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Abstract: Single-cell RNA sequencing is a high-throughput novel method that provides transcrip-
tional profiling of individual cells within biological samples. This method typically uses microfluidics
systems to uncover the complex intercellular communication networks and biological pathways
buried within highly heterogeneous cell populations in tissues. One important application of this
technology sits in the fields of organ and stem cell transplantation, where complications such as graft
rejection and other post-transplantation life-threatening issues may occur. In this review, we first
focus on research in which single-cell RNA sequencing is used to study the transcriptional profile
of transplanted tissues. This technology enables the analysis of the donor and recipient cells and
identifies cell types and states associated with transplant complications and pathologies. We also
review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying
the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations.
With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially
result in breakthroughs in clinical transplantation in the coming years.
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1. Introduction

Single-cell ribonucleic acid sequencing (scRNA-seq) is now considered the state-of-the-
art technology for assessing the function of individual cells within a large tissue sample. It
is a powerful technique for profiling the expression of genes in individual cells, providing
a new way to study biological processes and identify rare cell types. This analytical
method has found application across various domains, including cancer biology [1,2],
neurobiology [3,4], immunology [5,6], and transplantation [7,8]. In areas such as cancer
research, scRNA-seq allows scientists to understand how tumors differ at the cellular level
and how they develop over time. Similarly, in neuroscience, scRNA-seq can be used to
uncover how different neural circuits are formed and regulated, providing new insight into
the development and functioning of the brain. In addition, scRNA-seq can be used to study
the diversity of microbial populations within complex environments, such as the human
gut [9]. Recently, scRNA-seq has also been used to study the role of graft–host interaction
after transplantation and for preclinical evaluation of the grafts and therapeutic stem cells
to ensure reliable and safe transplantation [10].

The development of scRNA-seq is partly due to the recent advances in the field of
biomicrofluidics. In particular, droplet-based microfluidic chips, in addition to various
applications in different fields [11], offer the encapsulation of thousands of single-cells
and barcode-carrying beads in droplets, where the genomic data of the single cells can be
captured [12]. After being captured with barcoded beads The messenger ribonucleic acids
(mRNAs) of individual cells are sequenced. The obtained data are then analyzed to find
the gene expression level at the single-cell resolution.
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Currently, transplantation remains the primary solution for organ failure; however,
associated biological challenges still hinder its success rate [13]. Monitoring the graft health
and interaction with the host to detect post-transplant complications and possibly prevent
them is an essential need in determining the long-term success of the transplantation and a
key component of transplant therapy. While solid biopsy is the gold standard for allograft
monitoring, analyzing body fluids, such as blood and urine, is also becoming popular as
a less invasive and more patient-friendly method capable of reliably detecting transplant
complications. As such, scRNA-seq is being used to evaluate post-transplant graft health by
analyzing the gene expression profile and its changes. By applying scRNA-seq on allograft
biopsies at various time points, the transcriptomic profiles of cells in rejection, as well as
the changes in cell interactions after anti-rejection treatments, can be identified [14]. This
type of analysis can be used to assess the degree to which the graft is compatible with the
host’s tissue and can help to identify potential problems that could lead to graft rejection.

In addition to providing insights into the transplantation quality and the graft–host
interactions, scRNA-seq enables the discovery of new biomarkers to predict transplantation
outcomes. These biomarkers can then be used to assess the likelihood of a successful
outcome prior to the transplantation procedure.

Stem cell transplantation is considered another area where scRNA-seq could have
a transformative impact. Stem cells regularly divide to maintain, develop, and repair
the organs and tissues [15]. In stem cell transplantation, stem cells from a donor are
transplanted into a recipient in order to treat a wide range of diseases and injuries, such as
leukemia and spinal cord injuries. Unfortunately, the transplantation process is not always
successful. Numerous factors can affect the success of the transplantation, such as the
quality of the stem cells, the compatibility of the donor and recipient, and environmental
factors (e.g., diet and pollutants).

By applying scRNA-seq to stem cell transplantation, it is possible to gain a better un-
derstanding of stem cell biology and investigate how the various factors can influence their
behavior. This approach would enable researchers to develop and optimize more efficient
and successful transplantation protocols and to improve stem cell selection methods. It
also could open the door to a new era of personalized, targeted therapies that are more
effective and efficient than ever before.

Another application of scRNA-seq is evaluating transplanted tumors for research
purposes. The transplantation of tumor tissue into animal models is an established field for
studying the effect of the surrounding microenvironment on tumor behavior, including
tumorigenesis and metastasis [16]. The scRNA-seq technology captures this information
from the transplanted tumor at single-cell resolution.

In this review, we first discuss advanced available scRNA-seq methods and compare
them. Then, we delve into the application of scRNA-seq in solid transplantation, including
heart, kidney, lung, and liver. Next, we review the use of scRNA-seq in stem cell trans-
plantation. Then, we discuss selected studies where scRNA-seq addresses questions in
tumor transplantation. In each section, essential information and the relevant comparisons
are tabulated.

2. Single-Cell RNA Sequencing

As an emerging technology used to measure expression levels of genes within individ-
ual cells, scRNA-seq offers an unparalleled level of resolution, allowing scientists to gain a
deeper understanding of complex biological processes, such as cellular heterogeneity and
cellular interactions. The scRNA-seq approaches are generally classified into two broad
categories: plate-based and microfluidic-based methods. Microfluidic tools offer novel
sequencing methods with significant advantages, including fast handling, labor saving,
and high throughput. Thus, these technologies have been widely used recently. The basic
principle of scRNA-seq is to capture and sequence the mRNA molecules present within
individual cells. By doing so, it is possible to quantify the expression levels of various
genes, providing a snapshot of the transcriptome of each cell. The acquired sequencing
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data can then be used to infer biological characteristics such as the cell type and its state of
activation. In addition, it offers insights into the dynamics and interactions of molecular
networks within individual cells.

To obtain the mentioned data from the single cells, single-cell transcriptome analysis
typically involves three main steps [17]. The first step is to dissociate and isolate live
single cells from tissues and keep them alive. They need to be protected against gene
and protein expression variations due to cell dissociation and handling. This step may
be performed using mechanical and enzymatic-based methods. The obtained single cells
may then be selected based on their membrane protein expressions using fluorescence-
activated cell sorting. The second step is to reverse-transcribe mRNA selectively to achieve
a cDNA library. This step involves sub-steps of RNA capture, reverse transcription, RNA
sequencing, and library construction. The third step is to sequence and analyze the cDNA
library obtained from the single cells. Data analysis involves several sub-steps, including
quality control, preprocessing, quantification, dimensionality reduction, and visualization.
Early errors in data not removed during the preprocessing steps and quality checks may
propagate throughout the rest of the analysis. Dead cells with damaged cell membranes,
cell doublets, or bead doublets need to be detected and filtered. For example, the leakage of
mRNAs from the damaged membranes has a substantial impact on the overall read counts.
Also, cDNA amplification may introduce an unwanted bias toward the amplification of
cDNA transcripts with specific sizes.

2.1. Single-Cell Isolation Methods

In order to isolate single cells for lysis and analysis, different methods are used.
Here, we mention six widely used cell isolation methods, four of which are based on
microfluidic tools.

2.1.1. FACS

Fluorescence-activated cell sorting (FACS) systems sort individual particles and cells
based on fluorescent signals obtained from them [18,19]. It is possible to use these systems
in single-cell analysis methods to isolate fluorescently labeled single cells based on their
specific surface molecules. The fluorescent labels are excited with the means of a laser
beam, after which the cells are sorted into specific microwells of interest [20] for further
steps toward scRNA-seq. The advantages of cell sorting based on FACS include their
high accuracy. However, they are not typically suitable for sorting samples with low
cell numbers.

2.1.2. Micromanipulation

Mechanical micromanipulation is considered a traditional method to put individual
particles into separate chambers to be studied. This technique is based on manual cell
micropipetting under a microscope or based on pipetting robots. In these methods, the cell
concentration in the cell suspension is lowered to ensure pickup at single-cell resolution.
Mechanical micromanipulation is widely used in biological research; however, it needs
skilled operators, it is low-throughput, and the cells may be damaged [21–23].

2.1.3. Passive Hydrodynamic Trap-Based Microfluidics

Microfluidic chips provide good control of small volumes of fluids, as well as tiny
objects. Hence, cell handling based on these devices is developed as a more modern
technique. Hydrodynamic trap-based microfluidic chips are one of these methods that are
widely used in the field [24–26]. In this method, the cell suspension is injected into the
microfluidic device, where the single cells are captured in the trap sites. By entering a cell
into a trap site, the hydrodynamic resistivity of that path increases, limiting the occupation
of that trap with the other cells. This passive method based on hydrodynamic forces does
not require additional forces to manipulate the particles; however, the unwanted shear
stress applied to trapped cells may alter the cell behavior [27]. Also, the cell concentration
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needs to be controlled to avoid channel clogging. Since the traps are not typically isolated,
another challenge is the high chance of cell content contamination. Recently, a method for
trapping cell-encapsulating droplets has been introduced, answering most of the mentioned
drawbacks of the old systems [28]. In this system, the cells do not experience high shear
stresses, and the droplet acts as an isolated microchamber, preventing unwanted cross-
contaminations.

2.1.4. Active Cell Manipulation Microfluidics

Microfluidic chips enhanced with active particle manipulation methods use at least
one force other than hydrodynamic forces to manipulate cells. Methods based on mag-
netic [29–34], electric [35–38], acoustic [39–43], and optical forces [44–48], each of which,
with their advantages and disadvantages, have been developed. In general, the active
methods are rather more complicated than the passive methods; however, they typically
offer more precise control of individual cells. Magnetic-based techniques require cell mag-
netic nanoparticle labeling, while other methods do not. There are cell mutation concerns
in optical manipulations [49]. Also, they may have difficulties in opaque environments.
The methods based on electric forces (e.g., electrowetting [50,51]) require complex wiring
systems. In acoustic systems, manipulating specific single particles is typically not of-
fered. Microfluidics chips employing a combination of different techniques have shown
promising results [52,53]. These methods borrow desired specifications from different
techniques to offer unique capabilities, while undesired aspects are limited. For example,
a recently developed device called the magnetomicrofluidic chip assembles single cells
in semi-isolated low-shear microchambers in a microfluidic chip using the combination
of hydrodynamic traps and magnetic or electric forces [29,54,55]. In these systems, the
undesired shear stress and the cell content contamination seen in hydrodynamic trapping
systems are eliminated, while they provide high-throughput precise particle manipulation.

2.1.5. Valve-Based Microfluidics

To control the fluid flow inside the microchannels in a microfluidic chip, microvalves
are used [56]. Typically, the microvalves have been developed using a multilayer microflu-
idic structure [57]. Quake valves that control the flow rate in a fluid-carrying channel by
applying a pneumatic pressure on a PDMS membrane on top of that channel to deflect it
are considered one of the most common microvalve designs [57]. Based on these valves,
hundreds of individually addressable microchambers on a single chip are fabricated [58],
where single cells can then be stored for scRNA-seq [59]. The microchambers can be fully
isolated using these chambers; however, if the cells are punched under a pressed valve,
their contents will be dispersed throughout the microchannels.

2.1.6. Droplet-Based Microfluidics

Among various microfluidic single-cell isolation techniques, droplet-based microflu-
idics have drawn significant attention with applications in scRNA-seq. In this method,
individual cells are encapsulated into droplets acting as tiny microchambers [60–63]. Var-
ious microfluidic chip designs for producing microdroplets have been proposed. These
designs are generally categorized into three groups: co-flow [64,65], cross-flow [66–68], and
flow focusing [69,70].

2.2. scRNA-Seq Methods

Drop-seq is one of the widely used scRNA-seq methods that use droplet-based mi-
crofluidic chips. It was developed by Dr. Macosko and was first introduced in 2015 [60].
Figure 1 illustrates a schematic of typical steps in Drop-seq. A flow-focusing droplet-based
microfluidic chip is used to encapsulate single cells with single barcode-carrying beads
into microdroplets. The microdroplets are formed at a cross-junction, where cell and bead
suspension (to form the dispersed phase) and the oil (the continuous phase) meet. The
dispersed passes through the junction and expands into the main channel. At the cross-
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junction, the continuous phase forms a neck in the dispersed phase, which then shrinks
until it breaks up and the droplet forms. Based on the ratio of the viscous force to the
inertial tension force, various droplet generation regimes may be observed (e.g., squeezing,
dripping, or jetting). In Drop-seq and other droplet-based single-cell analysis tools, the
dripping regime is commonly used to form highly monodispersed droplets.
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Figure 1. Schematic of the Drop-seq single-cell RNA-sequencing steps is illustrated. (a) The library
preparation steps are shown. Single cells are separated from a tissue to form the single-cell suspension,
which then forms the first aqueous phase to be injected into the microfluidic chip. The other aqueous
phase carries the barcoded beads suspended in a lysis buffer. The droplet-based microfluidic chip
in a T-junction joins these two aqueous flows, where they form the discrete phase (i.e., droplets
encapsulating the required materials) in an oil continuous phase. In the formed microdroplets,
the single cells are lysed, and their mRNAs are captured with the primers on the microparticles.
Then, the droplets are broken, and the collected mRNAs are reverse-transcribed, forming STAMPs.
After PCR, NGS and analysis are performed. (b) The analysis steps after sequencing are shown.
Sequencing reads are aligned to a reference genome to find the gene of origin of the cDNA. Also, they
are organized based on their cell barcodes to count UMIs for each gene in each cell, based on which
the expression matrix is extracted. Reprinted from [60], with permission from Elsevier Copyright
2015 Elsevier Inc.

After droplet formation, the lysis buffer breaks the cell membrane, and their mRNAs,
which are then captured with the barcode-carrying beads, are released. These single beads
in each droplet contain oligonucleotides and unique molecular identifiers (UMIs). They
contain primers for the reverse transcription of the mRNAs captured from single cells, and
the resulting cDNA is sequenced to uncover the gene expression profile. The resulting
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sequencing data are then used to study the expression of thousands of genes within cells at
the single-cell level. Compared with the old protocols, Drop-seq offers numerous advan-
tages, including high throughput and reasonable cost per cell [71]. These features allow
researchers to analyze tens of thousands of single cells in an experiment. This capability can
be utilized to study cell heterogeneity, signaling pathways, and developmental trajectories.
Drop-seq has been widely used in the biology scientific community and has fundamentally
contributed to our understanding of single-cell biology and various diseases.

The data obtained from the sequencing need to be computationally analyzed. Because
of the complexity of the information generated by scRNA-seq, a dimensional reduction
step is needed before visualizing it. Some popular dimensional reduction methods are prin-
cipal component analysis (PCA), t-Stochastic Neighbor Embedding (t-SNE), and Uniform
Manifold Approximation and Projection (UMAP). The goal of these methods is to keep the
most influential features and omit the ones with less impact. After recusing the dimension
of the data, a unique coordinate is typically assigned to each cell such that the ones with
similar genetic information are placed in close proximity to be clustered based on methods
such as the k-nearest neighbor [17].

In Drop-seq, in order to prevent more than a single bead from being in a droplet,
its concentration is lowered. However, numerous droplets then lack beads, which may
not be a major problem in normal analysis. However, when the cell numbers in samples
are limited, losing cells in droplets with no bead becomes challenging. To overcome this
problem, InDrop technology is proposed [72]. This method is similar to Drop-seq, but it
uses barcoded hydrogels as a more complex barcoding system compared with the beads,
which allows for higher throughput and better cell type identification. In this method, high
concentrations of hydrogels can be injected into the microfluidic chip, while their size and
flexibility prevent having more than a single hydrogel in a droplet.

The gel beads in emulsion (GEMs) utilized in InDrop find analogous applications in the
10× Genomics Chromium system, which is another well-known tool used for scRNA-seq.
Similar to Drop-seq, this method uses a microfluidic system to encapsulate individual cells
with barcode-carrying beads and perform reverse transcription and cDNA amplification.
The system is high-throughput and relatively easy to use, with a straightforward sample
preparation protocol and data analysis workflows. Moreover, the system is compatible with
a variety of sample types, including both fresh and frozen tissues, as well as cultured cells.
The 10× Genomics Chromium system has been used in a variety of applications, including
the identification of rare cell types, the characterization of complex tissues and organs, and
the study of developmental processes and disease progression [12,73]. Drop-seq, InDrop,
and 10× Genomics are widely considered the most successful scRNA-seq technologies in
the field.

Seq-well is another scRNA-seq technology that was introduced in 2017 [74]. The
Seq-well technology uses a microfluidic chip with thousands of individual wells. Each well
is designed to capture a single cell and a single bead, where the cell is then lysed, and its
RNA is captured with the bead and barcoded using UMIs. Similar to the methods men-
tioned above, the resulting cDNA is then amplified and sequenced using next-generation
sequencing technology. Since this method does not require any specialized equipment, it is
accessible to many researchers. However, because the microfluidic chip is loaded with cells
and beads using pipets, no control over individual particles has been offered. As a result,
the microwells may be filled with more than one cell or bead, which may be challenging.

In some scRNA-seq methods, as opposed to the microfluidic systems, microplates
are used. Smart-seq is one such example that captures the full-length RNAs of single cells
and amplifies them for high-throughput sequencing [75,76]. In this method, the cells are
lysed in a hypotonic solution, and RNAs are converted to full-length cDNAs. After PCR
amplification, the full-length cDNAs are used to construct standard Illumina sequencing
libraries. Its updated version, called Smart-seq2, was developed in the lab of Dr. Sandberg
and was first published in 2014 [77,78]. In Smart-seq2, reverse transcription (RT), template



Biosensors 2024, 14, 189 7 of 38

switching, and preamplification were optimized to offer an increased cDNA yield from
single cells, better sensitivity, and enhanced repeatability.

Smart-seq3 combines full-length transcriptome coverage with a 5′ unique molecular
identifier RNA counting strategy that enables the in silico reconstruction of thousands of
RNA molecules per cell [79]. This technique is suitable for analyzing samples with limited
cell numbers. In 2020, Smart-seq3, which combines full-length transcriptome coverage with
a 5′ unique molecular identifier RNA counting method, came out. With Smart-seq3, more
transcripts per cell compared with Smart-seq2 can be captured. All Smart-seq methods can
be enhanced by providing more precise control over individual cells using microfluidic
systems such as fLuidigm C1.

Another plate-based scRNA-seq method, in which FACS sorts single cells into 96- or
384-well plates, is the single-cell combinatorial indexed RNA sequencing (sci-RNA-seq)
technique. It uses combinatorial cell barcoding and UMIs to enable the high-throughput
analysis of large numbers of cells with high sensitivity and accuracy [80]. By barcoding
individual cells with a unique combination of DNA tags, the method allows for the identifi-
cation and quantification of each transcript in each cell. One key advantage of sci-RNA-seq
is its ability to offer full-length transcript coverage. This feature allows the identification of
novel splice variants and the accurate quantification of transcript isoforms. The method also
offers high sensitivity and the detection of low-abundance transcripts and rare cell types.

MATQ-seq (Microbial RNA-Seq for Meta-Transcriptomics and -Transcriptome Anal-
ysis) is another high-throughput sequencing-based method, which is mostly used in a
mixed microbial community [81]. This technique is based on pipetting single cells into
PCR tubes and uses selective hybridization methods to capture mRNA, followed by cDNA
synthesis, amplification, and sequencing steps. The PCR amplification step is replaced by
in vitro transcription (IVT) in a method called CEL-Seq to increase efficiency [82]. Then,
Cell-seq2, which has been optimized for higher sensitivity and less hands-on time, was
introduced [83]. Although Cell-seq uses single-cell pipetting, Cell-seq2 works based on
either robotic liquid handles or a Fluidigm C1 microfluidic chip.

Nanopore sequencing is one of the most promising techniques that offers long reads.
In this approach, while the biomolecule zips through a nanopore in a membrane, it
changes a characteristic identifying the biomolecule sequences [84]. The MinION (Ox-
ford Nanopore Technologies, Oxford, UK) is one of the earliest commercialized real-time,
portable nanopore sequencers to have been widely used. Single-cell RNA sequencing based
on nanopore devices has also been presented [85,86]. Thus, this tool has the potential to be
used in studying transcriptomes in transplanted organs.

Each of the mentioned methods has its own advantages and disadvantages, and the
choice of method depends on the application of interest, the biology research question,
and the available resources. Scientists may choose a method based on parameters such
as cost, throughput, sensitivity, full-length transcript coverage, and compatibility with
their samples. Table 1 lists the advantages and disadvantages of some of the important
scRNA-seq methods.

Table 1. Comparison of some of the common scRNA-seq methods.

Methods Advantages Disadvantages References

Smart-seq
Smart-seq 2
Smart-seq 3

Full-length transcript
coverage, high sensitivity,

low technical noise

Low throughput, requires
manual cell isolation,

high cost per cell
[75,78,79]

Drop-seq

High throughput, low
cost per cell, large-scale

parallel processing,
droplet-based
microfluidics

Limited coverage of
full-length transcripts,
low sensitivity, high

technical noise

[60]
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Table 1. Cont.

Methods Advantages Disadvantages References

In-Drop

High throughput, low
cost per cell, large-scale

parallel processing,
droplet-based

microfluidics, efficient for
analyzing limited cell

numbers compared with
Drop-seq

Limited coverage of
full-length transcripts,
low sensitivity, high

technical noise

[72]

10× Genomics
Chromium

High throughput, easy to
use, compatible with a
wide range of samples,

droplet-based
microfluidics

Limited coverage of
full-length transcripts (if
paired with long reads

technologies such as
nanopore sequencing

[87,88]), lower sensitivity
compared with

Smart-seq3

[89]

Seq-well

High throughput, low
cost, easy scalability,
ability to multiplex
samples, based on

microfluidics

Limited coverage of
full-length transcripts,

lower sensitivity
compared with

Smart-seq3, Needs
manual pipetting.

[74]

sci-RNA-seq
High throughput, high
sensitivity, full-length

transcript coverage

More technically
challenging than some

other methods, requires
specialized equipment

[80]

MATQ-seq

High throughput, low
technical noise, high

sensitivity, full-length
transcript coverage

More technically
challenging than some
other methods. Needs

manual pipetting.

[81]

Nanopore Sequencing Long reads, portable Relatively higher
error rates [87,90]

3. Single-Cell RNA Sequencing in Organ Transplantation

In this section, various organ transplantations in which scRNA-seq is used are discussed.

3.1. Heart Transplantation

By identifying the cellular composition of the cardiac system and the cell states before
and after transplantation, crucial information about the graft can be obtained. This idea
is investigated by using the scRNA-seq technique to find the single-cell transcriptomic
atlas of human cardiac arteries and identify the cellular compositions in various cardiac
arteries [91]. In these experiments, various cell populations, including vascular smooth
muscle cells, fibroblasts, myofibroblasts, macrophages, T cells, B cells, endothelial cells,
natural killer cells, mast cells, and oligodendrocytes are detected. These achievements
are useful as a reference to find disease-associated cell populations in vascular and heart
diseases. As shown in Figure 2, they have combined scRNA-seq (n = 7) with single-
nucleus RNA-sequencing (snRNA-seq) (n = 38) to obtain data from heart samples (left
ventricular (LV) tissues from 27 healthy donors and 18 patients with dilated (nonischemic)
cardiomyopathy).



Biosensors 2024, 14, 189 9 of 38
Biosensors 2024, 14, x FOR PEER REVIEW 9 of 41 
 

 
Figure 2. (a) Schematic representing the single-nucleus RNA-sequencing and single-cell RNA-se-
quencing experiments of heart tissues. (b) The analysis pipeline is depicted. It contains tissue pre-
processing, library generation, alignment (Cell Ranger), and further data analysis. (c) Clustering. (d) 
Violin plots based on analyzing the integrated dataset showing characteristic biomarkers of identi-
fied cell populations. (e) Pie chart presenting the cell proportion. The figure is taken from [91] with 

Figure 2. (a) Schematic representing the single-nucleus RNA-sequencing and single-cell RNA-
sequencing experiments of heart tissues. (b) The analysis pipeline is depicted. It contains tissue
preprocessing, library generation, alignment (Cell Ranger), and further data analysis. (c) Cluster-
ing. (d) Violin plots based on analyzing the integrated dataset showing characteristic biomark-
ers of identified cell populations. (e) Pie chart presenting the cell proportion. The figure is
taken from [91] with permission under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/, accessed on 1 February 2024).
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In a similar study, researchers used scRNA-seq technology to identify intra-graft
cell heterogeneity in acute heart allograft rejection in mice [7]. They employed the 10×
Chromium platform, based on which about 2000 genes in almost 20,000 cells from two
allogeneic heart grafts and about 20,000 cells from two syngeneic heart grafts were detected.
They used this technique to identify the cell types (i.e., 21 distinct cell populations) and
states associated with acute rejection and introduced the potential predictive biomarkers.
They reported five cell clusters, including two resident macrophage groups, two infiltrating
macrophage groups (predominantly from allogeneic grafts, one in an active state and one
silent), and one dendritic cell-like monocyte group. The authors re-clustered endothelial
cells into five subclusters, one of which was from allogeneic grafts. This cell population
showed expression of Ubiquitin D, which they claimed was upregulated in heart and kidney
rejection. Endothelial cells have been found by other researchers to show tissue-specific
identities and unique transcriptomic signatures as well [92].

In another work, researchers used scRNA-seq to study transplant arteriosclerosis as a
key challenge in long-term transplantation survival [93]. They used unbiased clustering
analyses on a mouse model to identify 21 cell clusters at various disease stages and some
novel subpopulations enriched in the allografts. They also reported the local formation of
tertiary lymphoid tissues and possible intra-graft alloimmune response modulation. They
reported the potential role of Ccl21a and Cxcr3 in regulating early chemotaxis and immune
cell infiltration. They also used single-cell analysis to compare the immune response
in mouse allograft and the atherosclerosis models. Researchers claim that their results
depict both similarities and differences in atherosclerosis models and allograft-induced
transplant arteriosclerosis. The innate and adaptive immune responses exist in the two
models; however, distinct cell subpopulations may mediate the responses.

Based on the scRNA-seq results in a preprint [94], donor and recipient macrophage
populations co-exist within the heart allograft. They claim that donor CCR2+ macrophages
play a key role in allograft rejection, and MYD88 signaling inhibition in donor macrophages
suppresses the allograft rejection. These results suggest that the signals from the trans-
planted graft from the donor and not the signals from the recipient macrophage populations
define the destiny of the patient.

Researchers found cell-specific transcriptional signatures that are associated with age
and heart failure [91]. They realized that cardiomyocytes go to common disease-associated
cell states; however, fibroblasts and myeloid cells become diverse. They also found that
endothelial cells and pericytes show transcriptional shifts.

Researchers compared cellular composition in various arteries in heart-transplanted
patients and realized that some artery-specific vascular smooth muscle cell and fibroblast
subpopulations exist [95]. In healthy conditions, the communication between vascular
smooth muscle cells and fibroblast is reported to be dominant. They reported the enrich-
ment of atherosclerosis-associated genes in endothelial cells and macrophages. They also
reported that intercellular communication between endothelial cells and immune cells may
increase during atherosclerosis. Based on this study, they believe that interactions between
ICAM1/VCAM1 (EC1) and ITGB2 (immune cells, especially inflammatory macrophages)
are important factors in the pathogenesis of atherosclerosis.

Various studies have shown the power of scRNA-seq in identifying previously un-
known cell types and gene expression profiles in heart transplantation. In these experiments,
different donor and receptor species have been considered. In some studies, human tissues
are transplanted, and in other animal models of heart transplantation, they are demon-
strated. In Table 2, some examples of these studies with their key findings are tabulated.
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Table 2. Examples of key findings in applying scRNA-Seq on heart transplantation.

Key Findings Methods/Technologies Donor/Recipient Species References

Cellular diversity: The scRNA-seq technique has
been used to reveal the cellular heterogeneity in the

heart, including immune cells, fibroblasts,
endothelial cells, macrophages, and cardiomyocytes.

10× Genomics Chromium Mice, human, pig [91,96,97]

Immune cell populations in rejection: The
scRNA-seq technique has identified various immune

cell subsets involved in graft rejection, such as T
cells, B cells, natural killer cells, and macrophages.

Transcriptional profiles and functional states of these
cells during rejection are considered key findings.

inDrop Microfluidics, 10×
Genomics Chromium Mice, human [7,98,99]

Gene expression profile variations during rejection:
Specific gene expression changes during rejection in
various cell types (e.g., interferon-stimulated genes
upregulation in T cells, proinflammatory pathways

activation in macrophages, and upregulation of
extracellular matrix genes in fibroblasts)

are identified.

10× Genomics Chromium Mice, human [7,100–102]

Potential therapeutic target recognition: The
scRNA-seq technique has been used to identify

novel potential targets for therapeutic purposes in
heart transplantation (e.g., IL-18 signaling and Hif1a
inhibiting in T cells and CXCR6 in natural killer cells

and T cells).

10× Genomics Chromium Mice, human [91,103,104]

Biomarker discovery: The scRNA-seq has been used
to find gene expression signatures that can be

considered biomarkers for predicting organ rejection
or checking the responses to
immunosuppressive therapy.

10× Genomics Chromium Mice, human [91,105]

3.2. Kidney Transplantation

The scRNA-seq technique has fundamentally leveraged our knowledge of renal cell
identities and their genomic biomarkers [106]. These achievements identify the pathophys-
iology of kidney conditions, including early diabetic nephropathy [107], tumor composi-
tions [108], and allograft rejection [5].

Multiple cell populations and subpopulations that are available in the kidney and
scRNA-seq can identify this cellular heterogeneity at single-cell resolution. This identi-
fication can be enhanced by the integration of single-cell transcriptome and chromatin
accessibility datasets. snRNA-seq and single nucleus assay for transposase-accessible chro-
matin using sequencing are used to generate cell-type-specific chromatin accessibility and
transcriptional profiles of the kidney. Researchers have shown that most of the accessi-
ble chromatin regions are closely associated with the expressed genes. This multi-omics
method allows the detection of unique cell states within the cellular population in the
kidney [109].

In a recent study, a mouse kidney allograft rejection model and scRNA-seq were used
to study CD45+ leukocytes in allografts on days seven and fifteen after transplantation [110].
Researchers detected 20 immune cell types (See Figure 3) and found that macrophages
and CD8+ T cells made the main cell populations at both time points. They reported that
in the transition from acute rejection toward chronic rejection, the proportion of CD8+
T cells dropped. However, the proportion of macrophages and dendritic cells highly
increased, with Ly6cloMrc1+ and Ly6cloEar2+ macrophages being the main subgroups.
They concluded that the drop in CD8+ T cells, B cells, and neutrophils and the rise in
Ly6cloEar2+ and Ly6cloMrc1+ macrophages contribute to the transition from acute rejection
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to chronic rejection. Clonal CD8+ T cell responses have been reported to show important
roles in rejection [111].
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Figure 3. The presence of 20 CD45+ immune cell clusters is detected based on the scRNA-seq of mice
kidney allograft. (A) UMAP plots of cell clusters identified based on biomarkers. Each dot represents
a single cell, with its color demonstrating the cluster designation. (B) Heatmap representing the
biomarkers of each cluster of kidney graft immune cells. (C) Bar plot demonstrating the proportions
of the 20 identified immune cell populations in the kidney allografts obtained 7 days and 15 days
after transplantation, respectively. The colors are chosen according to clusters in (A). UMAP, Mφ, DC,
NK, and pDC stand for Uniform Manifold Approximation and Projection, macrophage, dendritic
cell, natural killer, and plasmacytoid dendritic cell, respectively. The figure is taken and reproduced
with permission from [110] under the terms of the Creative Commons Attribution License (CC BY)
(http://creativecommons.org/licenses/by/4.0/, accessed on 1 February 2024).
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Another research group employed kidney transplant biopsies and combined germline
DNA sequencing with scRNA-seq to analyze the transcriptional profiles of donor- and
recipient-derived leukocytes in acute antibody-mediated rejection and non-rejecting
states [112]. They identified the major kidney cell types, as well as lymphocytes and
macrophages. The ratio of leukocyte donor/recipient can be utilized as a rejection status
indicator. They found that macrophages and T cells have distinct transcriptional profiles
between the donor and recipient groups. They also claim that donor macrophages persist
for years after graft transplantation.

Another group used scRNA-seq to identify 16 cell types and states in a human kidney
biopsy specimen [5]. By comparing the results from a healthy adult kidney and a kidney
transplant biopsy, they identified rejection-related, segment-specific proinflammatory re-
sponses. Of the three endothelial cell subclusters they found, two groups were active, one
of which expressed the Fc receptor pathway and Ig internalization genes, which stands for
antibody-mediated rejection.

Similarly, scRNA-seq has been applied to three healthy human kidneys and two
chronic kidney transplant rejection (CKTR) biopsies [113]. Based on unsupervised clus-
tering analysis of the obtained data, they identified 15 cell types (e.g., five natural killer
T cell subclasses, CD4+ T cells, CD8+ T cells, cytotoxic T lymphocytes, regulatory T cells,
natural killer cells, two memory B cell subtypes, CD14+ and CD16+ monocyte groups, and
a novel subpopulation (myofibroblasts) in fibroblasts expressing collagen and extracellular
matrix components). They also distinguished the CKTR group by the higher numbers of
immune cells and myofibroblasts. The identification of the functional differences between
the cell subpopulations and between samples from healthy and graft-rejected patients
was based on the single-sample gene set enrichment (ssGSEA) algorithm. Other groups
found a B cell subset (CD19+IGLC3

lowIGKChighTCL1A-CD127
+) to be much lower in renal

allograft recipients with accommodation (i.e., allograft recipients that are neither rejected
nor infected after immunosuppression) than that in healthy people [114].

B cell subsets have attracted the attention of other researchers as well. Clark and
coworkers showed that in kidney rejection, infiltrating B cells contributes to specific innate
signaling pathways, which may be related to inflammation [115]. In particular, they showed
that B-innate cells generate inflammation-specific antibodies and drive local inflammation
in transplanted kidney rejection.

Researchers believe that myeloid cells play a key role in transplant rejection [116,117].
They used scRNA-seq to study the murine kidney transplantation model to study the
contribution of these cell subsets and their signaling pathways in graft rejection [118]. They
showed that kidney allograft-infiltrating myeloid cells differentiate from monocytes to
proinflammatory macrophages. They also identified Axl as a key gene in the differentia-
tion of proinflammatory macrophages in transplanted kidneys, which also promotes the
differentiation and proliferation of donor-specific T cells. scRNA-seq analysis has also
been used to detect and study the type and status of monocytes/macrophages in kidney
transplantation [119]. They form two different subpopulations: resident and infiltrating
monocytes/macrophages. The number of resident macrophages decreases during kidney
rejection. In these macrophages, the relevant genes during phagocytosis are upregulated.

The scRNA-seq technique has also been used in kidney organoid transplantation [120].
Human-induced pluripotent stem cell (iPSC)-derived kidney organoids have multiple
nephron-like structures that show some renal functions [121]. Although these organoids
have attracted much attention in disease modeling and drug screening applications, their
reproducibility and reduction in off-target cell generation is a challenge. Researchers have
used scRNA-seq to answer this need [120] and showed that cell proportion variations exist
between different iPSC lines mainly because of off-target cells. They also analyzed trans-
planted organoids in mice and realized that off-target cells diminish after transplantation.

In addition to the transcriptomic profile of the cell types within the allograft, spatial
transcriptomics in acute kidney injury is important and affects the cells heterogeneously.
Researchers identified the spatial transcriptomic signature of ischemia/reperfusion injury
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and cecal ligation puncture as two murine acute kidney injury models [122]. They realized
that spatial reduced expression is associated with the injury pathways. They used scRNA-
seq to find epithelial cell–immune dialogue in kidney injury spatially.

Single-cell RNA sequencing has also been applied to kidney solid biopsies and CD14+

peripheral blood mononuclear cells (PBMCs) obtained from Immunoglobulin A nephropa-
thy (IgAN), and the results have been compared to sequences of normal samples [123].
This analysis is used to study the molecular events in IgAN progression that can be used in
disease treatment. In IgAN, JCHAIN upregulation is related to the in situ dimerization and
deposition of IgA1. The pathological mesangium also indicates high cell–cell communi-
cation between renal parenchymal cells and immune cells. Also, the expression of genes
specific to kidney-resident macrophages and CD8+ T cells depict abnormal regulation
related to proliferation and inflammation.

Although analyzing kidney biopsy samples has resulted in valuable information,
biopsy-associated complications, biopsy specimen scoring variability, invasiveness, and
costs are considered concerns in the field. Also, studying the kidney behavior at multiple
time points after transplantation to understand its dynamic behavior is an important
need; however, repeated biopsies are not convenient and safe, if practically possible [124].
Urinary and PBMCs from kidney transplant recipients are other sources of organ injury
biomarkers [125]. Transcriptomic analysis and clustering of these cells are considered
noninvasive analysis methods on which researchers are working. Muthukumar, from
Weill Cornell Medical College, and his coworkers performed scRNA-seq on urinary cells
obtained from kidney transplant recipients, with biopsies classified as acute T cell-mediated
rejection, chronic active antibody-mediated rejection, and normal conditions [126]. They
claimed that urine samples matched to the acute T cell-mediated rejection biopsy showed
increased macrophages, dendritic cells, T cells, and NK cells, while the one matched to
normal biopsy displayed dominant kidney tubular epithelial cells. This approach is an
innovative method for uncovering the complex cellular landscape of kidney allograft
rejection at the single-cell resolution.

Researchers have generated the profiles of various PBMC cell types and their gene
expression using scRNA-seq in chronic antibody-mediated rejection patients [127]. Based
on their results, MT-ND6, CCL4L2, CXCR4, NFKBIZ, DUSP1, and ZFP36 were upregulated
in these patients. They also reported that MAPK and NFκB signaling pathways were acti-
vated. They claimed that single-cell sequencing is a potential strategy for understanding the
details of the peripheral blood lymphocyte in chronic antibody-mediated rejection patients.

It has been shown that the integration of spatial and single-cell transcriptomics can
localize the cell–cell communication between the epithelial and immune cells [128] in kidney
injury. This method is used to spatially map the transcriptomic signature of acute kidney
injury in murine models, which can also be applied to human kidney tissue [122]. In Table 3,
some key findings of applying scRNA-seq on kidney transplantation are listed. Also, some
genes play the biomarker role for transplant problems. In Table 4, some biomarkers in
different kidney transplantation studies are tabulated.

Table 3. Examples of key findings in applying scRNA-Seq on kidney transplantation.

Key Findings Methods/Technologies Donor/Recipient Species References

Cellular diversity: The scRNA-seq technique
has been used to reveal the cellular

heterogeneity in the kidney, including
immune cells, macrophages, IFNg, myeloid,
and T cell subclusters. These heterogeneities

represent distinct signatures that have
different roles in allograft loss.

10× Genomics Mice, human [5,112,113,118,129,130]
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Table 3. Cont.

Key Findings Methods/Technologies Donor/Recipient Species References

Immune cell populations in rejection: The
scRNA-seq technique has identified various

immune cell subsets involved in graft
rejection, such as T cells, B cells, neutrophils,
myeloid cells, dendritic cells, stromal cells,
and macrophages. Transcriptional profiles
and functional states of these cells during

rejection are considered key findings.

10× Genomics Mice, human [113,115,116,129]

Gene expression profile variations during
rejection: Altering myeloid cell

differentiation and their behavior based on
upregulating expressions of ribosomal
protein genes may affect the implant.

10× Genomics Mice, human [112,116,118,127]

Potential therapeutic target recognition: The
scRNA-seq technique has been used to

identify novel potential targets for
therapeutic purposes in
kidney transplantation.

10× Genomics Mice, human [5,111,116,127,131]

Biomarker discovery: The scRNA-seq
technique has been used to find gene

expression signatures that can be considered
biomarkers for predicting organ rejection or

checking the responses to
immunosuppressive therapy.

10× Genomics, Mice [17,132,133]

Uncover novel cell types:
The scRNA-seq technique assists in finding
novel cell types and statuses without any

bias or RNA degradation.

10× Genomics, Human, mice [113,129,131,134]

Cells (e.g., some glomerular endothelial cells)
from the recipient or donor (e.g., the

renal architecture)
may represent endothelial chimerism.

10× Genomics Human [116]

The scRNA-seq technique shows that
leukocyte populations mostly express

sex-linked genes from recipients, which may
be linked to immune cell infiltration. For

example, natural killer cells and monocytes
are involved in kidney rejection,

10× Genomics Human [116]

Table 4. Examples of important biomarkers of kidney transplantation complications.

Gene Biomarkers Methods/Technologies Donor/Receptor References

IFNg, GSVA, and DEGs 10× Genomics Mice [110]

RTK and Axl 10× Genomics Mice [118]

PDGF, ECM, and TGF-β 10× Genomics Human [113]

Nphs2CremT/mG, SclCremT/mG, Cdh16CremT/mG,
AQP3, and HSD11B2 Droplet-based Mice [131]

CXCL10 10× Genomics Human [116]

TRDC, CD4, CD8A, KLRK1, ITGAX, CD19, and CD14 10× Genomics Human [111]

PGs, GGT5, and EMILIN1 10× Genomics, Drop-seq Human [129]
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Table 4. Cont.

Gene Biomarkers Methods/Technologies Donor/Receptor References

CD3E, MS4A1, SDC1
(CD138), and TPSAB1 Droplet Microfluidics Human [112]

ALDOB, GATM, GPX35, JUN, VIM, HSP, ALDOB,
GPX3, GATM, CTGF, CXCL12. CAV1, COL4A1/A2,

VIM, COL4A2, and VWF
Droplet Microfluidics Human [134]

TFAIP3, CXCR4, ZFP36, S100A8, S100A9, CXCL8, FOS,
MTND6, HLA-DQA2, MT-ND6, CXCL8, NFKBIA,

CD69, CD83, and HLA-DQA2
[127]

CD19 and CCR6 Human, mice [115]

CD16+, CD162, ABCA1, APOE, PDE3A, IGKC, LGMN,
iCD83, FCGR3A, CD16, and FCN1 Droplet Microfluidics Human [5]

3.3. Lung Transplantation

Identifying the donor and recipient cells in transplant biology is an important task
that is possible with scRNA-seq. One algorithm toward this goal is called scTx, which
identifies the donor and recipient genotypes using expressed single nucleotide variants and
assigns the cells to a genotype [135]. The authors tested their proposed algorithm on lung
transplanted samples and claimed that it could detect two genotypes from post-transplant
bronchoalveolar lavage and lungs with chronic lung allograft dysfunction samples.

Because of chronic rejection, bronchiolitis obliterans syndrome is a big challenge and
the key reason for weak lung transplantation outcomes. In a recent work [136], researchers
used single-cell RNA sequencing to provide an atlas of bronchiolitis obliterans syndrome
after lung transplantation outcomes. This atlas can be used to identify the changes in the
cell compositions and their individual gene expression profiles during lung rejection. They
found that the Mzb1-expressing plasma cell population in the lungs with bronchiolitis
obliterans syndrome increased more than the others. Also, CD14-expressing monocytes
and PDGFRA-expressing fibroblasts were increased. They also performed pseudo-time
and trajectory analysis, based on which they found that a Bhlhe41, Cxcr3, ITGB1-triple
positive-B cell subset plays as the progenitor pool for Mzb1+ PCs, which results in IgG2c
expression and production in the grafts with bronchiolitis obliterans syndrome.

Researchers have investigated the generation, maintenance, and function of human
lung tissue-resident memory T cells in transplanted lung samples [137]. They dynam-
ically tracked the donor and recipient T cells. They realized that the donor T cells re-
main in the transplanted lungs and highly express their markers, including CD69, CD103,
and CD49a; however, the lung-infiltrating recipient T cells acquire the phenotypes over
months. By using scRNA-seq, they identified two donor T cell subsets with different marker
gene expressions; however, recipient T cells were composed of non-tissue-resident mem-
ory T cells and tissue-resident memory T cells-like subpopulations, suggesting de novo
TRM generation.

Researchers have argued that RNA sequencing analysis indicates that lung disease
after severe and prolonged SARS-CoV-2 infection shows pathological and molecular fea-
tures similar to the ones in pulmonary fibrosis requiring transplantation [138]. This finding
suggests that lung transplantation might be necessary for these affected individuals. They
also report successful lung transplantation for these patients.

Figure 4 illustrates the single-cell analysis results of a mouse lung graft in which 11 cell
populations were found. In Table 5, some key findings in lung transplantation based on
scRNA-seq are listed. Also, related biomarkers in lung transplantation are listed in Table 6.
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Figure 4. (A) Histology sections of control (B6→B6) and bronchiolitis obliterans syndrome (HLA→B6)
mouse lung graft one month post-transplantation. Scale bars, 500 µm. Zoomed views are shown
on the right. (B) UMAP plots of 11 cell populations. (C) Heatmap illustrating most upregulated
genes in each cell cluster. The figure is taken with permission from [136] under Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), accessed on 1
February 2024).

Table 5. Examples of key findings of applying scRNA-seq to lung transplantation.

Key Findings Methods/Technologies Donor/Recipient
Species References

Cellular diversity: The scRNA-seq technique is
reported to identify cell populations associated

with bronchiolitis obliterans syndrome.
10× Genomics Mice, human [136,139–144]

Immune cell populations in rejection: In acute
cellular rejection, a clonal population of cytotoxic

and effector CD8+ T cells exist in the
transplanted lung and remain after treatment.

10× Genomics Mice, human [136,139,140,145]
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Table 5. Cont.

Key Findings Methods/Technologies Donor/Recipient
Species References

Potential therapeutic target recognition: A
subgroup of innate B-1 cells may contribute
to autoimmunity in bronchiolitis obliterans

syndrome, which represents a potential
therapeutic method.

10× Genomics Mice, human [136,139,140]

Biomarker discovery: The scRNA-seq technique
has been used to find gene expression signatures
that can be considered biomarkers for predicting

organ rejection or checking the responses to
immunosuppressive therapy.

10× Genomics Mice, human [136,143]

Macrophage polarization: Macrophages are
found to be heterogeneous cell populations,

which upon activation, polarize into
various phenotypes.

After transplantation, tissue-resident
macrophages quickly change their gene
expression profile into that of the host

organ markers.

10× Genomics Mice, human [146,147]

Uncovering novel cell types:
For example, additional endothelial and

lymphatic cell populations, megakaryocytes,
innate lymphoid cells, and mesothelial cells have

been identified in mice.

10× Genomics Mice [148]

Table 6. Examples of important biomarkers of lung transplantation complications.

References Methods/Technologies Cells Donor/Receptor Gene Biomarkers

[149] 10× Genomics Emphysema, cystic
fibrosis, sarcoidosis Human CD6914, CD103, CD69+, CD137+,

CD69+ and/or OX40+

[136] 10× Genomics COPD, CTD-ILD Human, mouse
Bhlhe41, Zbtb20, Cxcr3, Itgb1,
CD19, CD43, CD5, Xbp1, Sdc1,

Mzb1, Irf4, Ighm,

[141] 10× Genomics Bronchopulmonary
dysplasia Mouse, human Epcam, Pecam1, Ptprc,

Col1a1, Msln,

[142] 10× Genomics

Adenocarcinoma,
endobronchial
carcinoid, LLL

endobronchial typical
carcinoid,

Mouse, human

EPCAM, CLDN5, COL1A2,
PTPRC, CD31, CD45, KRT5,

MKI67, SERPINB3, C20orf85,
CLDN5, MYC, ACKR1, ACKR1,

GJA5, CCL21, CLDN5 with DAPI,
COL1A2, GPC3, Slc7a10,

SERPINF1, Pi16, ASPN, COX4I2,
COL1A2, APOE, GPR183, Slc7a10,

[144] RNeasy Plus Mini kit
(QIA GEN)

Fibrotic lung disease,
idiopathic pulmonary

fibrosis, systemic
sclerosis-associated

interstitial lung disease,
interstitial pneumonitis,

pneumoconiosis

Mouse, human CD206, CD169
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3.4. Liver Transplantation

Liver transplantation is considered a treatment strategy for patients with hepato-
cellular carcinoma, and scRNA-seq is a promising technique for detecting associated
problems. By using flow cytometry, some cell subpopulations in liver samples can be
detected [150,151]; however, unbiased scRNA-seq shows that the heterogeneous cell popu-
lation in the liver is much wider than what is detected by the flow cytometry and consists
of numerous subpopulations [152]. Most importantly, researchers used this technology
(10× Genomics) to obtain an unbiased and comprehensive liver transplant cell atlas by
collecting liver tissue samples pre-procurement, post-preservation, and two hours post-
reperfusion [153]. They identified different cell subgroups, their transcriptome changes,
and the interactions between them during liver transplantation. The results of this work
can be used to realize the cellular and molecular mechanism of graft ischemia–reperfusion
injury during liver transplantation. See Figure 5 for scRNA-seq of endothelial cells in
liver grafts.

Another research group used single-cell analysis on transplanted liver samples and
detected a subset of CSF3+ Kupffer cells that is related to the injuries associated with
graft transplantation injury [154]. They also found higher levels of dendritic cells and
CD8+ T cells in the fatty liver donors. In a preprint, authors classified the liver cells into
14 cell types and 29 subpopulations with different cell states [155]. They claimed to have
found pathogenic cellular modules associated with early allograft dysfunction, consisting
of mucosal-associated invariant T cells, granzyme B, granzyme K, natural killer cells, and
S100A12 neutrophils.

Recently, based on scRNA-seq, the complex landscapes of organogenesis containing
liver development and decidualization were analyzed [156]. In this study, scRNA-seq
and cytometry by time of flight (CyTOF) were used to uncover the cell states and sources
involved in liver graft remodeling. They also used transcriptome data to show the interplay
among hepatocytes and macrophages. The transcriptomic data they obtained revealed that
the complexity of the metabolic remodeling of the transplanted liver is a complex task in
which a regulatory network of ligands and receptors among macrophages and hepatocytes
is involved.

Subpopulations of various hepatic cell types containing macrophages, epithelial pro-
genitor cells, and myofibroblasts and their behavior were uncovered with the application
of scRNA-seq on human and zebrafish livers [157]. They applied scRNA-seq on single
cells obtained from the livers of 18-month-old male zebrafish to uncover the transcriptional
profiles of the cell types available in the liver and to use them as tools to understand liver
function and diseases. They determined the similarities between the transcriptomic data of
adult zebrafish liver and the human liver single-cell transcriptome. The next step of this
study could be on transplanted livers in zebrafish.
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Figure 5. Single-cell RNA-sequencing of endothelial cells after liver transplantation. (A) UMAP plot
presenting seven endothelial cell clusters (left). Dendrogram of the seven clusters (right). (B) Violin
plots demonstrating the normalized expression of PECAM1, CLEC4G, CD34, and LYVE1 genes.
(C) Gene Ontology enrichment analysis results. (D) Gene set variation analysis identifying the
pathways. Different colors stand for different activation scores. (E) Cell-cell interaction anal-
ysis between mononuclear phagocyte clusters and different endothelial cell clusters. The cir-
cle size stands for the level of p-value. Colors stand for different mean values. The figure is
taken from [153] with permission under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/, accessed on 1 February 2024).

http://creativecommons.org/licenses/by/4.0/
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Key findings and biomarkers of scRNA-seq in liver transplantation are listed in
Tables 7 and 8, respectively.

Table 7. Examples of key findings in applying scRNA-seq on liver transplantation.

Key Findings Methods/Technologies Donor/Recipient Species References

Cellular diversity: The scRNA-seq technique has
been used to uncover the cellular heterogeneity in

the liver, including immune cells, macrophages,
IFNg, myeloid, and T cell subclusters. These

heterogeneities highlight signatures with different
roles in allograft complications.

10× Genomics Human, rat [155,158–165]

Immune cell populations in rejection: The
scRNA-seq technique has identified various immune

cell subsets involved in graft rejection, such as T
cells, B cells, neutrophils, myeloid cells, dendritic

cells, stromal cells, macrophages, and their
transcriptional profiles and functional states during

organ rejection. Some cell populations, including
IL-7R+CD4+ T cell, and CRTAM+CD8+ T cell, are

shown to be reduced in the transplanted liver.

10× Genomics Human, mouse

Gene expression profile variations during rejection:
Gene expression variation of B cells in bronchiolitis

obliterans syndrome is uncovered.
10× Genomics Mice [136]

Potential therapeutic target recognition: The
scRNA-seq technique has been used to identify

novel potential targets for therapeutic purposes in
liver transplantation.

For example, it helps to understand the
heterogeneity of LDLR+MDSC and CTLA4+CD8+ T,

especially CD4+CD8+FOXP3 T cells, which may
result in finding innovative therapeutic methods.

10× Genomics Human [158]

Biomarker discovery: Machine learning and
scRNA-seq have helped in identifying

novel biomarkers.
10× Genomics Human [166]

Macrophage polarization 10× Genomics Human [152,167]

Uncovering novel cell types 10× Genomics Human, rat [155,158,162,163,
165]

Table 8. Examples of important biomarkers of liver transplantation complications.

References Sequencing Method Cells Donor/Receptor Gene Biomarkers

[158] 10× Genomics
Liver cirrhosis,
hepatocellular

carcinoma
human LDLR, GZMB, GZMA, GZMB, GZMH,

NKG7, GZMK, DUSP4, and COTL1

[159] 10× Genomics
Chromium

Hepatocellular
carcinoma, cirrhosis

of the liver
human

TCRs, BCRs, CD3D, KLRF1, CD79A,
IGHG1, CD177, CD68, PECAM1,

KRT7. CD4+ T cell lineages, CD4+,
(Tem, GZMK), CD4+ (CCR7, LEF1),

CD4+, (MAIT, SLC4A10),
(MKI67)

[155] 10× Genomics

Hepatocellular
carcinoma and

primary sclerosing
cholangitis disease

Human, rat S100A12, LTF, PRTN3
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Table 8. Cont.

References Sequencing Method Cells Donor/Receptor Gene Biomarkers

[152] 10× Genomics Liver cancer Human, mouse

KRT19 (CK19), EPCAM, FXDY2,
CLDN4, CLDN10, SOX9, MMP7,

CXCL1, CFTR, TFF2, KRT7
(CK7), CD24

[160] 10× Genomics Para-tumor liver
tissue, cirrhotic human

EPCAM, SOX9, AFP,
KRT7, S100A6, S100A11,

ALB, PCK1, FGG, FGA, TTR, EBPB,
APOB, CYP2E1, APOE

[161] Seven Bridges
Genomics Cholangiosepsis human

CD15, CD68, CD3, CD8, CD20,
FCGR3B, CD68, CD3E, CD4, CD8A,
Tregs, FOXP3, NKG7, FLT3, CD24,

CD79A, JCHAIN, ALB, FLT1, KRT19,
IFITM2, CSF3R, FPR1, FCGR3B,

VNN2, G0S2, CXCR2, SOD2. CXCR2,
CXCR4, CD83, CCRL2, CCL3, CCL4,

ICAM1, VEGFA, CST3,
CTSB, MS4A7, MARCH1, CD68,

MAFB, CD163, VCAN, CSF1R, LYZ,
VCAN, S100A8, S100A9,

S100A12, MNDA

[162] 10× Genomics

Chronic hepatitis B
(CHB),

HBV-associated
liver cirrhosis (LC)

patients

human CD3D, KLRF1, CD19, SDC1,
CD14, FCGR3A

[155] 10× Genomics Chronic liver
disease Mice S100A6, Ccl2, Cxcl1, Cxcl12, Col1a2,

Col3a1, Col5a2

[163] 10× Genomics Human liver
cirrhosis Human, mice MNDA, CD9, TIMD4

[164] CEL-seq2

Colorectal cancer
metastasis or

cholangiocarci-
noma

Human, mouse

AKR1B10, MKI67, PCNA, ALB, HP,
HNF4A, ASGR1, PROX1, KRT19,

CFTR, ASGR1 plus ALB, CXCL8 plus
MMP7, PECAM1, CLEC4G, CD34,

CLEC4M and FLT1

[165] 10× Chromium
Smart- seq2

Hepatocellular
carcinoma (HCC) Human CD14, CD2, CD3D, CD4, CD68,

LYZ, MS4A1

[168] 10×
Chromium

Nonalcoholic
steatohepatitis
(NASH), HCV

Human CD45, CD31, CD68, CD146, SSC-A,
PDPN, CCL21, LYVE1, FLT4, PROX1

[169] 10× Chromium
Smart- seq2

Solitary colorectal
metastasis Mouse Mki67, Col1a1+, NGFR, Adamtsl2

[170]
Droplet-based

sequencing and data
analysis, 1× Genomics

Cholangiocarcinoma Mouse

CD68, CK-19, MHCII, MHCI, CD45,
CD11b, Ly6G, Ly6C, CD19, CD115,

B220, TER-119, Tim4, NK1.1, MERTK,
CD8a, CD3e, TCRb, CD206, Lgals3,

CD11c, CX3CR1, CCR2, F4/80,
CD14, CD64

[171] DNBSEQ-G400RS
(MGI Tech) Cholangiocarcinoma Mouse Alb, Apoa1, Ass1, Spp1, Sox9

3.5. Other Transplants

The scRNA-seq technique is also used in organ transplant recipients with squamous
cell carcinoma. This method is combined with T-cell receptor sequencing to define the T-cell
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prospect in cutaneous squamous cell carcinoma [172]. This method is used to find tumor-
infiltrating lymphocyte phenotype in squamous cell carcinoma from immune-competent
and immune-suppressed patients. CD8+ T cells from the samples were sequenced to
distinguish various T cell populations. Also, the T cell immune response was characterized
by sequencing the α and β CDR3 regions.

4. Stem Cell Transplantation

Stem cell transplantation is considered a promising therapeutic method for various
diseases, including blood diseases, immune system diseases, neurodegeneration, and
cancer [173–175]. However, to be considered safe and reliable, a clear understanding of the
cell behavior after transplantation is needed. Stem cells have shown promise in treating
lung diseases. Pulmonary fibrosis (PF) is an example of a chronic lung disease for which
treatment adipose-derived mesenchymal stem cells (ADSCs) are considered candidates.
To understand the underlying mechanisms, the interaction between ADSCs and lung cells
was studied at the single-cell level [176]. Using scRNA-seq, the authors realized that
ADSC treatment changed both the transcriptomic profile and the composition of the lung
cells, especially macrophages. They also identified potential signaling pathways, such as
NGR, ANNEXIN, HGF, and PERIOSTIN. They found that the ADSCs increased the Trem2+
anti-inflammatory lung macrophages. They also decreased inflammation and fibrosis in
the lung.

The umbilical cord blood (UCB) transplant is considered a promising therapeutic
option for multiple diseases (e.g., blood cancers, myeloproliferative disorders, and genetic
diseases). Single-cell analysis has revealed the cellular heterogeneity in the nucleated cells
in UCB [177]. The authors reported 12 major cell types with multiple subpopulations.

Researchers extracted the single-cell full-length transcriptome data to construct an
isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell
transition [178]. They used the obtained atlas to identify the hemogenic signature isoforms
and the alternative splicing events. The results are crucially important because the tran-
scribed mRNAs typically undergo alternative splicing, which affects the transcript isoforms
and results in different proteins.

Allogeneic hematopoietic stem cell transplantation is considered a treatment method
for malignant hematological diseases. Tracking of T-cells in transplantation is important
and may uncover information about the graft-versus-leukemia effect. Researchers used
single-cell RNA sequencing to extract the transcriptomic data of ~35,000 single T cells in
the blood of 14 samples before and after transplantation [179]. They reported a huge drop
in unique T-cell clones post-transplantation compared with the donor samples.

To answer the need for cell replacement in diabetes, human pluripotent stem cells
differentiated into insulin-secreting β cells in islet organoids can be used. However, the
behavior of these cells in vitro compared with native adult β cells is different. Single-cell
transcriptomic profiling can detect the transcriptomic changes in these cells. By using
this method, researchers have realized that transplanted insulin-secreting β cells show
a behavior closer to the adult β cells [180]. They showed an increase in the insulin and
IAPP protein secretions after transplantation. The obtained results of this study provide a
wealth of information about the human islet cell maturation, as well as the maturation of
the insulin-secreting β cells.

Stem cells have been transplanted for brain disorder treatment as well. The cells to
be transplanted are usually obtained from the fetal brain tissue or the stem cells. After
transplantation, the dopamine neurons are rare, determining the identity of other cell types.
Researchers used single-cell RNA sequencing on a rat model to characterize the grafts from
the human embryonic stem cells and fetal tissue [181]. They found a high level of neurons
and astrocytes in both cases, while they found an additional perivascular-like cell type in
the stem cell-derived grafts. Figure 6 illustrates the performed scRNA-seq analysis, as well
as the histological validation of the transplanted cells into the midbrain.



Biosensors 2024, 14, 189 24 of 38
Biosensors 2024, 14, x FOR PEER REVIEW 25 of 41 
 

 
Figure 6. The scRNA-seq technique and histological validation of transplanted cells into the mid-
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bryonic stem cells. (b) Growth of hNCAM fiber from hESC-derived graft. (c) Immunohistochemis-
try. (d) Drug-induced rotation test that shows functional recovery in rats after transplantation (n = 
6 rats; mean ± SEM; ** p < 0.01; compared to post-lesion; two-tailed paired t-test). (e) UMAP plots of 
7875 analyzed cells after transplantation. (f–i) Expression level for each cluster of biomarkers. (j) 
UMAP of transplanted cells for cells isolated by FACS (blue circles, n = 5958) and not by FACS 
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Figure 6. The scRNA-seq technique and histological validation of transplanted cells into the midbrain.
(a) Schematic of experiments. VM-patterned hESCs: ventral midbrain-patterned human embryonic
stem cells. (b) Growth of hNCAM fiber from hESC-derived graft. (c) Immunohistochemistry. (d) Drug-
induced rotation test that shows functional recovery in rats after transplantation (n = 6 rats; mean ± SEM;
** p < 0.01; compared to post-lesion; two-tailed paired t-test). (e) UMAP plots of 7875 analyzed cells after
transplantation. (f–i) Expression level for each cluster of biomarkers. (j) UMAP of transplanted cells
for cells isolated by FACS (blue circles, n = 5958) and not by FACS (magenta circles, n = 1917). Scale
bars, 1 mm (b); 200µM (c). The figure is taken with permission from [181] under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/, accessed on 1
February 2024).
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Muscle stem cells maintain their regenerative capabilities after transplantation into
recipient hosts [182,183]. However, primary myoblasts do not show the ability to engraft
and proliferate after transplantation. The scRNA-seq technique is used to uncover the
transcriptional state and developmental dynamic trajectories of injured muscle stem cells
and primary myoblasts [132]. Researchers aligned the obtained transcriptomes of muscle
stem cells derived from homeostatic and injured muscles, as well as primary myoblasts,
along a pseudo-temporal single trajectory to order them (unsupervised). This method
allowed them to describe the progression of the differentiation process at the single-cell
level. They found two clusters (i.e., close-to-quiescence and early-activation clusters) with
partially overlapping transcriptomes. They used bioinformatic techniques to recognize the
difference between the two and place them in distinct space-time pathways.

Researchers have used scRNA-seq to provide the transcriptional landscape of human
hematopoietic progenitors at the single-cell level [133]. They then showed that the CD38
antigen, which is usually considered the biomarker to negatively enrich the primitive
progenitors for transplantation, is not a good choice. By showing the biological relevance of
the CD164 gene in early hematopoiesis, they suggested using this marker instead in clinical
transplantation and gene therapy. In another work, where scRNA-seq was used to classify
transplanted hematopoietic stem cell identities at various differentiation stages, researchers
found that the branching of hematopoietic lineage differentiation in adult marrow occurs
at the transcriptional hematopoietic stem cell and transcriptional multipotent progeni-
tor stages [184]. However, they found that the majority of transplanted hematopoietic
stem cells committed to transcriptional multipotent progenitors. The proliferation of the
donor-derived hematopoietic stem cells surviving after transplantation is accompanied by
gradually decreasing the hematopoietic stem cell population. However, a balance between
proliferation, differentiation, and stem cell maintenance maintains the cell functions at the
bulk level.

To identify the role of tissue-resident memory T cells in the host defense system,
samples from allogeneic hematopoietic stem cell transplanted patients were used, and the
interindividual variation in host skin tissue T cell maintenance was studied [185]. Long-
term persistence of host skin T cells that is reported not to be consistent with the chronic
graft-versus-host disease development was seen in a group of patients.

The scRNA-seq technique was used to show that both fetal ventral midbrain and
human embryonic stem cells-derived dopamine progenitors increase neurons and astro-
cytes after grafting [181]. Oligodendrocytes were present in fetal cell grafts; however, a
cell type not known as a part of neural grafts was seen in grafts of human embryonic stem
cells-derived ventral midbrain-patterned progenitors. The results of scRNA-seq of the cells
before transplantation and at the time of transplantation indicated that genes associated
with vascular leptomeningeal cells and progenitors were expressed. This finding suggests
the potential of human embryonic stem cell-derived progenitors for generating both neural
and perivascular cell types at this time. The scRNA-seq results suggest that future studies
should investigate the contribution of various cell types to graft function. These studies can
open the window to understanding the role of vascular leptomeningeal cells, astrocytes,
and oligodendrocytes in the behavior of the graft.

The scRNA-seq technique was used to study the dynamic gene expression profile
during limbal stem cell differentiation [186]. Expression heterogeneities among subgroups
of the differentiated cells were detected. Epithelial–mesenchymal transition during the
differentiation process, which may result in the generation of untargeted cells, was reported.
Pseudo-time trajectory showed changes in transcriptions and signs of commitment for
limbal stem cells and their progeny. The new markers found for limbal stem cells in this
study need further work to identify their origin and accuracies.

Tables 9 and 10 show some key findings and biomarkers of single-cell analysis in stem
cell transplantation, respectively.
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Table 9. Examples of key findings in applying scRNA-Seq on stem cell transplantation.

Key Findings Methods/Technologies Donor/Recipient Species References

Cellular diversity Illumina Hiseq platform
(Novogene), 10× Genomics mouse [184,187,188]

Cell populations:
A neutrophil progenitor population that

highly expresses S100A gene family
members is detected in transplanted

hematopoietic stem cells.
Combined with FACS, scRNA-seq can ensure

cellular purity in samples.
Evaluating the ability of the bone

marrow-mesenchymal to differentiate into
subpopulations is possible.

10× Genomics Chromium mouse, human [189,190]

Gene expression profile variations
Illumina Hiseq platform

(Novogene), 10× Genomics
Chromium

mouse [180,184,187]

Potential therapeutic target recognition:
The scRNA-seq technique identifies
therapeutic targets for osteosarcoma.

10× Genomics mouse, human [191]

Uncover novel cell types:
The scRNA-seq technique assists in

uncovering novel cell types.
10× Genomics mouse, human [188]

Table 10. Examples of important biomarkers of stem cell transplantation complications.

References Methods/Technologies Notes Donor/Receptor Gene Biomarkers

[187] 10× Genomics two iliac cristae, two
tibiae and two femora mice CD41, CD150

[184] Illumina Hiseq
platform (Novogene) hematopoietic system mouse, rat

Lin-Sca1+Kit+CD34-Flk2-
Lin-Sca1+Kit+CD34-CD150+CD41-
Lin-Sca1+Kit+CD34-CD150-CD41-

CD201+CD150+CD48-CD45+
CD201+CD150+CD48-

CD45+Sca1+Kit+

[180] 10× Genomics
Chromium Diabetes mouse MAFA, FAM159B, NAA20

[188] 10× Genomics
acute myeloid

leukemia (AML)
patients

mouse, human

CCR10, TNFRSF18, GZMK, CD8A,
TNFRSF18, SIGLEC7, GNLY, LGALS3,
CCR10, CD4, CLEC4C, PF4, PTCRA,

CD8B, ID3, CD79A

[192] 10× Genomics hematological
malignancies, human

CD3D, CD4, IL7R, CCR7, CCR6,
CCL5, TBX21, FOXP3, CD8A, CD8B,
CXCR6, RORC, CD69, IFIT3, GZMH,

TRGC1, XCL1, XCL2, IL1R1, KIT,
IFNG, FCGR3A

[193] 10× Genomics Wolfram syndrome
(WS) mouse, human SPINK1, ID3, NKX2-2, MAFB,

NKX6-1, NKX2-2, GCK, ISL1, PDX1

5. Tumor Transplantation

Another application area in the field of transplantation is where it is used to study
cancer therapeutic methods in vivo. A tumor is transplanted in an animal model, and then
its behavior and response to cancer drugs are studied. However, single-cell analysis shows
different immune landscapes in transplant and primary tumors and distinct responses
to immunotherapy. Kirsch, from Duke University, and his coworkers showed that PD-1
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blockade and radiotherapy can be used to cure transplant sarcomas; however, this protocol
does not work in autochthonous sarcomas [194]. They found differences in immune
landscapes of tumor-infiltrating immune cells from transplanted and primary tumors.

In most preclinical studies in cancer biology, researchers transplant tumors to study
them in vivo. With the help of single-cell analysis, researchers have shown that although
transplant sarcomas can be treated by programmed cell death-1 (PD-1) blockade and
radiotherapy, this treatment cannot cure autochthonous tumors. This group used scRNA-
seq and mass cytometry to study tumor-infiltrating immune cells from transplanted and
primary tumors before and after radiation therapy and anti-PD-1 immunotherapy and
found different immune profiles. They found that transplanted tumors are enriched for
activated CD8+ T cells and PD-L1+ macrophages and concluded that PD-1 blockade and
radiotherapy may be good treatments for patients with a sarcoma immune phenotype
similar to those transplanted tumors [194].

The scRNA-seq technique applied to transplanted breast cancer tumors in mice shows
that the aggressive tumor niche is determined by a basal-like population and mixed-lineage
cancer cells [195]. The analysis showed two luminal-like populations (i.e., major Luminal 1
and minor Luminal 2). Figure 7 shows the scRNA-seq experiments and the obtained results.

See Tables 11 and 12 for examples of key findings in scRNA-seq applied to tumor
transplantation and the related biomarkers, respectively.

Table 11. Examples of key findings in applying scRNA-seq on tumor transplantation.

Key Findings Methods/Technologies Donor/Recipient Species References

Cellular diversity:
The intra-individual, interindividual, spatial,

functional, and genomic heterogeneity in
melanoma cells, as well as tumor factors

affecting the microenvironment (e.g.,
tumor-infiltrating immune cells,

tumor-associated fibroblasts, and endothelial
cells), are identified.

10× Genomics human [196–198]

Key factors:
TNF receptor-related factor 3 (Traf3) is found

to be significantly mutated in murine
intrahepatic cholangiocarcinoma. In human
intrahepatic cholangiocarcinoma, an inverse

correlation between Traf3 and
NF-κB-inducing kinase expression is

reported. NF-κB-inducing kinase inhibition
damps the growth of intrahepatic

cholangiocarcinoma.

DNBSEQ-G400RS (MGI Tech),
10× Genomics mouse [171,196,197]

Gene expression profile variations:
The scRNA-seq on the liver had identified

mostly convergent gene expression
alterations when primary biliary cholangitis

and primary sclerosing cholangitis were
compared to normal controls.

Genes expressed by one cell type (e.g., CAFs)
may affect the proportion of other cell types

(e.g., T cells).

10× Genomics,
DNBSEQ-G400RS (MGI Tech) mouse [171,196,199]

Potential therapeutic target recognition:
The E2 subunit of mitochondrial pyruvate

dehydrogenase complex (PDC-E2) is
potentially considered for validating

potential immunotherapeutic candidate
strategies against cholangiocarcinoma.

10× Genomics,
DNBSEQ-G400RS (MGI Tech) mouse [171,196,199]
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Table 11. Cont.

Key Findings Methods/Technologies Donor/Recipient Species References

Uncovering novel cell types:
The scRNA-seq technique reveals novel cell

types and states without biased results.
It identifies novel cell subtypes that undergo

immune rejection.
Primary biliary cholangitis liver and

underlying developed cholangiocarcinoma
contain several clonotypes, often

shared between two tissues.

10× Genomics mouse, human [113,200]

Tracking T-cell polarization:
scRNA-seq detects genes associated with Th1

and Tc1 lymphocyte subsets in primary
biliary cholangitis compared with primary
sclerosing cholangitis livers. These T cells
were detected within cholangiocarcinoma
tumors and draining lymph nodes of mice

with primary biliary cholangitis but not
primary sclerosing cholangitis. Th1- and

Tc1-polarized subsets play a key
role in rejecting cholangiocarcinoma tumors.

10× Genomics mouse [199]

Table 12. Examples of important biomarkers of tumor transplantation complications.

References Methods/Technologies Tumor Types Donor/Receptor Gene Biomarkers

[199] 10× Genomics cholangiocarcinoma mouse

FoxP3, IFNγ, IL4, IL17a, Cd3g, Cd4,
Cd8a, Id2, Tcf7, Eomes Il7r, Prdm1, Il2,

Tbx21, Gata3, Il4, Rorc, Bcl6, Foxp3,
Gzma, Gzmb, Gzmk, Ifng, Icos, Cd28,

Cd27, Tnfrsf4, Tnfrsf9, Tnfrsf18, Cd40lg,
Pdcd1, Ctla4, Lag3, Havcr2, Tigit, Btla,

Lta, Adora2a, Klrg1, Cd38, Nt5e,

[171] DNBSEQ-G400RS
(MGI Tech) cholangiocarcinoma mouse Alb, Apoa1, Ass1, Spp1, Sox9

[196] 10× Genomics melanoma tumors human

CD2, CD3D, CD3E, CD3G, CD19,
CD79A, CD79B, BLK, CD163, CD14,
CSF1R, PECAM1, VWF, CDH5, FAP,

THY1, DCN, COL1A1, COL1A2,
COL6A1, COL6A2, COL6A3

[198] 10× Genomics

Non-small cell lung
carcinoma (NSCLC),
neuroblastoma (NB),
MBC, glioblastoma;
high-grade glioma,

CLL, ovarian,
melanoma, sarcoma

human

KRT8, MRC1, TRAC, JCHAIN, TPSAB1,
PTPRC, APOE, MAG, THY1, MITF,

CA8, CFH, PAX3, CD99, KRT5, SFTPB,
FOXJ1, MUC1, CGRP, SFTPC, AGER,

FSP1 PECAM1, TH, MYCN, SOX2,
STMN2, FDX1, PROM1, PDGFRA,

UCHL1, LGALS3, HOPX, VIM

[197] 10× Genomics

Non-small-cell lung
cancer (NSCLC), lung
squamous carcinoma

(LUSC), lung
adenocarcinoma

(LUAD)

human

TPSAB1, TPSB2, CPA3, HPGDS, CLU,
AREG, MS4A2, RGS13, VWA5A,

LAPTM4A, C1orf186, SLC18A2, LTC4S,
KIT, HDC, MAOB, RGS1, RP11-

354E11.2, SAMSN1, RGS2, SLC26A2,
PTGS1, NSMCE1
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Figure 7. The scRNA-seq experiments on breast tumor transplanted mice. (a) Schematic of scRNA-
seq experiments. Indolent tumor cells, indolent immune cells, aggressive tumor cells, and aggressive



Biosensors 2024, 14, 189 30 of 38

immune cells were collected from 13 pooled mice. (b–d) UMAP plots of the single-cell data. Clusters
proportions are depicted in (d). (e) Heatmap of highly differentially expressed genes for each cluster.
(f) UMAP plots of all tumor cells, with colors indicating expression of KRT14, Csn3, KRT15, and
Acta2 for basal-like cells, Luminal 1 cells, and Luminal-Basal cells, respectively. Trajectory plot of
all tumor cells, with colors indicating pseudo-time value (g) and cluster ((h), left panel). ((h), right
panel) Trajectory plots of Luminal 1, LB, and basal cells are shown. The arrows depict increasing
pseudo-time value. The figure is taken with permission from [195] under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/, accessed on 1
February 2024).

6. Conclusions

Single-cell RNA sequencing is an exciting new technology with the capability of
driving significant progress in various bio-disciplines. It allows researchers to examine
individual cells and uncover the molecular dynamics within them, revolutionizing the way
biological processes can be studied. One of the important fields in which scRNA-seq has
made fundamental advancements is transplantation.

Transplantation is the care gold standard for end-stage organ diseases; however, not
all transplantations are successful. The most frequent complication of transplantation is
allograft rejection. Currently, the diagnosis of these complications in the clinical setting
needs biopsies obtained from the patients. However, traditionally found biomarkers are
not fully reliable for detecting rejection.

The scRNA-seq technique uncovers cell heterogeneity, cell states, and graft compli-
cations in solid transplantation and stem cell transplantation. It is also used in studying
transplanted cancer cells. The scRNA-seq technique can provide a comprehensive single-
cell atlas of gene expression profiles in acute rejection and transplant complications. It
uncovers the contribution of T cells and natural killer cells, as well as the association of var-
ious subsets of macrophages, including infiltrating (m3 and m4) and resident macrophages
(m1 and m2), in graft rejection. Major findings include cell diversity in grafts, gene ex-
pression profile variation during graft rejection, identifying novel biomarkers, uncovering
macrophage polarization, and immune profile landscapes.

The obtained large and high-dimensional data from single-cell analysis needs compu-
tational data processing and analysis. Machine learning methods are employed to develop
analysis pipelines and predictive models toward this goal. In the future, more advanced
machine learning methods will further contribute to the development of the field.
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