Integration
with other
models

3 7 3 3 3 3 3

5.2. Data Preprocessing and Wrangling

Data preprocessing and wrangling are critical steps in any machine learning workflow,
and they often take up a significant amount of time and effort [140,152]. The pre-mentioned
datasets may contain several types of data issues that need to be addressed and prepro-
cessed before NN algorithms can be applied effectively. Some of the most common issues
include missing values, outliers, categorical data (such as storm category, wind direction,
tidal phase, landfall location, and storm direction), correlated and irrelevant features, and
issues related to scaling and normalization [152,153]. The dataset presented in Table 6 dis-
plays a subset of hurricane Harvey’s tracking data (Figure 1) derived from the International
Best Track Archive for Climate Stewardship (IBTrACS) [154,155], which, although com-
prehensive, requires careful data processing to be suitable for ENN. Here, the maximum
sustained wind speed reported from multiple agencies for the current location needs to
be converted to a unified 10 min sustained wind speed. Then, important features must be
extracted and interpolated according to desired time steps. Missing values are handled
using interpolation or imputation techniques, such as mean imputation or predictive mod-
eling. Another dataset can be found in [156], where both recent and historical standard
meteorological and water level information is provided by the National Data Buoy Center
(NDBC). The data can be collected from the stations near an area of interest (Port Aransas,
Texas) combined with the extracted TC tracks and then fed into the ENN model.

As mentioned in Section 3.3, data-driven models are usually agnostic to physical laws
because they rely only on data. However, it is important to note that while data-driven
models do not explicitly incorporate physical laws, they can still be used to make predic-
tions about physical phenomena based on empirical data [55,56]. For example, a NN model
can be trained on data from a time series of gauge data to predict the uncertainty related to
storm surge flooding [55,57], even if the underlying physical laws are not fully understood
or modeled. Therefore, the accuracy and reliability of data are heavily influenced by the
quality of data preprocessing steps, such as cleaning and filtering the data, handling miss-
ing values, normalizing or scaling the data, and feature selection or extraction. Last but
foremost, some important issues related to the data preprocessing stage that can impact the
performance of NN ensemble are as follows:
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Table 6. Sample best-track dataset associated with hurricane Harvey (2017) in the North Atlantic
basin [154,155].

SID ISO_TIME NATURE LAT LON WMO_WIND WMO_PRES DIST2LAND LANDFALL

degrees_N degrees_E kts mb km km
2017228N14314 8/25/2017 3:00 TS 25.2924 −94.7578 243 204
2017228N14314 8/25/2017 6:00 TS 25.6 −95.1 90 966 204 170
2017228N14314 8/25/2017 9:00 TS 25.935 −95.4651 160 133
2017228N14314 8/25/2017 12:00 TS 26.3 −95.8 95 949 133 123
2017228N14314 8/25/2017 15:00 TS 26.6999 −96.0652 126 108
2017228N14314 8/25/2017 18:00 TS 27.1 −96.3 105 943 108 67
2017228N14314 8/25/2017 21:00 TS 27.4875 −96.5806 67 34
2017228N14314 8/26/2017 0:00 TS 27.8 −96.8 115 941 34 11
2017228N14314 8/26/2017 3:00 TS 28 −96.9 115 937 11 0
2017228N14314 8/26/2017 6:00 TS 28.2 −97.1 105 948 0 0
2017228N14314 8/26/2017 9:00 TS 28.4534 −97.2205 0 0

Data cleaning: Large amounts of data from various sources, such as weather sen-
sors, tide gauges, and satellite imagery, can be prone to errors, missing data, and outliers,
which can significantly affect the accuracy of the model’s predictions. Therefore, it is
essential to perform data cleaning to remove any errors or inconsistencies in the data before
feeding it into the neural network ensemble model [157]. This process may involve identi-
fying and removing outliers, handling missing data through imputation, and smoothing
noisy signals.

Feature scaling: Neural networks require all features to be on the same scale to
ensure that no feature dominates the others, where feature scaling techniques such as
normalization, standardization, or range scaling can be applied [37]. Choosing the wrong
scaling technique can lead to poor model performance. In storm surge prediction, input
features such as sea level, wind speed, and atmospheric pressure can have very different
scales and ranges. Therefore, it is important to apply feature scaling to ensure that all
features have a similar impact on the model’s predictions.

Feature selection: Ensemble models can have a large number of features, which
can lead to overfitting and poor generalization. The input features may include various
meteorological and oceanographic variables, such as wind speed, air pressure, water
temperature, tidal levels, and ocean currents. However, not all of these features may
be equally important for predicting storm surges. By removing irrelevant or redundant
features, the model can focus on learning the most important patterns in the data, leading to
more accurate predictions [83]. There are various techniques for feature selection (including
filter methods, wrapper methods, and embedded methods) which can be applied before or
during training the NN ensemble model to select the most relevant features.

Data transformation: The goal of data transformation is to convert the input data into
a format that is more suitable for analysis and modeling by the neural network ensemble.
Transforming data to fit a particular distribution can improve the performance of neural
network ensembles and lead to more accurate and robust predictions of storm surges [158].
Some common data transformation techniques include normalization, logarithmic transfor-
mation, PCA transformation, and discretization. However, it is important to choose the
right transformation technique to avoid introducing noise into the data.

Handling class imbalance: This refers to a situation where the distribution of the target
variable is heavily skewed towards one class (base model). In such cases, failing to handle
the class imbalance can lead to biased models with inaccurate predictions that perform
poorly on the minority classes [54]. Various techniques for handling class imbalances
include resampling, synthetic data generation, and cost-sensitive learning.

6. Model Selection and Evaluation

There is no optimal ensemble configuration for predicting peak surge levels under
different scenarios. It is essential to carefully evaluate the performance of different ensem-
ble models and select the one that provides the best trade-off between bias and variance,
accuracy, diversity, stability, generalization, and computational cost [67,91,92,159]. The
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final stage would evaluate and validate the performance of the selected ensemble model
using appropriate evaluation metrics and statistical tests, such as the mean absolute er-
ror (MAE) [21,83,160], root-mean-squared error (RMSE) [106,161], correlation coefficient
(CC) [49,83,106,161], and coefficient of determination (R-squared) [42,43,161–163]. The
following section covers some of the fundamental concepts that are considered when
evaluating a neural network ensemble for storm surge prediction.

6.1. Bias–Variance Tradeoff

The process of designing a NN ensemble, which involves combining multiple mod-
els or algorithms, can be optimized by finding the best balance between bias and vari-
ance [92,164]. Bias refers to the extent to which a model consistently misses the mark
in its predictions, while variance refers to the extent to which a model’s predictions are
sensitive to small perturbations in the training data. A good ensemble should strike a
balance between these two factors in order to minimize the overall prediction error [92]. To
achieve this balance, the optimal choice of weights for each base learner in the ensemble
needs to be determined. The weights are chosen such that they minimize the prediction
error of the ensemble. By doing so, the ensemble becomes more robust to different types
of data and can achieve better overall performance [83]. The bias-variance decomposition
of the mean squared error (MSE) is actually a method for analyzing the behavior of a
stochastic model [92,164,165]. Each individual base learner in the ensemble may have
some degree of stochasticity or variability in its predictions due to factors such as the
initialization of the weights or the selection of the training data. By decomposing the MSE
(between the estimated output variable y and the estimator f (x)) into its bias and variance
components, it is possible to gain insight into the sources of error in the model [83,165]. For
a given sample dataset x, the error made by the estimator f (x) is defined as ε = f(x) − y;
hence, the MSE of the estimator is defined as the expected value of the squared error,
i.e., MSE( f(x)) = E[ε2]. For every unseen sample x, the MSE can be decomposed as

E[( f(x) − y)2] = Bias2( f(x)) + Var( f(x)) + Var(ε) (6)

The last term in Equation (6) contains an irreducible error that is inherent in the
relationship between the input and output and cannot be reduced by any model. This
error arises from the fact that the input may not contain enough information to perfectly
predict the output or that there may be random variations in the data that cannot be
modeled [133,166]. Therefore, an ensemble model cannot reduce irreducible error, but it
can help improve the overall performance of the model by reducing the bias and variance.

6.2. Ensemble Diversity

Ensemble diversity can be particularly important to ensure that the ensemble is able
to accurately capture the complex dynamics of the ocean and the atmosphere that influence
storm surge. By using different training data or model architectures, the ensemble can
better account for different sources of uncertainty in the data and avoid overfitting to any
particular aspect of the data [83,165,166]. As discussed in Section 3.3, there are several tech-
niques that can be used to promote ensemble diversity, including bagging, boosting, and
stacking. One commonly used metric to evaluate ensemble diversity is cross-entropy. Cross-
entropy measures the difference between the predictions of each individual model and the
predictions of the ensemble [164,166,167]. A lower cross-entropy value indicates that the
ensemble is more diverse. Another metric to evaluate ensemble diversity is disagreement,
which measures the degree of disagreement between the predictions of each individual
model [168,169]. A higher disagreement value indicates that the ensemble is more diverse.
Correlation is another metric that can be used to evaluate ensemble diversity [83,106]. It
measures the degree of similarity between the predictions of each individual model. A
lower correlation value indicates that the ensemble is more diverse. When selecting the
final model for a neural network ensemble, a good approach is to choose the model that
achieves good individual performance while contributing to higher ensemble diversity.
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This can be done by evaluating each model’s performance on a validation set and then
evaluating the ensemble’s performance on a separate test set. The final model should
be chosen based on a combination of good individual performance and high ensemble
diversity, as measured by the chosen diversity metric.

6.3. Probabilistic Performance

The predictive ability of probabilistic models can be assessed by probabilistic per-
formance and skill metrics, which can also be used to select the final model in a neural
network ensemble considering ensemble diversity in storm surge prediction [43]. The most
commonly used probabilistic performance metrics are mentioned below. These metrics
can provide a more comprehensive evaluation of the performance of the models in the
ensemble, including their ability to accurately capture the uncertainty in the predictions.
Models that have good individual performance and contribute to higher ensemble diversity
should be chosen.

The Brier skill score (BSS) measures the skill of a forecast by comparing the predictions
with a reference forecast, such as a climatological forecast or a persistence forecast. The
BSS ranges from −∞ to 1, with a score of 1 indicating a perfect forecast and a score of
0 indicating no skill beyond the reference forecast. BSS can be used to evaluate the probabil-
ity of a surge or total water level exceeding a given threshold and thus yields the accuracy
of the system’s probabilistic forecasts [7,170].

The mean square skill score (MSSS) measures the improvement in the mean squared
error (MSE) of the forecast system relative to a reference forecast, such as a climatological
forecast or a persistence forecast. The MSSS ranges from −∞ to 1, with a score of 1
indicating perfect skill and a score of 0 indicating no improvement beyond the reference
forecast. When the system generates a probability distribution for the water level, the MSSS
can measure the improvement in the mean squared error of this distribution over a given
time period compared to the reference forecast [171,172]. The MSSS can be a useful metric
when the focus is on the mean of the forecast distribution rather than the full distribution
itself. However, it does not provide information on the reliability and resolution of the
forecast, which are important for assessing the quality of probabilistic forecasts.

The continuous ranked probability score (CRPS) is used to evaluate the accuracy of
probabilistic forecasts. It measures the distance between the cumulative distribution func-
tion (CDF) of the forecast probability distribution and the CDF of the observed outcomes.
The lower the CRPS, the better the forecast. When the system generates a probability
distribution for the water level, the CRPS can measure the accuracy of this distribution
over a given time period by comparing it to the observed water levels. The CRPS takes into
account both the reliability and sharpness of the forecast probability distribution, which
makes it a more informative metric than the Brier skill score in some cases [148].

7. Summary

The present paper focuses on various approaches that can predict storm surge levels
using ensemble neural networks. The challenges and limitations of accurately predicting
peak water levels, which are often caused by complex interactions between ocean currents,
winds, and atmospheric pressure systems, are also emphasized. Despite the limitations,
supervised neural networks, specifically those utilizing the backpropagation technique,
have proven to be a powerful tool for predicting storm surge levels, particularly for short-
term forecasting. However, the accuracy of BPNN models can be limited by overfitting,
which occurs when the model becomes too complex and fits the training data too closely. To
address the limitations of single BPNN models, ensemble methods that combine multiple
neural network models to improve accuracy and reduce overfitting are preferred. Ensemble
methods involve generating multiple base learners (weak classifiers) and combining their
predictions to create a strong learner. There are three leading meta-algorithms for combining
weak learners: bootstrap aggregating (bagging), boosting, and sitting. Bagging involves
generating multiple training datasets by randomly sampling from the original dataset



J. Mar. Sci. Eng. 2023, 11, 2154 23 of 30

with replacement, then training each base learner on a different dataset. Boosting involves
iteratively training weak classifiers, with each subsequent model focusing on the samples
that were misclassified by the previous model. Stacking involves training a meta-learner
that combines the predictions of multiple base learners. As the networks grow larger,
the importance of pruning and fine-tuning, as well as data preparation and wrangling,
become unquestionable. Data preparation involves preprocessing and organizing raw
data before training a group of neural networks together as an ensemble. The goal of this
crucial step is to ensure that the input data are consistent, relevant, and suitable for use by
the ensemble. The paper highlights different sources of input data type for storm surge
prediction and the need for careful data preprocessing and wrangling to ensure accurate
predictions. However, there is no one-size-fits-all approach for creating an ensemble of
neural networks for predicting storm surge levels. Instead, it is essential to carefully
evaluate the performance of different ensemble models and select the one that provides the
best trade-off between bias and variance, accuracy, diversity, stability, generalization, and
computational cost. Overall, the paper provides valuable insights into the use of ensemble
methods for storm surge flood modeling, which can contribute to better predictions and
preparedness for extreme weather events.
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Appendix A. Implementation of Backward Propagation of Errors
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Figure A1. Simplified BP algorithm in a 1-layer NN with 2D input.

• Defining the sigmoid activation function and its derivative

1 def activation(x):
2 return 1 / (1 + np.exp(-x))
3 def activation_derivative(x):
4 return activation(x) * (1 - activation(x))

• Defining the forward propagation function

1 def for ward_propagation(x, weights , biases):
2 a = [x]
3 z = []
4 for l in range(1, len(weights) + 1):
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5 z.append(np.dot(weights[l], a[l-1]) + biases[l])
6 a.append(activation(z[l-1]))
7 return a, z

• Defining the backward propagation function

1 def backward_propagation(x, y, a, z, weights , biases ,
learnin g_rate):

2 L = len(weights)
3 delta = [None] * (L + 1)
4 gradients = {}

• Running the error propagation using the chain rule ∂L
∂w = ∂L

∂h
∂h
∂z

∂z
∂w , h = f(z), and Loss

Function L = 1
n

n
∑

j=1
(hj − yj)

1 # Compute the output layer delta
2 delta[L] = (a[L] - y) * activation_derivative(z[L-1])
3 # Compute deltas for the hidden layers
4 for l in range(L-1, 0, -1):
5 delta[l] = np.dot(weights[l+1].T, delta[l+1]) *

activation_derivative(z[l-1])
6 # Compute gradients for weights and biases
7 for l in range(1, L+1):
8 gradients[f’dW{l}’] = np.dot(delta[l], a[l-1].T)
9 gradients[f’db{l}’] = delta[l]
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