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Abstract: The self-interference of an unmanned underwater vehicle (UUV) weakens its ability to
detect targets of interest. Due to limitations in the size of the sonar array and the complexity of the
interference, the performance of existing self-interference suppression methods in practical applica-
tions is unsatisfactory. Our research focuses on analyzing the influence of near-field interferences
on the sample covariance matrix (SCM) and proposes an interference suppression algorithm based
on an improved autoencoder. The proposed algorithm effectively learns the feature distribution of
near-field interferences within the covariance domain and reconstructs the pure signal covariance
matrix through the cancellation of the near-field interference features. Moreover, the proposed algo-
rithm can meet the requirements of real-time processing and does not require prior knowledge about
the positions or propagation of interference. Simulations demonstrate that the proposed algorithm
outperforms comparison methods, particularly in scenarios with low signal-to-interference ratios
and a limited number of sensors. Furthermore, lake experiments provide additional evidence of the
proposed algorithm’s good performance in practical applications.

Keywords: interference suppression; autoencoder; sample covariance matrix; feature reconstruction

1. Introduction

In recent times, UUVs have gained substantial attention for their mobility, concealment,
and low energy consumption in applications such as underwater target reconnaissance,
ocean environment detection, and maritime rescue. As the development of stealth technol-
ogy for underwater targets has led to a reduction in radiation noise levels, it has become
crucial to enhance the underwater target detection range of UUVs [1]. To achieve this,
UUVs are typically equipped with flank sonar arrays on both sides, as they provide a larger
array aperture compared to a head sonar. This allows for a lower operating frequency
and a greater detection range. However, when UUVs are in high-speed motion, they
produce strong self-interference, which is considered to be near-field interference. The
self-interference decreases the UUV’s detection ability for weak targets in the far field.
Thus, the development of UUV self-interference suppression technology has become an
urgent necessity for improving its performance.

Self-interference suppression poses a critical challenge for UUVs, leading researchers
to explore various techniques to address this issue. These techniques can be categorized
into adaptive interference cancellation [2,3], focused-beamforming-based interference can-
cellation [4–6], and spatial-filtering-based interference cancellation [7–11]. Gao et al. [3]
have employed an adaptive filtering method to cancel correlated noise of sonar arrays by
extracting reference noise with a multi-channel difference method. However, this algorithm

J. Mar. Sci. Eng. 2023, 11, 1358. https://doi.org/10.3390/jmse11071358 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11071358
https://doi.org/10.3390/jmse11071358
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse11071358
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11071358?type=check_update&version=2


J. Mar. Sci. Eng. 2023, 11, 1358 2 of 18

heavily relies on the accuracy of reference signal estimation, and its performance is limited
in complex marine environments. Focused beamforming, on the other hand, is capable of
handling near-field spherical waves and estimating the location of near-field sources, which
makes it an invaluable tool for near-field interference suppression. In the study by Ref. [4],
an interference suppression method based on nulling weight of a near-field focused beam is
proposed, which demonstrates suitability for practical applications due to its relatively low
computational complexity. Nonetheless, the effectiveness of this method greatly depends
on the precise estimation of the interference’s position. Ning et al. [6] introduced a real-
time interference suppression algorithm for mitigating tail self-interference in underwater
vehicles using adaptive focused inverse beamforming. The tail self-interference can be
estimated by focused beamforming and suppressed by the inverse operation at each sensor.
Spatial-filtering-based interference cancellation techniques often utilize matrix filtering
algorithms, which are primarily designed to suppress signals from a specific sector while
allowing signals from other sectors to pass through. Liang et al. [9] extended the matrix
filter algorithm to address near-field interference suppression of underwater platforms.
This method divides a passband and a stopband in the far and near field, respectively, and
suppresses the interference components in the near-field stopband by solving the filtering
matrix. Simulation results demonstrate its excellent interference suppression capabilities.
However, the efficacy of the filter is contingent upon the relative position of the near and
far field source, which may result in varying degrees of distortion for signals of interest.

In the past five years, deep learning methods have demonstrated promising perfor-
mance in underwater target localization [12–17] and direction-of-arrival estimation [18–22].
Deep learning algorithms are good at finding solutions to problems from big data, giv-
ing it an advantage over traditional methods. When tackling challenging problems in
underwater acoustics, traditional methods rely on constructing physical models to gain a
better understanding of the acoustic phenomena [23]. However, it is always challenging to
construct a physical model which can accurately capture and explain the corresponding
highly complex acoustic phenomena.

Facing the problems of underwater platform interference suppression, the current
methods have some degree of idealization as they oversimplify the intricate coupling
relationship between the interference and the signal. To the best of our knowledge, we
are the first to apply deep learning to the field of interference suppression of underwater
platforms for potential performance improvement. An improved autoencoder is introduced
to suppress self-interference of underwater vehicles. In our paper, the influence of near-field
interference on the array covariance matrix is analyzed, and the proposed autoencoder
algorithm is introduced to suppress the interference in the feature domain. Subsequently, a
set of simulation parameters is established to evaluate the performance of the proposed
method. Furthermore, a lake experiment is conducted to further validate its effectiveness.

The remainder of this paper is organized as follows: Section 2 presents the formulation
of the vector array receiving model. Section 3 introduces an improved autoencoder model
and explains of its functionality for interference suppression. Section 4 conducts simulations
to demonstrate the superiority of the proposed method compared to other comparison
methods. Section 5 verifies the effectiveness of the proposed algorithm by a lake experiment.
Section 6 presents the conclusion of this paper.

2. Vector Array Receiving Model

Suppose that a uniform linear array (ULA) consisting of M sensors is the flank sonar
array of a UUV. Figure 1 illustrates the array receiving model of a uniform linear array.
The center of the linear array is designated as the origin for both the Cartesian and polar
coordinate systems for describing both far-field and near-field signals conveniently. See
Table 1 for symbols and definitions used throughout this paper.
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Figure 1. Array receiving signal model.

Table 1. Explanations of some variables and symbols through this paper.

Symbol Definition Cardinality

Signal model
(ri, θi) Near-field location of polar coordinate
pm(t) The received waveform of the mth sensor
sk(t) The kth source’s waveform at reference position

AS(θ) Array manifold of far-field signal CMv×Q1

AI(r, θ) Array manifold of near-field signal CMv×Q2

X(t) Matrix of receiving data of vector array
M Total number of sensors
Mv Total number of channels
Rx Covariance matrix CMv×Mv

R̃x Sample covariance matrix (SCM) CMv×Mv

TS Snapshot number
Data preprocessing

C̃(ω) Frequency cross-spectral matrix CMv×Mv

U DIAE input: Vectorized covariance matrix R(Mv+1)Mv

T DIAE label R(Mv+1)Mv

f v(·),i f v(·) Vectorization transformation and its inverse operation
CS,CI Far-field target and near-field interference feature
DOA

δ2
CBF(θ) CBF output at candidate angle θ

G Filter matrix CMv×Mv

ΘP = {θi|i = 1, . . . , P} Passband in matrix filter
ΘS = {(ri, θi), |i = 1, · · · , S} Stopband in matrix filter

For an underwater sound signal located at (ri, θi), the target is usually defined
as a far-field source when the distance between the target and the array satisfies the
following formula:

ri �
[(M− 1)d]2

λ
, (1)

• λ: the signal wave length;
• (M− 1)d: the array aperture with the sensor spacing as d.

The wavefront of acoustic propagation is regarded as a plane for far-field signals,
whereas, for near-field signals, it is considered to be spherical. Assume that the target of
interest are Q1-independent far-field signals, impinging onto the hydrophone array with
incident directions [θ1, θ2, . . . , θQ1 ]. The interference comprises Q2-independent near-field
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signals impinging from positions [(r1, θ1), (r2, θ2), . . . , (rQ2 , θQ2)]. The received waveform
of the mth sensor is pm(t) and can be formulated as follows [24]:

pm(t) =
Q1

∑
k=1

sk(t− τmk) +
Q1+Q2

∑
k=Q1+1

βk
rk

rmk
sk(t− τmk) + nm(t), m = 1, 2, . . . , M, (2)

• nm(t): the additive zero-mean Gaussian noise;
• τmk: the time delay of source k between mth sensor and the reference position;
• rmk: the distance between near-field source k and the mth sensor;
• rk: the distance between near-field source k and the reference position.

The near-field signal propagates in a spherical waveform, resulting in the attenuation
of waveform amplitude, and rk/rmk is the amplitude attenuation associate with source
k at mth sensor relative to the reference position. The received signal pm(t) is the mth
sensor waveform measured in units of sound pressure, and as a vector hydrophone it is
capable of simultaneous measurements of both sound pressure p and vibration velocity v.
Equation (3) denotes the relationship between sound pressure and vibration velocity of a
plane wave, with ρ representing the density of water and c denoting the sound speed.

p(t)
v(t)

= ρc. (3)

For plane waves, sound pressure and vibration velocity are in phase. Near-field source
propagates in the form of spherical waves, and the sound pressure and velocity satisfy
as follows [25]:

p(t, r)
v(t, r)

=
ρc

1− j λ
2πr

. (4)

The imaginary part λ/2πr in the denominator cannot be ignored under near-field
conditions. In other words, there is a phase difference between the sound pressure and
the velocity in spherical waveform. The vibration velocity v can be decomposed into two
orthogonal channels vx, vy. Omitting the acoustic impedance ρc, the direction vector of a
plane wave at a single vector sensor can be expressed as:

[p, vx, vy] = [1, cos θ, sin θ]T, (5)

• θ: the azimuth of the vibration velocity relative to the x-axis direction.

Likewise, the direction vector of a spherical wave at a single vector sensor can be
expressed as:

[p, vx, vy] = [1, (1− jλ/2πr) cos θ, (1− jλ/2πr) sin θ]T. (6)

Let sS(t) and sI(t) denote far-field signals and near-field interference, respectively.
The receiving data of the vector array can be written in matrix form:

X(t) = [AS(θ)AI(r, θ)]

[
sS(t)
sI(t)

]
+ N(t), (7)

• AS(θ): [aS(θ1), . . . , aS(θQ1)] ∈ C3M×Q1 ;
• AI(r, θ): [aI(rQ1+1, θQ1+1), . . . , aI(rQ1+Q2 , θQ1+Q2)] ∈ C3M×Q2 ;
• sS(t): [s1(t), s2(t), . . . , sQ1(t)]

T;
• sI(t): [sQ1+1(t), sP+2(t), . . . , sQ1+Q2(t)]

T.

Each column of AS(θ) and AI(r, θ) is a steering vector, denoted by
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aS(θi) =
[
1, exp

(
−j 2πd cos θi

λ

)
, . . . , exp

(
−j 2π(M−1)d cos θi

λ

)]T
⊗ [1, cos θi, sin θi]

T

aI(ri, θi) =


1⊗

[
1,
(

1− j λ
2πr1i

)
cos θ1i,

(
1− j λ

2πr1i

)
sin θ1i

]
,

ri
r2i

exp
(

j 2π(ri−r2i)
λ

)
⊗
[
1,
(

1− j λ
2πr2i

)
cos θ2i,

(
1− j λ

2πr2i

)
sin θ2i

]
, . . . ,

ri
rMi

exp
(

j 2π(ri−rMi)
λ

)
⊗
[
1,
(

1− j λ
2πrMi

)
cos θMi,

(
1− j λ

2πrMi

)
sin θMi

]


T

(8)

• ⊗: the Kronecker product operator.

Array signal processing algorithms usually focus on the statistical characteristics of
array signals, and the covariance matrix can be expressed as

Rx = E
{

X(t)X(t)H
}

. (9)

In practical applications, the sample covariance matrix (SCM) R̃x is used to approxi-
mate Rx, which is denoted by:

R̃x =
1
Ts

Ts

∑
t=1

{
x(t)x(t)H

}
, (10)

• Ts: the number of snapshots.

When there is no near-field interference, i.e., β = (βQ1+1, . . . , βQ1+Q2) = 0,

R̃x =
1
Ts

Ts

∑
t=1

{
[AS(θ)sS(t) + n(t)]·[AS(θ)sS(t) + n(t)]H

}
. (11)

Otherwise, when near-field interference exists, i.e., β = (βQ1+1, . . . , βQ1+Q2) = 1,

R̃x
′ =

1
Ts

Ts

∑
t=1

{
[AS(θ)sS(t) + AI(θ)sI(t) + n(t)]·
[AS(θ)sS(t) + AI(θ)sI(t) + n(t)]H

}
. (12)

Assume that signal, interference, and noise are not correlated in pairs; ∆R̃x repre-
sents the increment on the SCM caused by near-field interference source, which can be
expressed as:

∆R̃x = R̃x
′ − R̃x

≈ 1
Ts

∑Ts
t=1

{
AI(θ)sI(t)sI(t)

HAI(θ)
H
}

= AI(θ)R̃IAI(θ)
H

(13)

• R̃I =
1
Ts

∑Ts
t=1

{
sI(t)sI(t)

H
}

.

It is imperative to note that treating the self-interference of a UUV as multiple in-
dependent near-field sources is merely a simplification, as the underlying mechanism
behind its generation is a highly intricate process. Both the real array manifolds AI(θ) and
covariance matrix R̃I of interference are difficult to obtain; in other words, ∆R̃x cannot be
accurately estimated by Equation (13). Based on the above analysis, we propose a near-field
interference suppression algorithm based on an autoencoder model, which can suppress
the ∆R̃x component in the feature domain. The algorithm does not need to estimate AI(θ)
or R̃I , and avoids the corresponding estimation error.

3. De-Interference Autoencoder

This section introduces the proposed interference suppression algorithm named
de-interference autoencoder (DIAE). Section 3.1 introduces the process of data prepro-
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cessing. Section 3.2 describes the principle of DIAE and, in Section 3.3, we discuss the
training process.

3.1. Data Preprocessing

Through data preprocessing, the M-element linear array data is transformed into vec-
tor form, and the input data suitable for the DIAE algorithm can be generated. Generally,
wideband signals can be divided into multiple narrowband processes. The sample covari-
ance matrix R̃x of each narrowband can be approximated by the frequency cross-spectral
matrix C̃(ω),

C̃(ω) =
1
N

N

∑
n=1

X(ω)XH(ω), (14)

• ω: the center frequency of the narrowband;
• X(ω): the Fourier transform of received array signal X(t).

C̃(ω) =


c11(ω) c12(ω) · · · c1Mv(ω)
c21(ω) c22(ω) · · · c2Mv(ω)

...
...

. . .
...

cMv1(ω) cMv2(ω) · · · cMv Mv(ω)

, (15)

•
∼
C(ω) ∈ CMv×Mv , Mv = 3M.

C̃(ω) is a Hermitian matrix that retrieves both the power and azimuth information
of the received signal in a narrow band centered around ω, and every element cmn(ω)
in C̃(ω) is the frequency domain covariance of mth and nth channels within the narrow
band. The lower triangular and diagonal elements contain all information of C̃(ω), and
Figure 2 illustrates how we obtain feature vector U from C̃(ω). The real part of the lower
triangular and diagonal elements of C̃(ω) comprise Ureal ∈ R(Mv+1)Mv/2, and the imagi-
nary parts comprise Uimag ∈ R(Mv+1)Mv/2. The feature vector U = [Ureal

T, Uimag
T]

T. The
transformation above is defined as U = f v[C̃(ω)] and its inverse operator as
C̃(ω) = i f v [U], which can map U back to the matrix C̃(ω) ∈ CMv×Mv .

Figure 2. The transformation from C̃(ω) to U.

3.2. DIAE Principle

As depicted in Figure 3, the proposed DIAE algorithm has the same network structure
as the traditional autoencoder, which is composed of an encoder and decoder in series.
The encoder consists of an input layer and two hidden layers, each of which has L1, L2,
and L3 neurons. The decoder consists of hidden layers and an output layer, each of which
has L3, L4, and L5 neurons. The output layer of the encoder serves as the input layer of
the decoder.
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Figure 3. Structure of DIAE.

Equations (16) and (17) express how two adjacent layers of neurons are fully connected.

‡l = wlal−1 + bl , l = 2, · · · , 5, (16)

al = σ[‡l ]. (17)

• al : al = [al
1, al

2, . . . , al
Ll
]
T

is the output of the lth layer;
• wl : the weight matrix connecting lth layer and l − 1th layer, wl ∈ RLl×Ll−1 ;

• bl : bl = [bl
1, bl

2, . . . , bl
Ll
]
T

is the bias of lth layer;
• σ: activation function.

Figure 4a shows the operation associated with the single neuron al
i and Figure 4b

illustrates the Tanh activation function employed in DIAE denoted by

σ = Tanh(z) =
ez − e−z

ez + e−z . (18)

Figure 4. (a) Operations associated with the single neuron.; (b) activation function of Tanh.

Tanh is ideal for training neural networks as it balances both training speed and
stability, and, more importantly, it can keep the neuron activation values within the range
of (−1,1). This makes it easier for the output to fit the real and imaginary parts of the SCM.

The conventional autoencoder model takes the reconstruction error of the input
value as the loss function, and the learning process can be described as minimizing the
loss function,

argmin
f ,g

J(Y, U) = argmin
f ,g

J{g[ f (U)], U}, (19)

where H = f (U) and Y = g(H), representing the encoder and decoder, respectively.
J is the cost function denoting the difference between the output Y and the input U. The
dimension of the output layer of the encoder is smaller than that of the input layer, forcing
the autoencoder algorithm to learn the most prominent features in the feature distribution.



J. Mar. Sci. Eng. 2023, 11, 1358 8 of 18

When the UUV is detecting the target, the target of interest usually has a varying az-
imuth and radiated noise power, while the platform interference received by the flank array
is short-term and stationary. The DIAE algorithm has been designed for suppressing the
platform interference from the received array data. Figure 5 and the following explanation
illustrate the innovation and technical details of DIAE.

Figure 5. The principle of the DIAE learning process.

• The DIAE model takes the preprocessed SCMs as input U, reduces the feature dimen-
sion through the encoder, and the output Y is restored to the original dimension by
the decoder. Through the i f v transformation introduced in Section 2, the output Y can
transform into SCM without interference;

• A dominant label T is designed to make DIAE an interference suppression algorithm.
Through carefully designed labels, the DIAE model can learn the most prominent
features in SCM and suppress the feature components of interference. Every input U
is preprocessed from SCM which is composed of the far-field target feature CS and
the near-field interference feature CI ; The corresponding label T is preprocessed from
SCM which is composed of the far-field target feature CS

′. Ideally, CS
′ is equal to CS;

• Root mean square error (RMSE) is set as the cost function of the DIAE algorithm to
minimize input and output errors.

For practical application, we propose a theoretically optimal way to collect and con-
struct training samples, making CS

′ an approximation of CS. As we know, the propeller
noise is considered as the major near-field interference of the UUV in many cases. By
alternating the rotation and stoppage of the propeller within a short time period, the
propeller interference occurs intermittently. Meanwhile, the far-field signal features can
be considered relatively stable during these short intervals of propeller state-switching.
Therefore, it is possible to obtain multiple pairs of {U, T} during these intervals. However,
this method for collecting training samples is time-consuming and laborious, and we put
forward an easier and cheaper way in our lake experiment in Section 5.

3.3. DIAE Training

DIAE is trained with the gradient descent method, and the network parameters are
updated by back propagation [26]. The training aim can be expressed as

argmin
W,B

J = 1
Z

Z
∑
1
‖Yi − Ti‖2,

W =
{

wl
∣∣∣l = 2, 3, 4, 5

}
,

B =
{

bl
∣∣∣l = 2, 3, 4, 5

} (20)

• J: the cost function averaged over Z training samples;
• ‖ · ‖2: 2-norm operation of vectors.

The training process continues until training parameters W and B approximate the
optimal value. The minibatch strategy [27] is followed with a batch size of 64, and the Adam
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gradient optimization algorithm [28] is chosen to accelerate gradient descent with a learning
rate of 0.001 and weight decay of 0.05. To prevent the model from overfitting, a certain
proportion of the training set samples are set aside as validation to evaluate the DIAE
training results. In general, if the cost curve along with the training epoch of the training
set is similar to that of the verification set, it implies that the learned features are not limited
to the training set alone, suggesting the absence of overfitting. After training, gradients of
W, B are no longer updated, and the model can be used for suppressing interference.

4. Simulation and Analyses

This section carries out simulations to show the predominance of the proposed method
over existing near-field interference suppression methods. The simulations are imple-
mented using the PyTorch [29] framework, which can provide full support for neuron
network building and training. Matrix Filter (MF) and focused inverse beamforming (FIBF)
are chosen as comparison algorithms. The simulation parameters are as follows. Unless
noted otherwise, the parameters remain constant throughout this section.

A nine-element uniform vector linear array is employed in the simulations with a
spacing interval d = 0.33 m. The interferences consist of multiple independent near-field
point sources, and the target of interest is a far-field signal. For narrowband processing,
the central frequency is set at f0 = 2267 Hz, corresponding to half a wavelength, with a
bandwidth of B0 = 180 Hz. The noise at each sensor is additive Gaussian noise. The signal-
to-noise ratio (SNR) and interference-to-noise ratio (INR) are defined as the narrowband
power ratios at the reference sensor. The array receiving data is generated by the above-
mentioned parameters with a time length of T0 = 0.4 s, and can be transformed to a dataset
sample by data preprocessing. To enhance the dataset’s diversity, the receiving data is
generated with randomized interference and target parameters. The INR, rN , and θN
parameters follow a uniform distribution, with specified lower and upper values for each
parameter outlined in Table 2. The SNR and θF parameters are random sampling from the
given interval. The interferences consist of two near-field point sources with equal power,
and the interference-to-noise ratio (INR) is determined based on the total interference
energy. A total of Nall = 8000 dataset samples are generated. Among them, the proportion
of training set, verification set, and test set is 60%, 20%, and 20%.

Table 2. Parameters of simulation array receiving data.

Interferences INR Position (rN,θN)

15 ± 1 dB
(300 ± 2◦, 1.2 ± 0.1 m)
(315 ± 2◦, 0.6 ± 0.1 m)

Target SNR Azimuth θF

[−5, 10] dB [30◦, 150◦]∪[240◦, 290◦]

4.1. Parameter Optimization

In order to optimize the performance of the DIAE model, grid search is employed in
the numbers of neurons in hidden layers:L2, L3. The 4-fold cross-validation technique is
utilized to evaluate the generalization ability of the DIAE, and the total cost function of the
trained model is denoted as J{Y, T}4− f old,

J{Y, T}4− f old =
1
4

4

∑
1

Ntest

∑
i=1
‖Yi − Ti‖2. (21)

Figure 6 indicates L2 = 378, L3 = 32 to be optimal and, based on this pair of parame-
ters, the subsequent simulation model is constructed; more specific parameters of DIAE are
listed in Table 3.



J. Mar. Sci. Eng. 2023, 11, 1358 10 of 18

Figure 6. DIAE cost-applied grid search on parameters L2, L3.

Table 3. Parameters of DIAE model.

Layers Hyperparameters Total Parameters

Encoder input L1 = 756, FC 1 0
Hidden layer L2 = 378, FC, Tanh 2628
Hidden layer L3 = 32, FC, Tanh 592
Hidden layer L4 = 378, FC Tanh 592

Decoder output L5 = 756, FC, Tanh 2628
1 FC is short for fully connected. Total parameters denote the quantities of training parameters.

4.2. Performance Analysis

DOA based on Conventional Beamforming, referred to as CBF, can estimate source
azimuth by assuming plane wave propagation [30]. CBF calculates a spatial spectrum as its
output, which can be mathematically expressed as follows:

δ2
CBF(θ) = aF(θ)

HCωaF(θ). (22)

• aF(θ): steeling vector of plane wave impinging from azimuth θ◦.

Since the amplitude of the spectrum represents the actual power spectrum, we employ
the CBF spatial spectrum to analyze the performance of interference suppression. For our
method, Cω derives from the transform Cω = i f v[Y], where Y is the output of DIAE.

Figure 7 shows the impact of near-field interference on the spatial spectrum. The near-
field interference is located at (ρN , θN) = (1.2m, 300◦) with INR = 5 dB, and the far-field
target comes from θ = 240◦ with SNR = −5 dB. The presence of near-field interference
leads to a strong power leakage in the target azimuth and, as a result, the spatial spectrum
peak of the target gets submerged. In addition to this, Figure 7 implies that the energy of
the near-field interference leaks to a large range of the far-field azimuth under the specified
simulation conditions.

In the subsequent simulation, we assess the performance of the proposed algorithm
by conducting comparative analyses. We tried to achieve the best performance of the
comparison algorithms in the simulation.

The Matrix Filter algorithm (MF) assumes that the signal and interference exist in
separate azimuth sectors and requires knowledge of the interference’s approximate po-
sition. Equation (23) describes the solution of the filter matrix G (for more details, see
Liang et al. [9]). The solution can be transformed into a second-order cone programming
(SOCP) and solved with CVX toolbox.
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Figure 7. The impact of near-field interference on the spatial spectrum.

minmaxj=1,··· ,P
∥∥∥GHa(θj)− a(θj)

∥∥∥, θj ∈ ΘP

s.t.
∥∥∥GHa(ri, θi)

∥∥∥ ≤ ξ0, (ri, θi) ∈ ΘS, i = 1, · · · , S∥∥∥GH
∥∥∥

F
≤ ∆0

(23)

• ΘS: the stopband in the near field;
• ΘP: the passband in the far field;
• ξ0: the attenuation in the suppressed area;
• ‖ · ‖F: Frobenius norm operation of matrices;
• ∆0: the white noise limitation.

In the simulation, we assume that the interference area is known, as Table 2 denotes,
and set the parameters as follows:

ΘS = {(x, y)|x = [0.3 : 0.1 : 0.8], y = [−1.3 : 0.1 : −0.7]}
ΘP = [0◦ : 10◦ : 210◦]
ξ0 = 0.1, ∆0 = 4.0

(24)

ΘS is a set of spatial location coordinates that cover the position of the interferences. ΘP
is a set of angles that cover the far-field passband. The value of ξ0 and ∆0 are set with
optimal after several attempts.

The FIBF algorithm does not need prior information on interference, but its perfor-
mance is closely related to the accuracy of interference source location estimation. In order
to ensure the location accuracy, a sufficient array aperture is needed. Generally, multiple
iterations are necessary for better results [6]. In our simulation, the number of iterations is
set equal to the number of near-field sources, as we confirm it to be appropriate through
multiple attempts.

The DIAE algorithm is trained using a simulation dataset constructed with parameters out-
lined in Table 2. Dual interference sources are at (r1, θ1) = (1.2 m, 300◦), (r2, θ2) = (0.6 m, 315◦),
respectively (Due to the way the dataset is constructed, there is a deviation in the real
interference position). Figure 8 depicts the outcomes of interference suppression algo-
rithms under two distinct SNR levels. By comparing the azimuth spectrum in the presence
and absence of interference, we observe that the interference energy leaks into a large
range of far-field azimuth, which makes it a big challenge for detecting the target even
when quite far away from the interference sector. The DIAE algorithm demonstrates its
superior effectiveness in completely suppressing interference, as evidenced by the spatial
spectrum estimation outcomes. The FIBF algorithm suppresses partial interference energy
and highlights the spatial spectrum peak of the target. However, in cases where the SNR
drops to −2 dB (see Figure 8b), the target’s spatial spectrum peak can fall below that of the
interference spatial spectrum peak, posing challenges in target detection. The MF algorithm
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suppresses the interference energy of the azimuth of the interference better than the FIBF
algorithm, but lacks the ability to suppress the energy leaked to the passband azimuth.

Figure 8. Spatial spectrum with various interference suppression algorithms. (a) SNR = 6 dB, target
azimuth θF = 129.25◦; (b) SNR = −2 dB, target azimuth θF = 70.5◦.

In the following simulation, we analyze how SNRs impact algorithm performance
by counting the root mean square error (RMSE) of the first spectral peak estimation. The
azimuth relationship between the target and the interference is taken into account, and
the analysis is conducted separately for two cases: when the target angle is away from the
interference angle, and when the target angle is close to the interference angle.

Figure 9a presents the accuracy of spectral peak estimation when the target azimuth
falls in the range of [30◦, 150◦]. The DIAE algorithm performed well, producing low RMSE
values for spectral peak estimation across different SNRs. The FIBF algorithm has limited
interference suppression ability due to the estimation accuracy of the reference interference
signal. In the case of low SNRs, the leaked interference energy at a certain azimuth is higher
than the target spectrum peak, resulting in an inaccurate estimation of the target spectrum
peak position. The MF algorithm has less ability to suppress the energy leaking into the
target azimuth than FIBF, so it has the worst performance in low SNRs.

Figure 9. RMSE of spectral peak estimation under different SNRs. (a) Target azimuth far away from
interference azimuth. (b) Target azimuth close to interference azimuth.

Figure 9b presents the accuracy of spectral peak estimation when the target azimuth
falls in the range of [240◦, 290◦]. Since the MF algorithm cannot be applied to the case
where the target azimuth is close to the interference azimuth, we omit the statistics on
the performance of the MF algorithm. Results show that the performance of the DIAE
algorithm is still better than that of the FIBF algorithm in this situation.

Next, we analyze how the number of sensors impacts algorithm performance. M = 5, 7, 9
are set as the number of sensors. The corresponding parameter changes in each algorithm
are presented in Table 4. The FIBF algorithm parameters keep constant.
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Table 4. Algorithm parameters for various numbers of sensors.

M DIAE MF FIBF

5 Lm = [240, 72, 16], m = 1, 2, 3 ξ = 0.1, ∆ = 2.0 -
7 Lm = [420, 180, 24], m = 1, 2, 3 ξ = 0.1, ∆ = 3.5 -
9 Lm = [756, 378, 32], m = 1, 2, 3 ξ = 0.1, ∆ = 4.0 -

Figure 10 presents the variation of spectral peak estimation accuracy with the number
of sensors. The RMSEs are obtained from the samples in the azimuth range of [30◦, 150◦].
The result shows that the DIAE algorithm performs robust interference suppression capa-
bilities and is less affected by changes in the number of sensors. Even with a small number
of sensors, the DIAE algorithm effectively suppresses interference and accurately estimates
the signal spectrum peak. In contrast, the performance of the FIBF algorithm is greatly
affected by the number of sensors. FIBF exhibits proficient performance when the number
of sensors is considerable, yet demonstrates a discernible decline in performance as the
number of sensors decreases. As shown in the illustration, the FIBF algorithm performs
poorly across all tested SNRs when the number of sensors equals 5. The performance of the
MF algorithm also depends on the number of sensors but, when the number of elements
degrades, its performance degradation is less than that of the FIBF algorithm.

Figure 10. RMSE of spectral peak estimation under a various number of sensors.

Figure 11 provides a visual representation of why the effectiveness of the FIBF algo-
rithm is heavily influenced by the number of sensors. It presents the results of focused
beamforming when dealing with near-field interference under varying numbers of sensors.
The findings reveal that the decrease in the number of sensors leads to a wider near-field
focusing peak. As a consequence, the focusing peaks of the interference sources merge, mak-
ing it challenging to accurately estimate their positions and impeding the performance of
the FIBF algorithm. In contrast, our DIAE algorithm inherently avoids constructing a prop-
agation model of near-field interference and exhibits minimal performance degradation in
scenarios with fewer sensors.

Figure 11. Focused beamforming results under varying numbers of sensors.
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5. Lake Experiment

The experimental data is from the technical verification experiment for interference
suppression conducted in Songhua Lake in Jilin Province, China in October 2022. Figure 12
shows the sketch of this experiment. The experiment involved a platform anchored in
the water, designed to simulate a UUV. A five-element uniform vector linear array was
suspended at a depth of 3m. The array direction was calibrated using a compass equipped
on the array shelf. A fixed interference source was placed in the near-field region of
the array to simulate near-field interference caused by the UUV. For dataset construction
purposes, the interference source was configured to transmit for 30 s, with intervals of 60 s.
During the experiment, a target ship equipped with a GPS was nearly the only visible ship
within the observation range.

Figure 12. Sketch map of lake experiment. (a) The relative position relationship between the platform
and the target ship with the position of the platform set as coordinate origin. (b) Equipment layout
diagram on the platform. The interference source is fixed at (0.2 m, −0.6 m) with the center of the
array as the coordinate origin.

Figure 13a shows the distance and azimuth between the platform and targets solved by
a joint GPS and compass fixed on the array. The vertical lines, spaced 30 s apart, indicate the
start or stop times of the interference source. Figure 13b presents the BTR results obtained
by conventional beamforming (CBF) algorithm. As shown in the graph, when interference
is present in 30 s, the spatial spectrum of the interference is concentrated around 40◦ and
320◦, which is obviously higher than that of the target, so that the target’s azimuth cannot
be estimated accurately. Conversely, the target’s azimuth can be accurately estimated when
there is no interference.

Figure 13. Target azimuth results through the lake experiment. (a) Results of the target’s distance
and azimuth by a joint solution of GPS and compass. The vertical solid lines denote the start
of interference, and the vertical dashed lines denote the end of interference. (b) Bearing time
recording by CBF. To highlight the azimuth estimation results, each short-term azimuth spectrum is
individually normalized.
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The construction process of the dataset is as follows: All 1320 s data are segmented
by a time window of ∆T = 0.4 s without overlapping. The preprocessing result of each
segment is Ui, i = 1, 2, . . . , 3300. The test set is composed of Uis which come from time
period marked with black lines in Figure 13a, with a total of 450 samples. For facilitating
the follow-up analysis, we divided them into two distinct time periods: Γ1,Γ2.

• Γ1: [201 s, 230 s]∪[261 s, 290 s]∪[321 s, 350 s];
• Γ2: [741 s, 770 s]∪[801 s, 830 s]∪[861 s, 890 s].

A simple method is devised to generate the training set samples, resulting in a total
of 8202 samples. Each {Ui,Uj} in the training set satisfies the following conditions: (1) Ui
derives from interference time period except the test set period. (2) Uj derives from a
non-interference time period. (3) Ui, Uj own the same true value of the target azimuth,
which is the joint solution result of GPS and compass.

DIAE is trained with the hyper-parameters and dataset shown in Table 5. The training
strategies remain unchanged as mentioned in Section 3.3. Figure 14 shows the training
process. The training process stops at the 70th epoch. With the increase in training epochs,
the loss of the validation set and the training set exhibit similar curves, signifying that the
training is not experiencing over-fitting. The duration of each epoch is 0.58 s on average
with operation accelerated by an Nvidia RTX3060. For the test process, the duration for
forward propagation takes less than 0.01 s in a batch of 225 samples. This proves that DIAE
is an efficient algorithm capable of real-time interference suppression.

Table 5. Parameters for lake data processing.

DIAE

Hyper-parameters Lm = [240, 72, 16, 72, 240], m = 1, . . . , 5. FC, Tanh

Dataset

Total 8202

Division Train:Validation:Test = 6202:1550:450

Figure 14. Training loss (RMSE) for DIAE model with lake experiment dataset.

Figure 15 shows the bearing time record from 172 s to 378 s of the experiment. Black
lines represent the true azimuth trajectory. Figure 15a shows the origin BTR of the experi-
ment. Within the time period, test samples derived from time duration Γ1 are applied into
the trained DIAE model. In Figure 15b, we replace the origin BTR in the corresponding
time period with DIAE outcomes, which are highlighted by the red dotted box. The DIAE
algorithm has been observed to be highly efficient in eliminating interference components
within the received signal. After the suppression of interference, the corresponding time
period data is viable for the estimation of the target azimuth. The azimuth estimation
displays a similar trace as the true azimuth trajectory.
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Figure 15. Bearing time recording from 172 s to 378 s. (a) Before DIAE interference suppression.
(b) After DIAE interference suppression.

Figure 16 shows the DIAE performance in another case, in which the target azimuth is
close to the interference. Figure 16a is the origin BTR of the experiment from 718 s to 912 s,
while the interferences exist in time period Γ2. Figure 16b shows that DIAE performs well
in suppressing interferences when the target azimuth is close to the interference.

Figure 16. Bearing time recording from 718 s to 912 s. (a) Before DIAE interference suppression.
(b) After DIAE interference suppression.

Mean absolute error (MAE) is used to evaluate the accuracy of azimuth estimation
after interference suppression, which is defined as

MAE =
1
n

n

∑
i=1

∣∣θ − θ̂
∣∣. (25)

• θ̂: estimation of azimuth based on spectrum peak;
• θ: the true value of azimuth.

The MAE results under two scenarios are counted separately and shown in Table 6.
MAEs under three situations shows the performance of DIAE algorithm.

Table 6. MAE results of DOA estimation.

MAE Results (◦)

172 s to 378 s (Figure 15) 718 s to 912 s (Figure 16)

Interference 187.7 10.1
Interference suppression 7.3 7.4

No Interference 6.2 5.4
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Unexpectedly, the MF algorithm and FIBF algorithm display low capability in sup-
pressing the near-field interference in the lake experiment. However, the simulation results
have provided valuable insights into this phenomenon. It has been noted that both compar-
ison algorithms exhibit a significant reduction in performance when the number of sensors
is limited. Additionally, accurately estimating the true steering vectors of interference in
the lake experiment remains a considerable challenge and further limits the effectiveness of
both algorithms. In the lake experiment, the received signal does not show an apparent
spectrum peak in the near-field acoustics image. Our proposed DIAE algorithm, on the
other hand, is not restricted by such limitations and can be effectively applied to suppress
near-field interference in experimental data.

6. Conclusions

This paper proposes an improved autoencoder algorithm for suppressing self-interference
of unmanned underwater vehicles to make up for the drawbacks of existing methods in
terms of interference estimation and cancellation. The proposed DIAE algorithm realizes the
extraction and cancellation of platform self-interference by compressing and reconstructing
the array signal features. Since it does not require the estimation of the interference
source locations and the steering vectors of the interference signal, our method avoids
the performance loss caused by the mismatch of the interference model. Simulations
prove that the proposed method outperforms the compared methods when working with
limited sensors and low signal-to-noise ratios. Moreover, the lake experiment confirms the
effectiveness of our method in challenging underwater environments, demonstrating its
superiority over existing methods.

Author Contributions: Conceptualization, J.F. and W.D.; methodology, W.D.; software, W.D.; valida-
tion, L.Q. and C.Z.; formal analysis, W.D.; investigation, Z.W.; resources, J.F. and L.Q.; data curation,
W.D.; writing—original draft preparation, W.D.; writing—review and editing, L.Q.; visualization,
W.D.; supervision, J.F.; project administration, J.F.; funding acquisition, J.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
no. 62101153) and the Stable Supporting Fund of Acoustics Science and Technology Laboratory (grant
no. JCKY2021604SSJS003) and the Open Fund of The Key Laboratory in China (Grant: MESTA-2021-
A001 and JCKY2022207CH09).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arrabito, G.R.; Cooke, B.E.; McFadden, S.M. Recommendations for Enhancing the Role of the Auditory Modality for Processing

Sonar Data. Appl. Acoust. 2005, 66, 986–1005. [CrossRef]
2. Gorriz, J.M.; Ramirez, J.; Cruces-Alvarez, S.; Puntonet, C.G.; Lang, E.W.; Erdogmus, D. A Novel LMS Algorithm Applied to

Adaptive Noise Cancellation. IEEE Signal Process. Lett. 2009, 16, 34–37. [CrossRef]
3. Gao, W.; Huang, J.; Han, J. Multi-Channel Differencing Adaptive Noise Cancellation with Multi-Kernel Method. J. Syst. Eng.

Electron. 2015, 26, 421–430. [CrossRef]
4. Mei, J.; Sheng, X.; Zhang, Y.; Guo, L.; Jiang, M. The near field focus null-forming weight interference sound sources suppression

technology of the underwater acoustic image measurement. J. Harbin Eng. Univ. 2012, 33, 653–660.
5. Li, Y.; Sun, C.; Yu, H.; Wang, L. A Technique of Suppressing Towed Ship Noise. In Proceedings of the 2011 IEEE International

Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 14–16 September 2011; pp. 1–4.
6. Ning, J.; Li, S.; Li, Y.; Ye, Q. Adaptive cancellation of UUV self-noise based on the inverse focusing beamforming in near field.

J. Appl. Acoust. 2020, 39, 527–535.
7. Van Veen, B.D.; Buckley, K.M. Beamforming: A Versatile Approach to Spatial Filtering. IEEE ASSP Mag. 1988, 5, 4–24. [CrossRef]
8. Zhu, Z.; Shi, W. Matrix Filter Design Using Semi-Infinite Programming with Application to DOA Estimation. IEEE Trans. Signal

Process. 2000, 48, 267–271.

https://doi.org/10.1016/j.apacoust.2004.11.010
https://doi.org/10.1109/LSP.2008.2008584
https://doi.org/10.1109/JSEE.2015.00049
https://doi.org/10.1109/53.665


J. Mar. Sci. Eng. 2023, 11, 1358 18 of 18

9. Liang, G.; Zhao, W.; Fan, Z. Direction of Arrival Estimation under Near-Field Interference Using Matrix Filter. J. Comp. Acous.
2015, 23, 1540007. [CrossRef]

10. Liu, K.; Liang, G. Near field focused beamforming based on matrix spatial prefiltering approach. J. Huazhong Univ. Sci. Technol.
(Nat. Sci. Ed.) 2014, 42, 58–61.

11. Fang, E.; Sun, C.; Gui, C. Self noise-reduction method based on spatial filtering for a vector flank array platform. J. Harbin Eng.
Univ. 2020, 41, 1636–1641.

12. Bianco, M.J.; Gannot, S.; Fernandez-Grande, E.; Gerstoft, P. Semi-Supervised Source Localization in Reverberant Environments
with Deep Generative Modeling. IEEE Access 2021, 9, 84956–84970. [CrossRef]

13. Cao, H.; Wang, W.; Su, L.; Ni, H.; Ma, L. Deep Transfer Learning for Underwater Direction of Arrival Using One Vector Sensor.
J. Acoust. Soc. Am. 2021, 149, 1699–1711. [CrossRef]

14. Ge, F.X.; Bai, Y.; Li, M.; Zhu, G.; Yin, J. Label Distribution-Guided Transfer Learning for Underwater Source Localization. J. Acoust.
Soc. Am. 2022, 151, 4140–4149. [CrossRef] [PubMed]

15. Liu, Y.; Niu, H.; Li, Z. A Multi-Task Learning Convolutional Neural Network for Source Localization in Deep Ocean. J. Acoust.
Soc. Am. 2020, 148, 873–883. [CrossRef] [PubMed]

16. Niu, H.; Reeves, E.; Gerstoft, P. Source Localization in an Ocean Waveguide Using Supervised Machine Learning. J. Acoust. Soc.
Am. 2017, 142, 1176–1188. [CrossRef]

17. Lefort, R.; Real, G.; Drémeau, A. Direct Regressions for Underwater Acoustic Source Localization in Fluctuating Oceans. Appl.
Acoust. 2017, 116, 303–310. [CrossRef]

18. Jiang, J.; Wu, Z.; Huang, M.; Xiao, Z. Detection of Underwater Acoustic Target Using Beamforming and Neural Network in
Shallow Water. Appl. Acoust. 2022, 189, 108626. [CrossRef]

19. Liu, Y.; Chen, H.; Wang, B. DOA Estimation Based on CNN for Underwater Acoustic Array. Appl. Acoust. 2021, 172, 107594.
[CrossRef]

20. Wu, L.; Liu, Z.M.; Huang, Z.T.; Wu, G. Deep Neural Network for DOA estimation with unsupervised pretraining. In Proceedings
of the IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 11–13 December 2019.

21. Yao, Y.; Lei, H.; He, W. Wideband DOA Estimation Based on Deep Residual Learning with Lyapunov Stability Analysis. IEEE
Geosci. Remote Sens. Lett. 2022, 19, 5. [CrossRef]

22. Liu, Z.M.; Zhang, C.; Yu, P.S. Direction-of-Arrival Estimation Based on Deep Neural Networks with Robustness to Array
Imperfections. IEEE Trans. Antennas Propag. 2018, 66, 7315–7327. [CrossRef]

23. Bianco, M.J.; Gerstoft, P.; Traer, J.; Ozanich, E. Machine Learning in Acoustics: Theory and Applications. J. Acoust. Soc. Am. 2019,
146, 3590–3628. [CrossRef]

24. Owsley, N.L. Sonar array processing. In Array Signal Processing; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1985.
25. Shchuro, V.A. Vector Acoustics of the Ocean; Dalnauka: Vladivostok, Russia, 2006.
26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536.

[CrossRef]
27. Cotter, A.; Shamir, O.; Srebro, N.; Sridharan, K. Better Mini-Batch Algorithms via Accelerated Gradient Methods. Adv. Neural Inf.

Process. Syst. 2011, 24, 1647–1655.
28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
29. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Chintala, S. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In

Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.
30. Defatta, D.J.; Lucas, J.G.; Hodgkiss, W.S. Digital Signal Processing: A System Design Approach. Append. A Conv. Beamforming

1988, 628–646. Available online: https://cir.nii.ac.jp/crid/1570291224657932928 (accessed on 26 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1142/S0218396X1540007X
https://doi.org/10.1109/ACCESS.2021.3087697
https://doi.org/10.1121/10.0003645
https://doi.org/10.1121/10.0011741
https://www.ncbi.nlm.nih.gov/pubmed/35778193
https://doi.org/10.1121/10.0001762
https://www.ncbi.nlm.nih.gov/pubmed/32872978
https://doi.org/10.1121/1.5000165
https://doi.org/10.1016/j.apacoust.2016.10.005
https://doi.org/10.1016/j.apacoust.2021.108626
https://doi.org/10.1016/j.apacoust.2020.107594
https://doi.org/10.1109/LGRS.2021.3090408
https://doi.org/10.1109/TAP.2018.2874430
https://doi.org/10.1121/1.5133944
https://doi.org/10.1038/323533a0
https://cir.nii.ac.jp/crid/1570291224657932928

	Introduction 
	Vector Array Receiving Model 
	De-Interference Autoencoder 
	Data Preprocessing 
	DIAE Principle 
	DIAE Training 

	Simulation and Analyses 
	Parameter Optimization 
	Performance Analysis 

	Lake Experiment 
	Conclusions 
	References

