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Abstract: Nanomaterials, with unique physical, chemical, and biocompatible properties, have at-
tracted significant attention as an emerging active platform in cancer diagnosis and treatment.
Amongst them, metal–organic framework (MOF) nanostructures are particularly promising as a
nanomedicine due to their exceptional surface functionalities, adsorption properties, and organo-
inorganic hybrid characteristics. Furthermore, when bioactive substances are integrated into the
structure of MOFs, these materials can be used as anti-tumor agents with superior performance
compared to traditional nanomaterials. In this review, we highlight the most recent advances in
MOFs-based materials for tumor therapy, including their application in cancer treatment and the
underlying mechanisms.

Keywords: metal–organic frameworks; synergetic therapy; tumor therapy; nanomedicine

1. Introduction

Cancer, a leading cause of high mortality rates, poses a significant threat to human
life [1–3]. Timely diagnosis and effective treatment strategies are imperative. The field of
nanomedicine has witnessed rapid advancements via the development of sophisticated
nanomaterials and a deeper understanding of tumor pathogenesis. The application of
nanomaterials in tumor therapy is garnering increased attention [4,5]. Rationally designed
nanomaterials can significantly improve the stability of drugs in complex physiological
environments and their accumulation at tumor sites by increasing permeability and reten-
tion efficacy [6–8]. Specifically, the use of metal–organic framework (MOF) nanomaterials
has emerged as a promising avenue for drug-free therapeutic diagnostic nanoplatforms in
cancer treatment [9].

MOFs are a class of porous crystalline materials with periodic network microstructures
constructed by the self-assembly of inorganic metal centers (e.g., metal ions or metal
clusters) and organic ligands. The organic ligands and metal centers, acting as the pillars
and nodes, respectively, are connected via covalent bonds to form a grid structure with
a certain topology. MOFs, as a combination of the rigidity of inorganic materials and
the flexibility of organic materials, exhibit exceptional potential across various domains,
including optics, catalysis, energy, and biomedicine [10,11], and biotechnology [12,13]. In
the realm of biomedicine, MOFs offer numerous advantages, such as high porosity, a large
specific surface area, biocompatibility, high drug loading capacity, inherent biodegradability,
low cytotoxicity, controlled release patterns, thermochemical stability, and facile surface
functionalization [14–16]. These characteristics facilitate the integration of functional
components like drugs, light/sound sensitizers, nanocatalysts, and targeted molecules for
diverse tumor therapies [17,18].

The application of MOFs in cancer therapy represents a rapidly evolving and cutting-
edge field within biomedical research. Key challenges and opportunities in MOF-based
cancer diagnosis and therapy are being explored, focusing on frequently studied MOFs
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like Isoreticular MOF (IRMOF), Zeolitic imidazolate framework (ZIF), Materials of Institute
Lavoisier (MIL), and porous coordination network (PCN), University of Oslo (UiO) [19].
Additionally, various anti-tumor therapies, such as drug delivery (DD), chemodynamic
therapy (CDT), sonodynamic therapy (SDT), photothermal therapy (PTT), photodynamic
therapy (PDT), starvation therapy (ST), and multimodal synergistic therapy (MST), have
been investigated, elucidating the roles and efficacy of MOFs in these treatment modalities
(Figure 1) [20–26].
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This review focuses on recent advances in MOF-based nanomedicine for cancer treat-
ment. It begins with a brief introduction to the unique features of MOFs and subsequently
delves into their representative applications in cancer therapy. The review concludes by
highlighting challenges in the research domain and proposing intriguing future research
directions. The aim is to provide a valuable reference for the development of safe and
efficient biomedicines, encouraging broader bio-application of these nanomaterials.

2. Properties of MOFs

Various synthetic methods result in diverse morphologies, structures, and pore sizes
of metal–organic frameworks (MOFs), influencing their functionalities and potential appli-
cations. Commonly employed synthesis techniques encompass the hydrothermal/solvent
thermal method, mechanochemical method, ultrasonic synthesis method, microwave syn-
thesis method, ion thermal method, template method, and vapor deposition method [27,28].
By judiciously selecting methods and conditions, targeted performance can be achieved
in MOFs. Additionally, these methods can be combined with other manipulations, such
as surface modification and drug loading, to further broaden MOFs’ applications in the
biomedical field [14].

In essence, MOFs are composed of metal ions coordinated with organic ligands, offer-
ing controllable size and shape, along with the ability to adjust chemical properties, such as
functional groups, acidity, hydrophilicity/hydrophobicity, and surface charge [29]. MOFs
exhibit exceptionally high porosity and specific surface area, reaching up to 10,000 m2 g−1

and a porosity of up to 90% [30]. The extensive surface area and chemical functional groups
of MOFs facilitate their modification and functionalization [31]. Some MOFs display piezo-
electric responses, converting small pressure changes into significant charge or voltage
outputs that interact with mediators in the tumor microenvironment (TME) [32]. Various
MOFs and their derived materials with diverse structural morphologies have been de-
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signed, including superporous structures, core–shell structures, hollow structures, electric
networks, and multilayer structures (Figure 2) [33].
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The super porous structure comprises multi-stage adjustable pore sizes, such as large
pores, medium pores, and micropores, providing MOFs with high specific surface area,
pore volume, and good diffusion performance [34–36]. Core–shell structures harness the
synergistic effect of the core and shell to optimize performance [37,38]. Hollow structures
reduce mass transfer distances and offer more active sites for reactions. Moreover, the cavity
structure of MOFs can be used to enrich substrates, enhancing the efficiency and selectivity
of reactions [39]. The interaction between metal ions and organic ligands in MOFs can
regulate electron conduction and charge transport in electrical networks, thereby improving
their electrical properties [40,41]. The structural diversity of multilayers provides abundant
active sites, larger specific surface area and pore volume, and better chemical stability,
compared to the counterparts composed of monolayer and few-layer structures, rendering
them a versatile platform for various applications [42].

3. Advances in MOFs for Tumor Therapy
3.1. MOFs for Drug Delivery

The pore structure of MOFs can be strategically designed to encapsulate and regulate
the release rate of drug molecules, enhancing drug stability and mitigating toxic side
effects. This renders MOFs a promising DD platform for various cancer therapies [43–45].
MOF-based drug delivery can be broadly categorized into three main routes: (1) direct
encapsulation of the drug within the pores; (2) covalent coupling of the drug and ligand;
(3) drug release from MOFs via a trigger-mediated process [46,47].

In addressing challenges such as multidrug resistance (MDR), poor cellular uptake,
and insufficient intracellular drug release in cancer treatment, innovative approaches have
been explored. For instance, Peng et al. [48] developed a defect-rich Fe-based MOF-red
blood cell (MOF-RBC) membrane-camouflaged nanoplatform (Figure 3a). Pseudolaric acid
B (PAB) acts as an organic connector, encapsulating a ferroptosis drug to trigger ferroptosis
and overcome MDR. This MOF-based nanoplatform can chemically degrade in the TME,
working in tandem with released Fe3+ and PAB to enhance ferroptosis damage. In another
study, Zhang et al. [49] synthesized a Bi-based MOF (SU-101) with low toxicity and active
photo properties, utilizing ellagic acid (EA) as an organic linker (Figure 3b). Hydrogen
bonds between the C=O group in EA and the OH group in ciprofloxacin resulted in an
85.8% loading value of the drug. Moreover, breaking these hydrogen bonds upon light
exposure achieved a controlled release rate of up to 95.56%, indicating SU-101’s suitability
for drugs that can form hydrogen bonds in drug delivery. Additionally, Xu et al. [46]
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synthesized a heavy metal-based nanoscale MOF (nMOF; Hf-TP-SN) by covalently bonding
organic linkers with 7-ethyl-10-hydroxycamptosine (SN38) prodrugs (Figure 3c). This
nanomedicine can be employed in both radiotherapy and chemotherapy (CT), responding
to X-ray stimuli.
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Figure 3. (a) Preparation and therapeutic schematic illustration of a multi-drug delivery nanoplatform
disguised with MOF membrane [48]. Copyright 2023, Elsevier. (b) The light triggered the drug
release mechanism of SU-101. (O1-5 represents different oxygen atoms in SU-101) [49]. Copyright
2022, Elsevier. (c) Synthesis of Hf-TP-SN-nMOF and release mechanism of SN38 [46]. Copyright 2023,
American Chemical Society.

3.2. MOFs for Chemodynamic Therapy

CDT relies predominantly on transition metal ions (Fe2+, Mn2+, Cu+, Co2+, etc.), which
directly convert overexpressed H2O2 in tumor cells into highly reactive hydroxyl radicals
(•OH) through Fenton or Fenton-like reactions [50,51]. The •OH, as the most active oxygen
species (ROS), can effectively kill cancer cells by irreversibly damaging deoxyribonucleic
acid (DNA) [52]. Unlike other therapeutic strategies requiring external energy input, CDT
is activated by chemical energy conversion within the tumor tissue, avoiding the rapid
decay of energy input during treatment [53].

MOFs, formed by the self-assembly of metal ions/clusters and organic ligands through
coordination bonds, serve as a valuable metal ion source for CDT. Du et al. [54] engi-
neered a synergetic nanocatalytic therapy nanoplatform (COS@MOF) based on a Fe-based
MOF, etched by thiamine pyrophosphate (Figure 4a). COS@MOF exhibited an enhanced
Fe2+/Fe3+ ratio and catalytic activity for ROS production, thereby improving CDT effi-
ciency. In addition to Fe ions, Cu ions play a vital role in CDT. In Figure 4b, Cu+ was
directly doped into the folic acid (FA) modified UiO-66 matrix loaded with a chemotherapy
drug (tirapazamine; TPZ). Under ultrasound (US), the rates of Fenton-like reaction and
ROS generation increased, enhancing CDT efficiency. Furthermore, US promoted cell death
by accelerating drug release and disrupting cell membranes [55].

However, the catalytic activity of single metal ions may be insufficient, prompting
exploration of the synergistic effect of mixed metal ions for enhanced catalytic ability to
generate ROS from H2O2 in CDT. Chen et al. [56] fabricated Mn/Fe-based MOFs (Figure 4c),
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releasing Mn2+/4+ and Fe2+/3+ under the influence of H+ and glutathione (GSH) in the
TME, thus improving CDT. Metal ions in MOFs, such as Mn2+/4+, can react with H2O2 in a
Fenton-like manner, generating cytotoxic •OH that further enhances CDT [57].

To boost CDT efficacy, developing a strategy with highly efficient H2O2 self-regulating
ability is crucial [58]. Gao et al. [59] encapsulated Doxorubicin (DOX) and CaO2 nanoparti-
cles (NPs) in a cobalt-based MOF (ZIF-67) (Figure 4d). ZIF-67, being pH-sensitive, decom-
poses in the acidic tumor environment, releasing Co2+ and DOX. CaO2 NPs react with H2O
to form O2 and H2O2, with the generated H2O2 further catalyzed by Co2+ ions to yield
highly toxic •OH radicals through a Fenton-like reaction. Simultaneously, the produced
O2 alleviates hypoxia conditions in tumors, extending the therapeutic efficacy of DOX. In
another approach, Zhao et al. [52] introduced biomimetic H2O2 self-regulating NPs, using
a Fe-based MOF (MIL-101) as a carrier for the drug Juglone (JUG) (Figure 4e). In the acidic
TME, JUG and Fe3+ were cleaved and released. JUG induced apoptosis, increased H2O2
yield in cells, and Fe3+ promoted the conversion of H2O2 to •OH, accelerating apoptosis
and enhancing the anti-tumor effect of CDT.
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3.3. MOFs for Sonodynamic Therapy

SDT operates in an oxygen-dependent manner, US to induce energy state changes
and electron transformations in sonosensitizers, generating ROS that cause irreversible
cell damage [60–62]. SDT is a novel and attention-worthy approach to cancer therapy,
offering deep penetration, in vitro operation, minimal side effects, high precision, and
non-invasiveness as an alternative to traditional cancer therapies [63–65].

Liang et al. [66] engineered a defect-rich Ti-based MOF (D-MOF(Ti)) to enhance
sound sensitivity for improved SDT (Figure 5a). The narrow band gap (2.49 eV) of D-
MOF(Ti) promotes electron-hole separation, boosting ROS yield under US. D-MOF(Ti) also
exhibits high Fenton-like activity due to Ti3+, achieving CDT. The synergistic effects of
enhanced Fenton-like reactions and US acting as an excitation source for SDT contribute
significantly to the TME. In another study, Ti-based MOFs (MIL) loaded with Ag NPs
(MIL@Ag) demonstrated high electron-hole pair separation efficiency, leading to increased
ROS generation under US irradiation (Figure 5b). This enhanced electron transfer and
separation efficiency facilitated SDT with a high generation of ROS compared to pure
MIL [67].

Piezoelectric MOFs can be employed in SDT, generating an internal electric field under
US that favors charge mobility [68]. Deposition of Au NPs on UiO-66 efficiently generated
ROS under US, attributed to the internal electric field induced by piezoelectric UiO-66. This
enhanced the catalytic efficiency of Au NPs, showcasing the potential for inhibiting solid
tumor growth in SDT (Figure 5c) [69]. Hypoxic microenvironments limit the efficacy of SDT.
To address this, oxygen-independent free radical generators have been explored [70,71].
Based on this principle, Zhang et al. [71] synthesized a hypoxia-responsive Cu-MOF
loaded with sonosensitizers (chlorin e6, Ce6) that can release Cu2+ and Ce6 selectively
under hypoxic TME. This system remained stable under normal oxygen partial pressure
(Figure 5d). The dual effects of Ce6-initiated SDT and Cu2+-induced CDT selectively killed
cancer cells. Another approach involved constructing a US-responsive dual-sonosensitizer
nanoplatform by loading the oxygen-independent free radical generator 2,2’-azobis[2-
(2-imidazolin-2-yl)-propane]dihydrochloride (AIPH) on Zr-MOF (Figure 5e). This dual-
sonosensitizer nanoplatform improved SDT effectiveness in hypoxic environments and
performed well in preclinical and clinical trials for treating pancreatic cancer [72]. The
dual-sonosensitizer characteristics of Zr-MOF made it capable of producing singlet oxygen
(1O2) for killing tumor cells when stimulated by US. Moreover, AIPH was decomposed to
generate alkyl radicals that can destroy cancer cells even under hypoxic conditions. The
decomposition can also generate N2 bubbles, which can reduce the cavitation threshold
and enhance the acoustic cavitation effect. This, in turn, can facilitate the Zr-MOF@AIPH
penetration at the tumor site.

In a novel strategy, Zhuang et al. [73] synthesized acoustochemical nanotherapeu-
tic prodrug MOF (MCA) NPs. MCA connected a camptothecin (CPT) prodrug with an
azobenzene (Azo) bond into the mesopore of an acoustic sensitizer MOF. Under US stim-
ulation, MCA underwent sonosensitizer-mediated SDT, converting O2 to cytotoxic ROS.
Subsequently, the nontoxic prodrug CPT2-Azo was released, exacerbating the anoxic
microenvironment. This process promoted the cleavage of hypoxia-responsive prodrug
CPT2-Azo, transforming it from a "non-toxic" to a "toxic" chemotherapy prodrug, ultimately
improving therapeutic efficacy (Figure 5f).
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3.4. MOFs for Photothermal therapy

PTT is a tumor hyperthermic ablation strategy that directly kills cancer cells by con-
verting photon energy into heat, offering non-invasiveness and spatiotemporal control-
lability [74–76]. In the context of MOF combination treatment nanosystems, Figure 6a
presents polydopamine (PDA)-modified MOF NPs designed for the delivery of the chem-
ical piperlongumine (PL) and photosensitizer (PS) [77]. The MOF serves as an excellent
PL carrier and a source of iron donation. The combination of MOF and PL effectively
amplifies CDT through the Fenton reaction, resulting in a large amount of ROS. Excess iron,
combined with external light and heat, activates the anti-tumor immune response, enhances
anti-tumor effects, and induces thermal death of tumor cells. Another multifunctional
nanostructure, zirconia-iron porphyrinic metal–organic skeleton (Zr-FeP MOF), generates
abundant ROS, including •OH and 1O2 under near-infrared (NIR) laser irradiation, with a
high photothermal conversion efficiency of 33.7%, efficiently inhibiting tumor growth both
in vitro and in vivo (Figure 6b) [78].
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Figure 6. (a) Preparation process and application mechanism of MOF nanosystem in vivo tumor
therapy [74]. Copyright 2022, American Chemical Society. (b) Schematic illustration for multimode
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for enhanced low-temperature PTT and ST [77]. Copyright 2022, Elsevier.

Optically active hydrogen tetrachloride (TCPC) ligands assembled into the proto-
type structure of Hf-UiO-66, as shown in Figure 6c, resulted in TCPC-UiO with highly
efficient photodynamic and photothermal therapeutic effects. The Hf element, with high
photothermal conversion efficiency, good photostability, and biocompatibility, as well as
strong X-ray attenuation ability, endowed TCPC-UiO with significant anti-tumor effects in
in vivo experiments on H22 tumor-bearing mice, achieving a tumor inhibition rate of up to
90% [79].

Hypothermic PTT (HPTT), a non-invasive treatment method, is depicted in Figure 6d.
Zhang et al. [80] decorated UiO-66 with the photothermal agent indocyanine green (ICG)
through physical adsorption, encapsulated it with a biodegradable MnO2 layer (UMI),
and attached catalytically active enzyme glucose oxidase (GOx) to the UMI NPs. Upon
808 nm laser irradiation in in vitro tests, the intracellular adenosine triphosphate (ATP)
decreased due to the photothermal effect of ICG. The introduction of GOx further reduced
ATP levels, diminishing heat shock proteins (HSPs)-mediated heat resistance. The MnO2
layer decomposed H2O2 into O2 in the tumor, enhancing the effects of HPTT and starvation
therapy (ST).

3.5. MOFs for Photodynamic Therapy

PDT involves using irradiated light of a specific wavelength to activate PS, which
releases cytotoxic ROS via photochemical reactions, inducing apoptosis or necrosis in
tumor tissue cells and triggering cell death [78]. Porphyrin, acting as a metal–organic
backbone for organic linkers, serves as a PS and PDT carrier. Porphyrin-based PS-modified
multifunctional MOF NPs can effectively avoid PS accumulation, significantly improving
PDT accuracy [79]. Designed with tunable structures and high porosity, porphyrin-based
MOFs integrate PSs in periodic arrays, making them promising therapeutic nanoagents for
cancer PDT [80].
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Wang et al. [81] prepared ultrasmall porphyrin-based MOF quantum dots (MOF
QDs) using a liquid phase stripping method (Figure 7a). MOF QDs generated twice as
much effective ROS as MOF NPs under the same light irradiation conditions. Controlled
experiments demonstrated significantly prolonged survival time in mice treated with a
combination of MOF QDs and light, showcasing the favorable PDT efficacy of MOF QDs in
cancer therapy. Additionally, the crystal structure of MOF QDs influenced renal clearance
and tumor accumulation capacity in vivo. Tetrakis(4-carboxyphenyl)porphyrin (TCPP) is
an efficient PS producing 1O2. Hang et al. [82] prepared a two-dimensional (2D) porphyrin-
based MOF (Zn-TCPP MOF) as PS, achieving controlled photodynamic properties from
neutral to acidic environments (Figure 7b). In an acidic environment, the decomposed MOF
structure released TCPP, effectively generating 1O2, inducing cancer cell apoptosis, and
enhancing photodynamic activity.
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Liu et al. [83] reported a core–shell nanohybrid by assembling DOX-encapsulated ZIF-
8 on the surface of Zr (IV)-based porphyrinic MOFs (labeled as PCN@D/ZIF) (Figure 7c).
The acidic pH-response degradation of ZIF-8 promoted DOX release (>80%) in the acidic
TME. Porphyrinic MOFs, when exposed to light, produced abundant 1O2, enhancing
CDT/PDT therapeutic efficacy. Luo et al. [84] revealed a significant enhancement of PDT
efficacy by downscaling the size of PS from three-dimensional (3D) MOF NPs to 2D nano
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metallic organic layers (MOLs) (Figure 7d). MOLs with a monolayer structure produced
more ROS and exhibited significantly higher cytotoxicity than MOF NPs. In a mouse model
of triple-negative breast cancer, Hf-MOLs showed a 49.1% greater tumor inhibition, an 80%
higher cure rate with 16.3-fold lower metastasis potential than Hf-MOF NPs.

As shown in Figure 7e, a NIR light-activated PDT nanoplatform was designed based on
porphyrinic MOFs and upconversion (UC) NPs, combined with a mitochondrial targeting
strategy. This nanostructure integrated the advantages of efficient energy transfer from
UCNPs to MOF domains and surface functionalization with triphenylphosphine (TPP),
a mitochondrial targeting ligand, for a targeted effect. The nanoplatform allowed the
generation of 1O2 with an ablation of an 808 nm laser to minimize the overheating effect.
Importantly, mitochondria-targeted PDT initiated the intrinsic apoptotic pathway, resulting
in superior therapeutic efficacy over non-targeted treatments [85].

A hypoxia-responsive MOF containing an azobenzene group as an organic linker
(UiO-AZB) was reported [86]. In this system, the surface of UiO-AZB was modified with
chlorin e6 (Ce6)-conjugated human serum albumin (HSA), and tirapazamine (TPZ) was
encapsulated into UiO-AZB as a hypoxia-activated prodrug. The resulting nanosystem
(UiO-AZB/HC-TPZ) efficiently produced 1O2 upon 660 nm light irradiation and induced
severe hypoxia in tumors. This process (Figure 7f) triggered the degradation of the frame-
works and the controlled release of activated TPZ for chemotherapy, leading to improved
antitumor treatment through the combination of PDT and hypoxia-activated chemotherapy.

3.6. MOFs for Starvation Therapy

ST is a is a novel approach utilizing MOFs-based nanomedicines to treat cancer by
introducing glucose oxidase (GOx) into the tumor site. This process aims to consume
glucose within the tumor, depriving tumor cells of their energy supply and leading to cell
death due to starvation [87,88]. In the ST system, GOx catalyzes the conversion of glucose
to highly reactive gluconic acid and H2O2, and these chemicals continue to activate CT and
CDT modes [89,90].

For example, Huo et al. [91] integrated Zeolitic Imidazolate Frameworks (ZIFs) into
GOx and DOX, effectively protecting GOx activity for DD (Figure 8a). GOx enzymes played
vital roles in inhibiting mitochondrial energy metabolism and promoting ROS accumula-
tion by facilitating glucose acidification, degradation of MOF, and subsequent release of
Zn2+, consequently enhancing the synergistic effect of ST combined with CT. Addition-
ally, Ni et al. [92] proposed a nano pH-responsive intelligent Fenton configuration with
the synergistic effect of ST by encapsulating GOx onto a Fe3O4@MIL-100 heterojunction
(denoted as FMG). The encapsulated GOx successfully activated the ST process and further
enhanced the CDT efficiency (Figure 8b).
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3.7. MOFs for Multimodal Synergistic Therapy

Currently, addressing the complex cancer system is challenging for a single therapeutic
modality due to the complexity, heterogeneity, and diversity of TMEs. Consequently, cancer
treatment has evolved from a past single treatment model to the current paradigm of MST
to improve therapeutic efficacy. The integration of multiple therapeutic modalities onto a
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single nanoplatform is promising and represents emerging nanotechnology, as opposed to
simply physically mixing modalities to achieve a simple additive therapeutic effect [93–95].

For instance, Gao et al. [96] modified Prussian blue (PB) on the surface of UiO-66-NH2
(UiO-66-NH2/PB) for imaging-guided synergistic therapy involving CT, PTT, and CDT
(refer to Figure 9a). This hybrid serves a dual functionality as a drug carrier, loading DOX
via hydrogen bonding and releasing it in the acidic medium of tumors due to protonation.
Additionally, it functions as a Fenton-like agent, eliminating cancer cells by catalyzing
endogenous H2O2 into •OH in tumor cells. This process is accompanied by the generation
of O2, which regulates hypoxia and enhances the anticancer efficiency of released DOX.
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In another endeavor, Geng et al. [97] prepared a CuS@Cu-MOF/PEG nanocomposite
serving as an integrated thermosensitive nanoplatform (Figure 9b). This nanohybrid
exhibits distinct characteristics compared to previous MOF nanoagents: (1) a wider NIR
absorption wavelength and higher thermal conversion efficiency for PTT; (2) characterized
by Fenton-like reactions, it exhibits higher photothermal effects and accelerates the rate
of therapeutic response; (3) the large surface area allows for high DOX-loading ability,
facilitating CT; (4) tumors can be monitored by photoacoustic and thermal imaging after
injection of the nanohybrids. In sum, the synergistic effects of PTT/CDT/CT inhibit
tumor growth, making the CuS@Cu-MOF/PEG nanocomposite an effective multifunctional
theranostic nanoagent for MST.

Similarly, as shown in Figure 9c, the integration of mixed Mn, Cu, Zn, and MnO2 in
the MOF (Mn/Cu/Zn-MOF@MnO2) has been employed to load ICG as a photosensitizer
for collaborative PTT, PDT, CDT, and guided multimodal imaging [98]. In this system,
the mixed-valence metal ions undergo a Fenton-like reaction for CDT, catalyzing the
generation of O2, relieving tumor hypoxia, and depleting GSH. This results in a ‘turn
on’ magnetic resonance imaging (MRI). ICG enclosed in the hollow structure enables
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photothermal conversion for photothermal imaging and PTT. Once released at the tumor
site, fluorescence imaging and enhanced PDT with self-supplied O2 are observed from ICG.

Gas therapy (GT), as a rapidly emerging therapeutic modality, has been widely ex-
plored in the biomedical field. In this context, Wang et al. designed a unique H2O2-
responsive CO gas generator for synergistic therapy (Figure 9d). Manganese carbonyl
(MnCO) and GOx were loaded on Zr-based MOFs (designated as UiO-67-bpy). GOx can
consume glucose to produce gluconic acid and H2O2, leading to ST. Meanwhile, H2O2 can
cause the release of CO, which damages mitochondria and leads to apoptosis of tumor cells.
The Mn2+ species involved in CDT produce highly toxic •OH through Fenton-like reac-
tions. In vitro and in vivo studies have shown that the multifunctional CO gas-controllable
release nanoplatform (CORM@GOx) achieved the combined ST/CDT/GT effect [57].

4. Summary and Outlook

This paper outlines recent advances in MOFs as nanomedicine for tumor treatment, via
DD, CDT, PTT, PDT, SDT, ST, and MST. The preponderance of MOFs is featured with their
unique structural characteristics, multifunctionality, efficient loading capacity, and precise
targeting. These advantages enable broad application prospects for MOFs as nanomedicine.
However, to realize the full potential of MOFs in tumor therapy, it is essential to address
some key challenges, such as the safety, immune response, targeting accuracy, morphology,
and large-scale synthesis of MOFs.

First, like other nanomaterial systems for bio-research, their long-term in vivo safety
and toxicity need to be fully explored. These materials usually undergo a slow degrada-
tion process and cannot be easily excreted from the body, presenting a potential bio-risk.
Currently, the therapeutic effect of MOFs has only been studied at the cellular and animal
levels. Most studies emphasize the short-term toxicity, ignoring the long-term and acute
toxicity of MOFs, which is not conducive to the widespread application of MOFs in tumor
therapy. Moreover, their accumulation in the organs may result in side effects, which may
cause damage to normal cells.

Secondly, evaluating the biocompatibility and immunogenicity of MOFs is essential.
Some MOFs may provoke an immune response by themselves or through their degradation
products in the body. Therefore, understanding the complex interactions between MOFs
and the immune system is critical for optimizing their use in biomedical applications.

Thirdly, the challenge of targeting accuracy should not be overlooked. The stability
and drug release behavior of MOFs can be affected by dynamic changes in the internal
environment, such as pH, temperature, and ion concentration, during the delivery of
therapeutic drugs to target tissues. This necessitates extensive research into surface modifi-
cation, ligand selection, and drug release mechanisms to enhance the targeting precision of
MOFs, ensuring that drugs are delivered accurately and effectively to the tumor site while
minimizing effects on non-target tissues.

Fourth, the influence of the MOF morphology or structure on the material–cell in-
teraction should be optimized to enhance the overall therapeutic results. In general, the
materials with a size <100 nm are favorable for endocytic cell uptake and the following drug
transport or dynamic treatment process intracellularly. Larger MOFs might be retained
within the body for extended periods, potentially leading to accumulation in organs and
compromising organ function. It is advisable to select or optimize the size of MOFs based
on the characteristics of tumor cells to increase therapeutic efficacy. Ultra-small or 2D
nanostructures, such as quantum dots or nanosheets, may facilitate stronger material–cell
interactions than conventional nanoparticles, potentially leading to enhanced treatment
effects. Therefore, innovating the structure or components of MOFs to enhance safety,
loading capacity, or activity remains a key research priority.

Lastly, significant efforts should be directed toward developing more economically
viable techniques for synthesizing MOFs on a large scale. The synthesis process, affected
by factors like solvents, temperature, and pressure, involves numerous variables including
organic ligands, solvent types, and ratios, which influence the controllable design and
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synthesis of MOFs. While the solvent thermal method is commonly used, there is a need
for new, optimized synthesis methods that allow precise control over these factors and
variables. This will enhance the reliability and cost-effectiveness of MOF production.
To further investigate the properties and performance of MOFs as biomedical agents,
developing reliable and cost-effective synthetic strategies is crucial.

In conclusion, despite the challenges, there is optimism that ongoing research will
overcome these obstacles. The unique properties of MOFs hold promise for the develop-
ment of efficient, safe, and economically viable nanomedicine for cancer treatment. Future
investigations should contribute to advancing the understanding and applications of MOFs
in the field of tumor therapy.
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