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Abstract: The geoacoustic and physical properties of the bottom, as well as spatial distribution, are
crucial factors in analyzing the underwater acoustic field structure and establishing a geoacoustic
model. Acoustic inversion has been widely used as an economical and effective method to obtain
multi-parameters of the bottom. Compared with traditional inversion methods based on acoustic
propagation models, acoustic backscattering models are more suitable for multi-parameter inversion,
because they contain more bottom information. In this study, a Bayesian inversion method based on an
acoustic backscattering model is proposed to obtain bottom multi-parameters, including geoacoustic
parameters (the sound speed and loss parameter), partial physical parameters of the sediment,
and statistical parameters of the seafloor roughness and sediment heterogeneity. The bottom was
viewed as a kind of fluid medium. A high-frequency backscattering model based on fluid theory
was adopted as the forward model to fit the scattering strength between the model prediction and
the measured data. The Bayesian inversion method was used to obtain the posterior probability
density (PPD) of the inversion parameters. Parameter estimation, uncertainty, and correlation were
acquired by calculating the maximum a posterior (MAP), the mean values, the one-dimensional
marginal distributions of the PPD, and the covariance matrix. Finally, the high-frequency bottom
backscattering strength from the Quinault Range site was employed for inversion tests. The estimated
values and uncertainties of various bottom parameters are presented and compared with the directly
measured bottom parameters. The comparison results demonstrate that the method proposed herein
can be used to estimate the sediment/water sound speed ratio, the sediment/water density ratio,
and the spectral exponent of the roughness spectrum effectively and reliably.

Keywords: multi-parameter; acoustic backscattering model; Bayesian inversion method; fluid approximation;
posterior probability density; backscattering strength

1. Introduction

Bottom characteristic parameters play an important role in theoretical modeling of the
acoustic field and the evaluation of sonar system performance [1,2]. Therefore, the accurate
acquisition of bottom characteristic parameters has always been a popular topic in the field
of marine acoustics [3]. Traditional methods for acquiring bottom parameters include in situ
measurements and sampling measurements, which are not only technically challenging but
also unsuitable for obtaining large-scale bottom parameters [2,4,5]. Acoustic inversion, in
contrast to direct measurement methods, offers a more cost-effective approach to acquiring
bottom parameters [6,7].
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Acoustic inversion is actually a multidimensional optimization problem that can be di-
vided into four steps: 1. selecting an appropriate objective function to accurately represent
the degree of match between the actual observational data and the synthetic data; 2. de-
vising an appropriate forward model for calculating the synthetic data; 3. implementing
a highly efficient global optimization algorithm to search for the optimal values of each
inversion parameter; and 4. performing an uncertainty analysis of the inversion results [8].
Among these steps, the selection of the forward model is an important prerequisite for
inversion. In most studies on acoustic inversion, underwater acoustic propagation models
are typically used as the forward model [8,9]; the matching physical quantities used for
inversion include normal mode dispersion characteristics, the bottom reflection coeffi-
cient, sound propagation loss, and so on [10–12]. Under this condition, the parameters
obtained via acoustic inversion are usually sediment acoustic parameters (sound speed
and attenuation coefficient), sediment density, and the layered structure. However, these
parameters do not fully meet the requirements of theoretical studies, such as explaining the
complex acoustic mechanisms of the bottom. For example, acoustic scattering modeling
requires parameters that are used to characterize seafloor roughness and sediment hetero-
geneity [13,14]. Bottom acoustic scattering is related to the rough water–sediment interface
and the sediment heterogeneity. Therefore, the received scattering data interacting with
the bottom will contain more information about the bottom. This provides a new idea for
bottom multiparameter inversion [15]. Turgut [16] utilized acoustic backscattering data to
efficiently extract additional bottom statistical parameters through an inversion method for
various sediment types. The obtained parameters included acoustic parameters, physical
parameters, and statistical parameters of seafloor roughness and sediment heterogeneity.
Zou et al. and Yu et al. [17,18] obtained similar results by using acoustic scattering models.
However, the difference between these methods is that, in the former, acoustic scattering
models with different geoacoustic models were used for inversion, whereas in the latter,
the bottom was regarded as a poroelastic medium, and acoustic scattering models based on
the equivalent density fluid approximation were used for inversion. The aforementioned
studies demonstrate that the acoustic scattering model can be utilized as the forward model
for acoustic inversion to obtain additional bottom parameters.

Acoustic inversion is a nonlinear problem with multiple solutions [19]. The more
unknown parameters there are to be inverted, the more complex the problem will be.
In addition, the complex ocean environment introduces systematic and random errors in
the measured data and theoretical errors in the forward model [20]. These factors will
impact the accuracy of the inversion results. Therefore, conducting an uncertainty analysis
of the inversion results is crucial [21]. To quantify the uncertainty of the inversion results,
the Bayesian method is widely used in parameter inversion [22,23]. Bayesian inversion
theory combines prior information from the forward model with observed data to analyze
the posterior probability density (PPD) of the inversion results using statistical theory [24].
The uncertainty analysis is conducted by sampling the model parameters, and the MAP
estimation of the parameters is obtained through numerical integration [22].

In this paper, we propose a Bayesian inversion method based on an acoustic backscat-
tering model to obtain bottom multi-parameter and analyze the uncertainties and corre-
lations of inversion results. The following assumptions are made in the inversion: 1. the
seabed is modeled as a half-space with a rough interface at the seafloor and volume in-
homogeneities within the half-space; and 2. the sediment is treated as a fluid medium.
Comparing with traditional inversion methods on the basis of acoustic propagation, we
employ a simpler theoretical model and obtain more bottom information in this study (e.g.,
geoacoustic parameters and sediment density, as well as parameters associated with the
seafloor roughness and sediment volume scattering). In the inversion process, the backscat-
tering strength is considered the matching physical quantity of the inversion problem.
The marginal PPD of the inversion parameters is then obtained according to the Bayesian
inversion method to analyze the uncertainties and correlations of the inversion results.
Compared with the available methods based on the acoustic scattering model, we ignore
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the poroelasticity of the sediment to reduce the inversion parameters by treating the bot-
tom as a fluid medium, focusing on inversion of the key parameters (the sediment/water
speed ratio, sediment/water density ratio, and loss parameter). Furthermore, an empirical
parameter (the volume scattering cross section/attenuation coefficient ratio) is employed
to characterize the volume scattering resulting from its lesser contribution to the overall
backscattering strength in sandy sediment [25]. The purpose is to decrease the inversion
uncertainty caused by weakly sensitive or insensitive parameters used to characterize
volume scattering.

The remainder of this paper is organized as follows. In Section 2, the backscattering
model based on fluid theory is simply introduced. The Bayesian inversion method is
presented in Section 3. In Section 4, a numerical simulation is demonstrated to test the
feasibility of the proposed inversion method in this study. Section 5 utilizes the measured
backscattering strength at 35 kHz from the Quinault Range site to validate the inversion
method, including a comparison between the inversion and measurement results of the
bottom parameters and uncertainty analysis. The conclusion is provided in Section 6.

2. Acoustic Backscattering Model

We adopted the acoustic backscattering model derived by Jackson and Richardson [1]
as the forward model, because it is suitable for high frequencies (10–100 kHz). Figure 1
shows the definitions of the angles used in treating scattering. The parameters θi and θs rep-
resent the grazing angles of the incident and scattered waves, respectively. The param-
eters ϕi and ϕs represent the azimuthal angles of the incident and scattered waves, re-
spectively. Without the loss of generality, we assume that ϕi = 0◦. For bottom backscat-
tering, θi = θs = θ and ϕs = 180◦. The backscattering strength is a physical quantity
used to characterize the backscattering ability of the bottom and was therefore chosen as
the matching physical quantity for the inversion problem. It is attributed to the seafloor
roughness and the sediment heterogeneity. The backscattering strength Sb can be described
as the following function of grazing angle θ and incident frequency f [1,26,27]:

Sb(θ, f ) = 10 log10[σbr(θ, f ) + σbv(θ, f )], (1)

where σbr (θ, f ) is the roughness scattering cross-section and σbv (θ, f ) is the equivalent
interface scattering cross-section. Below the mid-grazing angle (< 70◦), the roughness
scattering cross-section can be calculated using the small-roughness perturbation approx-
imation based on the fluid sediment model [28]. The fluid sediment model was also
employed to handle scattering caused by sediment heterogeneity.
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2.1. Roughness Scattering Model

Seafloor roughness is a main factor that influences high-frequency acoustic scattering.
To characterize the statistical properties of the seafloor roughness within a limited scale
range, it can be assumed that it follows an isotropic two-dimensional (2D) spectrum
subjected to a power-law function of the wave number [29]:
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W(K) =
w2

(h0K)γ2
, (2)

where K is the magnitude of the 2D wave vector, h0 is the reference length (h0 = 1 cm),
and w2 and γ2 represent the spectral strength and the spectral exponent of the roughness
spectrum, respectively. The range of values for γ2 is

2 ≤ γ2 ≤ 4. (3)

Based on the roughness spectrum, researchers have developed the following small-
roughness perturbation approximation equation that is formally independent of the specific
wave theory (i.e., the medium type):

σbr = k4
w|Aww|2W(∆K), (4)

where kw is the wave number in water, Aww is the small-roughness perturbation approx-
imation factor (which depends on different wave theories), and ∆K is the Bragg wave
vector [30].

Under the fluid sediment model assumption, Jackson et al. [26] provided a straightforward
approach to solve for the variable Aww in Equation (4) when applied to isotropic sediments:

Aww =
1
2
[1 + Vww(θ)]

2G, (5)

where

G =

(
1 − 1

ρb

)[
cos2 θ −

sin2 θpi

a2
pρb

]
− 1 +

1
a2

pρb
, (6)

with
sin2 θpi =

√
1 − a2

p cos2 θ, (7)

and where Vww (θ) is the reflection coefficient of a flat interface at grazing angle θ, ρb is
the sediment/water density ratio, and ap is the sediment/water complex sound speed
ratio. ap is given by

ap =
vb

1 + iδb
, (8)

where vb (vb = cs/cw) is the real sediment/water speed ratio (where cs and cw denote the
sediment and water sound speed, respectively), and δb is the loss parameter (dimensionless)
of the sediment. The relationship between the loss parameter δb and the attenuation
coefficient αp is as follows:

δb =
αpvbcw ln(10)

40π f
. (9)

2.2. Volume Scattering Model

Volume scattering at high frequencies can be treated experimentally and theoretically
as an interfacial process. Jackson et al. [26] provided the following formula for calculating
the equivalent interface scattering cross-section:

σbv =
σv

∣∣∣1 − Vww(θ)
2
∣∣∣2 sin2 θ

4kw|P(θ)|2Im[P(θ)]
, (10)

where
P(θ) =

√(
1/ap

)2 − cos2 θ, (11)

and σv is the volume scattering cross-section. Similar to the seafloor roughness spectrum
mentioned in Section 2.1, there is a corresponding power-law spectrum for volume scatter-
ing to characterize the sediment heterogeneity. However, we adopted a relatively simple
approach to estimate it. We treated it as a quantity that can be obtained through data
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fitting, rather than through a theory-based calculation [13]. Under this condition, σv can be
expressed as follows:

σv = αpσ2, (12)

where σ2 is a dimensionless variable with a typical value range of 0.0001–0.004. For water-
saturated sandy sediments, roughness scattering is dominant compared to volume scat-
tering, while the contribution of the volume scattering strength to the total backscattering
strength is weak. Consequently, it is appropriate to use an empirical approach rather than a
theoretical one to obtain σv. Therefore, σ2 was chosen to characterize the volume scattering.

3. Inversion Theory
3.1. Bayesian Inversion Theory

In Bayesian inversion theory, PPD is used to describe the solution of an inversion
problem. Let m denote the data vector of bottom parameters and let d denote the measured
data vector. According to the Bayesian rule,

P(m |d ) = P(d |m )P(m)/P(d), (13)

where P(m|d) is the PPD, P(d|m) is the conditional PPD of the measured data d under the
bottom parameters vector m, and P(d) can be regarded as a constant that is independent
of inversion. Then Equation (13) can be written as

P(m |d ) ∝ P(d |m )P(m). (14)

In Bayesian theory, P(d|m) is defined as the likelihood function of parameters vec-
tor m and is determined by the form of the data and the statistical distribution of data
errors [31]. However, in actual applications, it is difficult to independently obtain the
statistical characteristics of the errors. In general, one assumes that the data error follows a
Gaussian distribution. Then, the likelihood function L(m) can be expressed as

L(m) ∝ exp[−E(m)], (15)

where E(m) represents the error function between the measured data and the synthetic
data provided by the forward model under the given parameters vector m. Equation (14)
can be rewritten as

P(m |d ) ∝ exp[−E(m)]P(m), (16)

and is normalized as follows:

P(m |d ) =
exp[−E(m)]P(m)∫

D
exp[−E(m′)]P(m′)dm′ , (17)

where D represents the integration spans in a multidimensional parameter space.
When applying Bayesian theory to solve multidimensional problems, it is essential

to estimate parameter values, uncertainties, and correlations between parameters. These
estimates are typically represented by the maximum posteriori probability, mean value,
parameter covariance matrix, and marginal probability density P(mi|d) of the ith parameter,
which are denoted, respectively, as

m̂ = Argmax(P(m |d )), (18)

m =
∫

m′P
(
m′ |d

)
dm′, (19)

Cm =
∫ (

m′ − m
)
(m′ − m)

T
P
(
m′|do )dm′, (20)

P(mi |d ) =
∫

δ
(
mi − mi

′)P
(
m′ |d

)
dm′, (21)

where δ represents the Dirac function.
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The correlation between parameters i and j, Rij, can be described by a normalized
covariance matrix Cm:

Rij =
Cmij[

Cmij Cmji

]1/2 . (22)

Rij represents the correlation coefficient, with a value ranging from −1 to 1. Rij = 1 in-
dicates a strong positive correlation between parameters i and j, while Rij = −1 indicates
a strong negative correlation, and Rij = 0 indicates no correlation [18,19]. Furthermore,
the correlation between parameters can also be qualitatively analyzed based on the 2D
marginal PPDs of the parameter pairs.

3.2. Objective Function and Sampling Method

As mentioned in Section 3.1, it is difficult to independently acquire the statistical
characteristics of data errors in practical applications, as it requires making physical as-
sumptions about the uncertainty distribution. By assuming that the data errors follow a
Gaussian distribution with a mean value of zero and a covariance matrix of C f and that the
backscattering strength data at different frequencies and grazing angles are uncorrelated,
the likelihood function can be written as

L(m) =
F

∏
f=1

1

πN
∣∣∣C f

∣∣∣ exp
[
−
[

P f
obs − P f

replica(m)
]T

C−1
f

[
P f

obs − P f
replica(m)

]]
, (23)

where N represents the number of data points corresponding to different grazing angles
at a certain frequency, P f

obs denotes the measured backscattering strength data at a certain

frequency, and P f
replica(m) stands for the synthetic data calculated according to the forward

model at a certain frequency for different grazing angles when the parameters vector m is
given. By ignoring the spatial correlation of the data, C f can be rewritten as

C f = v f I, (24)

where v f represents the unknown variance at a certain frequency and I is the identity
matrix. The likelihood function can be simplified as

L(m) =
F

∏
f=1

1(
πv f

)N exp
[
−B f (m)

∣∣∣P f
obs

∣∣∣2/v f

]
, (25)

where B f is the Bartlett processor, the expression for which is

B f (m) = 1 −

∣∣∣P f
replica(m)†P f

obs

∣∣∣∣∣∣P f
replica(m)

∣∣∣2∣∣∣P f
obs

∣∣∣2 , (26)

where † represents the conjugate transpose. According to the relationship between the
likelihood function and the error function in Equation (15), the objective function can be
obtained as follows:

E(m) = N
F

∑
f=1

ln[B f (m)
∣∣∣p f

obs

∣∣∣2] , (27)

In Bayesian inversion, a more classical method for solving the multidimensional
integral of PPD is to use sampling methods. The commonly used sampling algorithms are
the Metropolis–Hastings sampling algorithm and the Gibbs sampling algorithm. Both are
based on the Markov chain Monte Carlo method. To enhance search efficiency in the
multidimensional parameter space, we adopted a fast Gibbs sampling (FGS) method,
which is based on a simulated annealing process. More details about the FGS method can
be found in [22,23].
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4. Numerical Simulation and Analysis
4.1. Sensitivity Analysis

Before conducting the numerical simulation study, it is important to consider the sensitiv-
ity of the inversion parameters. Through sensitivity analysis, we can further guide inversion
and understand which parameters are most likely to be accurately inverted before inversion.
At the same time, we can also provide some explanation for the inversion results [32,33]. In
this study, the seabed is modeled as a half-space with a rough interface at the seafloor and
volume inhomogeneities within the half-space. As described in Section 2, we employed the
acoustic backscattering model as a forward model. We selected the inversion parameters as the
sediment/water sound speed ratio vb, loss parameter δb associated with sediment attenuation,
sediment/water density ratio ρb, spectral strength w2 and the spectral exponent γ2 used to
characterize seafloor roughness, and volume scattering cross section/attenuation coefficient
ratio σ2 associated with the sediment volume scattering characteristics.

We analyzed the sensitivity of the inversion parameters to the backscattering model
and the objective function from both qualitative and quantitative perspectives. The simu-
lation parameters were selected from [34], and the corresponding true values and search
ranges are listed in Table 1. The sediment type chosen was fine sand. The search ranges
for the inversion parameters have been reasonably selected based on the typical range
of fine sandy sediments. The frequency was set as f = 35 kHz, the grazing angle range
was 0◦–70◦, and the sound speed in seawater was set as 1487 m/s. First, we qualitatively
analyzed the sensitivity of the inversion parameters to the backscattering model. By utiliz-
ing the control variable method, keeping other parameters fixed at their true values, we
computed the backscattering strength for the upper and lower bounds of each parameter
separately using Equation (1). The backscattering strength variation with each parameter
is shown in Figure 2. In these figures, the red solid line represents the variation of the
backscattering strength with the grazing angle at the lower boundary of each parameter,
the blue solid line denotes the variation at the upper boundary, and the black solid line
indicates the variation of backscattering strength when each parameter is set to be the
simulated true value. Comparison of these results shows that the backscattering strength is
strongly dependent on three parameters: vb, ρb, and w2. Although γ2 also exhibits obvious
variation in the backscattering strength values, its true value is close to the upper boundary
(the finite boundary value being determined by its physical properties). The sensitivity
of γ2 needs to be further analyzed. When the grazing angle is in the range of 25◦–60◦, the
change in backscattering strength caused by σ2 is notable. In contrast, the effects caused
by δb are so weak that they are barely noticeable.

Table 1. Inversion results of the numerical simulation.

Bottom Parameter Symbol Unit True Value Search Range Mean ± Standard Deviation MAP

Sediment/water sound speed ratio vb dimensionless 1.113 1–1.3 1.115 ± 0.004 1.116

Loss parameter of sediment δb dimensionless 0.0091 0.003–0.02 0.0060 ± 0.0030 unclear

Sediment/water density ratio ρb dimensionless 1.95 1–2.5 1.95 ± 0.12 1.96

Spectral exponent of roughness spectrum γ2 dimensionless 3.67 2–4 3.54 ± 0.23 -

Spectral strength of roughness spectrum w2 cm4 0.00422 0.001–0.01 0.00391 ± 0.00092 0.00425

Volume scattering cross-section/attenuation
coefficient ratio σ2 dimensionless 0.001 0.0001–0.002 0.0011 ± 0.0005 unclear

Figure 3 shows the variation in the Bartlett correlation with each parameter based on
the objective function to quantitatively analyze the sensitivity of each parameter. The red
vertical dotted line represents the true value, and the blue solid line denotes the parameter
sensitivity curve at 35 kHz. These results indicate that parameters vb, ρb, and γ2 are all
sensitive within the parameter search ranges, which is consistent with the above results.
A further novel finding is that the sensitivity of γ2 is very weak in the search range from
3 to 4. Therefore, we sorted it to be a weakly sensitive parameter. In contrast to the
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qualitative analysis results mentioned above, w2 does not exhibit strong sensitivity, and σ2
has a very weak sensitivity. δb is still insensitive.
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In general, we classified the inversion parameters into three categories according to
their sensitivities: vb and ρb are considered sensitive parameters; γ2, w2, and σ2 are weakly
sensitive parameters, and δb is insensitive. For these sensitive parameters, it is expected
that more accurate results will be obtained through inversion.

4.2. Analysis of Simulation Results

In this section, the feasibility of the multiparameter Bayesian inversion method pro-
posed in this study will be validated through numerical simulation. In the numerical
simulation, we employed a Gaussian random variable with a mean value of zero and a
standard deviation of σ to simulate the data error. Subsequently, the measured data can be
expressed as follows:

d f = p f (m) + ξσ, (28)

where ξ is a one-dimensional (1D) random variable that is subjected to a standard normal
distribution and σ is set to be 1.2 dB.

The 1D marginal PPDs obtained by using the Bayesian inversion based on the FGS
method are shown in Figure 4. For these figures, the simulated true values of the parameters
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are plotted as red vertical dashed lines, the black solid circles represent the mean values
obtained by using the FGS, and the blue error bars stand for the standard deviation.
The standard deviation corresponds to the 70% confidence interval. It is found that the
true values are basically consistent with the peaks of the 1D marginal PPD and the mean
values for the sensitive parameters vb and ρb, and compared to ρb, vb has less uncertainty.
Here we extract the MAP as the best estimate for vb and ρb. For the weakly sensitive
parameters γ2, w2, and σ2, their true values are all within the confidence interval. However,
the 1D marginal PPD of σ2 is smoother and has greater uncertainty, and its 1D marginal
PPD tends to be uniform, making the MAP unclear. Therefore, we choose the mean value
as the inversion result for σ2. There is some deviation between the true value and the peaks
of the 1D marginal PPD for the parameter γ2, and its distribution is not nearly symmetrical,
possibly because the parameter γ2 is relatively insensitive in the search range of 3 to 4.
Therefore, we choose the mean value as the best estimate for γ2. In addition, the true value
is basically consistent with the peaks of the 1D marginal PPD for the parameter w2, and we
extract the MAP as its best estimate. The 1D marginal PPD of the insensitive parameter δb is
relatively flat and has a wide distribution; this shows significant uncertainty. Moreover, the
true value of δb is not within the confidence interval, indicating that the inversion result is
unreliable. Here we take the mean value as its inversion numerical result. In general, the
inversion results are as expected based on the above sensitivity analysis. Table 1 lists the
MAP, the mean values and standard deviations of the inversion results obtained by using
the Bayesian inversion based on the FGS method.
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To quantitatively analyze the correlations between the various parameters, the nor-
malized covariance matrix is shown in Figure 5, where the diagonal part represents the
autocorrelation coefficient of the parameters. Figure 6 shows the 2D marginal PPDs of
the specified parameter pairs obtained by using Bayesian inversion based on the FGS
method, that is, the joint marginal PPD of the pairwise parameters. It is obvious that
reasonably strong positive correlations exist between vb and ρb and between σ2 and the
two parameters ρb and w2, whereas strong negative correlations exist between γ2 and the
three parameters ρb, σ2, and w2. The insensitive parameter δb is uncorrelated with other
parameters. It is worth noting that the correlation between the parameters is related to
the physical environment of the bottom, and this correlation can be interpreted based on
the variation in the backscattering strength with each parameter [18]. To overcome the
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influence of the correlation on the inversion results, it is imperative to acquire more prior
information during the inversion process.
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5. Validation with Historical Backscattering Data
5.1. Experiment Data Description

The experimental data were derived from the Quinault Range site, which is one of
the five high-frequency acoustic experiment sites with different sediment types conducted
by the U.S. Navy Research Laboratory (NRL). The objective of these experiments was to
quantitatively assess environmental parameters in order to comprehend the fundamental
mechanism of and to model bottom high-frequency scattering. The Quinault Range site
is located 17 km west of the Washington coast at an average water depth of 49 m (for
experimental location details, please refer to Figure 1 in reference [34]). The main sedi-
mentary component of this site is fine sand. An analysis of numerous samples collected in
the experiment indicates that the geoacoustic characteristics of this area are homogeneous
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and that there is no significant gradient variation in physical parameters within the sedi-
ment. This provides a good environmental condition for the acoustic backscattering model
mentioned in Section 2.

To obtain geoacoustic and physical parameters of the sediment, a boxcore sampling
technique was employed at the Quinault Range site. The compressional wave speed and
attenuation of the sediment were measured using a pulse technique through the sediment
cores, while other physical parameters, such as the sediment density, were measured by
slicing core samples. In addition, seafloor roughness was measured photogrammetrically
to estimate the roughness power spectra characteristic of the sediments. Backscattering
strength was measured at the Quinault Range site using a towed platform described in
reference [29]. Specific experimental details and data processing methods are described in
reference [34] and will not repeated here.

Table 2 presents the input parameters utilized for the data-model comparisons as
detailed in reference [34] measured at the Quinault Range site, which are used as actual
values for a comparison of inversion results in this paper. It should be further noted
that, apart from the spectral strength, all parameters are dimensionless and considered
independent of the acoustic frequency. And the spectral strength and spectral exponent of
the roughness spectrum were derived from longitudinal measurements (as the anisotropy
between the transverse and longitudinal directions are negligible).

Table 2. Inversion results of the experimentally measured data.

Bottom Parameter Symbol Unit True Value Search Range Mean ± Standard Deviation MAP

Sediment/water sound speed ratio vb dimensionless 1.113 1–1.3 1.112 ± 0.008 1.114

Loss parameter of sediment δb dimensionless 0.0091 0.003–0.02 0.0138 ± 0.0042 unclear

Sediment/water density ratio ρb dimensionless 1.95 1–2.5 1.94 ± 0.14 1.93

Spectral exponent of roughness spectrum γ2 dimensionless 3.67 2–4 3.42 ± 0.25 -

Spectral strength of roughness spectrum w2 cm4 0.00422 0.001–0.01 0.00481 ± 0.00123 0.00462

Volume scattering cross-section/attenuation
coefficient ratio σ2 dimensionless 0.001 0.0001–0.002 0.0012 ± 0.0005 unclear

Backscattering strengths at 35 kHz were extracted from reference [34] to validate
the proposed inversion method. Based on the seabed half-space assumption proposed in
Section 4.1, we integrate the acoustic backscattering model discussed in Section 2 with
the input parameters listed in Table 2 to calculate backscattering strengths at 35 kHz.
The comparison of the measured data and model-predicted results is shown in Figure 7.
In contrast to the approach in which the composite roughness model was used to address
roughness scattering in reference [34], we employed the small-roughness perturbation
approximation mentioned in Section 2.1. Equations (1) and (10) were used to calculate the
total backscattering strengths and volume scattering strengths, respectively, which was
consistent with the treatment methods in reference [34]. The blue inverted triangles indicate
the measured backscattering strengths, the red solid lines represent the total backscatter-
ing strengths predicted by the model, and the black and blue dashed lines indicate the
backscattering strengths derived from the roughness and volume scattering, respectively.
It can be found that the roughness scattering is the primary scattering mechanism, whereas
volume scattering makes a smaller contribution to the overall backscattering strength.
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5.2. Analysis of Experiment Results

We conducted acoustic inversion of the six parameters of the Quinault Range site
using the proposed method in a manner similar to that in the simulation study. The 1D
marginal PPDs derived from the Bayesian inversion based on the FGS method are shown in
Figure 8. Compared with the numerical simulation results in Section 4.2, the 1D marginal
PPD distribution of the parameters in Figure 8 is slightly wider, indicating an increase in
uncertainty. The reason for the discrepancy is that the data errors are larger than those in
the numerical simulation. The true values are basically consistent with the peaks of the
1D marginal PPDs and the mean values for the sensitive parameters vb and ρb, indicating
reliable inversion results, and vb has less uncertainty than ρb. This conclusion agrees well
with the numerical simulation results. For the weakly sensitive parameters γ2 and w2, the
peaks of the 1D marginal PPDs depart from the true values, but the true values are within
the confidence interval. This result is basically consistent with the results obtained from
the backscattering model inversion in Steninger et al.’s paper [35], but due to different
intermediate processes, such as the objective function employed and the geoacoustic model
used, there may be some differences in the PPD distribution. In contrast, the weakly
sensitive parameter σ2 and the insensitive parameter δb exhibit widely distributed 1D
marginal PPDs and relatively large uncertainties, and the inversion result of the insensitive
parameter δb meets our expectations. Based on the numerical simulation research results
in Section 4.2, we attempt to provide such a guideline: 1. for the 1D marginal PPDs with
obvious characteristics and approximate symmetry, the MAP is used as the best estimate
value; 2. for the 1D marginal PPDs with obvious characteristics, but its distribution is not
nearly symmetrical, the mean value is selected as the optimal estimation value; and 3. for
the 1D marginal PPDs that are relatively uniform, the mean value is used as its inversion
result. Therefore, we take the MAP as the best estimate for vb, ρb, and w2, using the mean
value as the inversion results for γ2, σ2, and δb. Table 2 presents the MAP, along with the
mean values and standard deviations, of the inversion results derived by employing the
Bayesian inversion method.

The normalized covariance matrix is shown in Figure 9. The 2D marginal PPDs of the
specified parameter pair obtained using the Bayesian inversion based on the FGS method are
given Figure 10. The figures reveal that ρb is positively correlated with vb and with σ2, γ2 is
positively correlated with w2, and γ2 is negatively correlated with σ2. A comparison with the
numerical simulation shows that the correlations between some parameters decrease.
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Figure 11. Comparison of the predicted and measured backscattering strengths.

6. Conclusions

To accurately obtain bottom multi-parameter and analyze the uncertainties and corre-
lations of inversion results, we proposed a Bayesian inversion method based on an acoustic
backscattering model. The inversion employed the FGS sampling method to estimate the
MAP, the mean values and standard deviations of the inversion results. Experimental
data from the Quinault Range site are used to validate the inversion method. Simulation
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and experiment results show that the method can effectively be applied to bottom multi-
parameter inversion, except for the insensitive parameter δb. Furthermore, the predicted
bottom backscattering strengths using the inversion results are basically consistent with
the actual measured values.

The sensitivity analysis results indicate that vb and ρb are sensitive parameters; γ2, w2,
and σ2 are weakly sensitive parameters, and δb is insensitive. In the inversion results, we
employ the MAP as the best estimate for the sensitive parameters vb and ρb and the weakly
sensitive parameters w2, using the mean value as the inversion results for the weakly sensitive
parameters γ2 and σ2 and the insensitive parameter δb. Upon analyzing the uncertainties
and correlations within the inversion results, it becomes evident that the experimental data’s
larger errors significantly contribute to the heightened uncertainty of the inversion results.
Meanwhile, the correlation between some parameters decreases. This contrasts the numerical
simulations with relatively minimal errors. In the future, we will further use multifrequency
data to enhance the accuracy and reliability of the inversion results.
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