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Abstract: With the development of society, the demand for smart coatings is increasing. The develop-
ment of flexible strain sensors using block copolymer self-assembled ionic gel materials provides a
promising method for promoting the development of smart coatings. The ionic liquid in the ionic part
of the material is crucial for the performance of the sensor. In this study, the structural changes within
FDA/dEAN (self-assembly of acrylated Pluronic F127 (F127-DA) in partially deuterated ethylammo-
nium nitrate (dEAN)) triblock copolymer ionic gel during uniaxial tensile flow were characterized
using an in situ SAXS technique. The results revealed that the characteristics of the responses of the
ionic gel to strain resistance were intricately linked to the evolution of its microstructure during the
tensile process. At low levels of strain, the face-centered cubic lattice arrangement of the micelles
tended to remain unchanged. However, when subjected to higher strains, the molecular chains
aligned along the stretching direction, resulting in a more ordered structure with reduced entropy.
This alignment led to significant disruption in bridging structures within the material. Furthermore,
this research explored the impact of the stretching rate on the relaxation process. It was observed that
higher stretching rates led to decreases in the average relaxation time, indicating rate dependence
in the microstructure’s behavior. These findings provide valuable insights into the behavior and
performance of flexible strain sensors based on ionic gel materials in smart coatings.

Keywords: ionic liquid; ion gel; flexible strain sensor; in situ technology; self-assembly

1. Introduction

The dynamic response mechanisms of triblock copolymers have long been of great
interest in the field of strain sensors [1–3]. The advantages of hydrogels and ionic gel lie in
their excellent chemical and optical properties [4]. These materials use ion migration to
achieve conduction, which is similar to biology, so conductive hydrogels have attracted
much attention. Most hydrogels cause isotropic dissipation of energy during the stretching
process, which does not cause large deformation in a polymer network. The polymer net-
work structure of a double-network hydrogel matrix mainly includes a highly crosslinked
integrity structure network and a polymer network structure that is loose but can withstand
stress deformation without damaging the structure. The elastic matrix of a high-toughness
conductive hydrogel can be selected from a rich polymer library. For example, polyacrylic
acid/alginate [5], polyacrylamide [6], and polyvinyl alcohol [7] can be used as the matrix
material of a hydrogel. The theory and method of supramolecular chemistry were used
to prepare tough hydrogels with a skin-like self-healing function. For example, a super-
molecular mineral hydrogel of amorphous calcium carbonate nanoparticles was prepared
by physically crosslinking polyacrylic acid and alginate [8]. The rapid crosslinking of poly
(acrylic acid) and alginate could achieve rapid self-repair (within 20 min).
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There is a lot of evidence to prove that the compatibility between different polymers
in block copolymers is easily affected by shear flow at the microscopic level, leading
to microphase separation [9–14]. Previous studies have confirmed that shear flow can
rearrange or alter the morphologies and structure of the microphases in block copolymers,
or transform randomly arranged microphases into regular arrangements [10,11,15,16].
Researchers have not studied triblock copolymers undergoing uniaxial extensional flow in
much detail [17,18]. The research to date has tended to focus on mechanical behavior rather
than structural changes [19,20]. The few studies on structural changes have been limited
to using ex situ techniques to study the effect of shear flow on structural changes [21].
Although some research has been carried out on structural changes, the dynamic response
mechanisms of triblock copolymers have not been established [22]. There have been no
reports on the structural characteristics and mechanical properties of block copolymers
after stretching.

The study of the structural behavior of amphiphilic poly(ethylene oxide)–poly(propylene
oxide)-based triblock copolymers ion gel was first carried out by López-Barrón et al. [23],
who used in situ SAXS to characterize structural and positional changes with peaks. During
the stretching process, when the FCC changes to HCP, the FCC lattice rearranges, forming
a microzone domain with microphase separation. Mechanical data of block copolymers are
collected based on transient tensile viscosity. The strength and toughness of gels can be en-
hanced significantly by the formation of a face-centered cubic (FCC) structure that involves
multiple penetrating networks of chains. Designing polymer network structures using
chemical crosslinking is still an important means to improve the mechanical properties of
gel materials [24,25]. Covalent crosslinked gel has elastic mechanical characteristics [26].
When chemical bonds are introduced, the response time and response rates of gel materials
are affected [27,28]. This elastic mechanical phenomenon of ionic gel is explained by the
theory of transient polymer crosslinking networks [29–31]. In some studies, scholars have
proposed models that can be used to analyze the viscoelastic behavior of permanent and
temporary gels [32–37]. These models can accurately describe the mechanical response
of covalent and non-covalent gel materials. Although there is not much change in the
overall structure after polymer crosslinking, the crosslinking density of a polymer has a
significant impact on the mechanical response. After polymer crosslinking, the crosslinking
nodes have a limiting effect on the flow of a solution, making the polymer an elastic body
with good flexibility and tensile properties [38–41]. Pluronic F127 (F127) is a non-ionic hy-
drophilic three-block copolymer with an ABA structure composed of a central hydrophobic
block of polypropylene oxide (PO) and two external hydrophilic blocks of polyethylene
oxide (EO). It has an approximate formula of EO97PO68EO97 and a MW ≈ 12.5 kDa [42].
Albano et al. compared the results of extensive MD simulations of PL F127 micelles at the
CG level, with two different initial conditions (MS and MU) [43].

For this study, the triblock copolymer PEO106-PPO70-PEE106 (F127) was selected as
an elastic matrix, and the ionic liquid ethylammonium nitrate (EAN) was selected as a
conductive material to ensure that the ionic gel could be used as a basic flexible strain sensor.

The main findings of this article are as follows: Acryloylation of block copolymer
F127 was achieved via chemical modification. Then, the ionic gel was obtained via the self-
assembly of block copolymer F127DA in the ionic liquid EAN combined with photoinduced
chemical crosslinking. The mechanical properties and electromechanical responses of
the ionic gel were characterized. Synchrotron radiation X-ray technology was used to
analyze the structural changes during the stretching process, analyze the reasons for
the special electromechanical response during the stretching process, and explore the
relationship between the changes in the microstructure during the stretching process and
the mechanical and electrical properties of the ionic gel. We simultaneously analyzed the
effects of the relaxation time and stretching rate on the microstructural changes during the
relaxation process.
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2. Experimental Section
2.1. Materials

The materials used in this study were amphiphilic poly (ethylene oxide)–poly (propy-
lene oxide)-based (F127) triblock copolymers obtained from Sigma-Aldrich, and they were
used as received. The sample had a reported MW = 12600 (PEO106-PPO70-PEO106). This
material exhibits an ordered-disordered transition (ODT) at room temperature (24 ◦C). The
heating process of this polymer material plays a decisive role in the microphase separation
of block polymers.

Pluronic F127 Diacrylate (FDA) was synthesized based on the method proposed
by Cellesi et al. [44]. Please refer to the Supplementary Materials (S1) for the detailed
experimental process. Table 1 shows the parameters of each material.

Table 1. The parameters of each material.

Material Specifications Manufacturer

PEO106-PPO70-PEO106 (F127) Mw = 12,600 Sigma-Aldrich
(St. Louis, MO, USA)

CH2Cl2 (MC) AR Sinopharm
(Beijing, China)

C6H15N (TEA) AR Sinopharm
(Beijing, China)

C3H3ClO (AC) 96% Aladdin
(Shanghai, China)

C2H5NH3NO3 (EAN) 96% Shanghai Chengjie Chemical
(Shanghai, China)

C5HC6HC7H (PE) 30–60 OC Sinopharm
(Beijing, China)

HOC6H10COC6H5 (UV-184) AR Aladdin
(Shanghai, China)

MgSO4 AR Sinopharm
(Beijing, China)

2.2. Preparation of Ionic Gel Materials

The preparation process for dry FDA/dEAN ionic gel was as follows:
(1) In a small closed bottle, take a certain amount of FDA and EAN and add 1 wt.% of

photo initiator 184. (2) Using a vortex mixer to mix the mixture for 30 min can isolate air
and prevent moisture from entering. (3) Centrifuge the mixture at 5000 rpm for 20 min to
obtain a clear solution. (4) Transfer the solution from the test tube into a pre-prepared mold
measuring 60 mm × 10 mm × 1 mm. (5) Place a 365 nm, 40 mW/cm UV lamp 15 cm above
the sample, control the temperature at 40 ◦C using a heating plate below the sample, and
perform UV crosslinking for a certain period of time. (6) Carefully remove the ionic gel
with tweezers to obtain transparent ionic gel.

The synthesis procedure for preparing aqueous FDA/dEAN ionic gel was the same
as that for drying FDA/dEAN ionic gel. In the aqueous FDA/dEAN ionic gel, the water
content of the EAN was 6.0 wt.%.

2.3. Characterization of Samples

At a temperature of 40 ◦C, the tensile viscosity was measured using a Sentmanat
tensile rheometer fixture (SER-HV-A01) (Ann Arbor, MI, USA) in a Rheometric Scientific
ARES-LS controlled strain rheometer [45,46].

Small-angle X-ray Scattering (SAXS) tests were carried out using the Shanghai Syn-
chrotron Radiation Facility (SSRF) at the Shanghai Institute of Applied Physics, Chinese
Academy of Sciences (Shanghai, China). Data were analyzed using the commercially
available software FIT-2D (V10.132) and SasView (5.0.6-2). For in situ extensional flow
tests at 25 ◦C, SAXS images were collected with a Mar CCD detector at a resolution of
1024 × 1024 pixels using X-rays with E = 9 keV (λ = 0.124 nm) and a sample-to-detector
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distance of 1.8 m. Images were collected every 5 s using a 1 s exposure. Several frames
were collected before the flow to confirm the initial cylindrical morphology and to assess
the structural state of each sample in the initial condition. The experimental setup included
an SER fixture housed in a custom-built oven with a stepper motor to drive the fixture. The
X-ray beam traveled into the oven, between the two drums of the SER and through the
center of the sample, while the scattered X-rays left through the back side of the oven to the
detector. The experiments were performed at 25 ◦C at extension rates of 0.001–0.2 s−1 with
final Hencky strain values of 0.10–2.5, followed by a 5 min period of relaxation following
flow cessation [47].

3. Results and Discussion

The mechanical response of the EAN/F127DA ionic gel under tensile load was studied
using a KW tensile tester at 30 ◦C, and a tensile rate of 0.1 mm/s ∆L/L0 defined the
elongation. Figure 1a shows the tensile properties of the EAN/F127DA ionic gel. When the
elongation was 0%~10%, it was in the elastic deformation stage. At this stage, the stress–
strain curve tended to be straight, and the stress and strain became proportional, which
was mainly caused by the change in bond length and bond angle in the block copolymer.
The yield point was at 10% elongation. Then, the ionic gel entered the plastic deformation
stage. Under stress, the chain segments of the block copolymer began to move, changing
from a curled state to an extended state. Strain hardening started when the elongation
reached 50%. Under continuous stress, a large number of chain segments were completely
straightened, and the molecular chains began to align, forming many nodes between the
molecular chains and further improving the strength of the EAN/F127DA ionic gel. The
tensile properties of EAN/F127DA ionic gels with different ionic liquid concentrations
were also different. In this experiment, the ultimate tensile strength was also measured. In
the graph, it can be seen that the sample performance was optimal when the proportion of
ionic liquid was 75% (IG75%).

In Figure 1b, as the proportion of ionic liquid decreased, the ductility of the EAN/F127DA
ionic gel also gradually increased. This was because the proportion of ionic liquid decreased
and the proportion of block copolymer increased, so more bridging structures formed
between the polymer micelles, which greatly improved the ductility. However, samples
with low ionic liquid contents had lower fracture strengths than other samples, indicating
that the samples became “soft and tough” and were more easily stretched (requiring
less stress). In this experiment, the ultimate tensile strength was also measured. The
ultimate tensile ratio of the ionic gel was 2000%, and the ultimate breaking strength was
3.0 ± 0.01 MPa, which fully met the tensile property requirements of flexible strain sensors.
In the graph, it can be seen that the sample performance was optimal when the proportion
of ionic liquid was 75% (IG75%). The tensile performance of an ionic gel material is an
important parameter to measure its ability to be used as a flexible strain sensor. The
tensile performance of the EAN/F127DA ionic gel prepared in this experiment is shown
in Figure 1c–e. It can be clearly seen that the EAN/F127DA ionic gel had a high tensile
ratio (as shown in Figure 1d) and did not break when stretched to 300% by hand. Even
if the EAN/F127DA ionic gel was knotted and stretched to 300%, no fracture occurred,
indicating that EAN/F127DA ionic gel can meet the tensile property requirements of flexible
strain sensors. EAN/F127DA ionic gel can also meet the electromechanical performance
requirements of flexible strain sensors. (Refer to supplementary material for the mechanical
and electrical performance analysis.)

In this experiment, the IG75% sample with the most prominent peak position was
selected to conduct in situ small-angle X-ray scattering experiments on its stretching
process (Figure 2). First, in this experiment, the one-dimensional data corresponding to the
2DSAXS image in the initial state were fitted, and the results are shown in Figure 2b. Based
on the unique and characteristic peak positions of the FCC structure, it was determined
that the first peak was a [1,1,1] crystal plane, the second peak was a [2] crystal plane, the
third peak was a [2,2,0] crystal plane, and the fourth peak was a [3,1,1] crystal plane. The
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ratio between the peak positions was close to 1:
√

4/3:
√

8/3:
√

11/3, which was consistent
with the peak position characteristics of the FCC structure [48]. The diffraction peaks in
such samples are broad, indicative of a relatively poor long-range order [23]. However, the
position of the peaks in the micro-region of the material we prepared exhibited high-quality
long-range ordering. Please refer to S2 for the calculation of related functions.
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In the 2DSAXS images taken during the stretching process (Figure 3a–d), an isotropic
SAXS profile was observed before stretching, indicating that the microstructure was com-
posed of randomly oriented FCC grains. Stretching the sample resulted in the appearance
of six symmetrical diffraction spots, indicating that the micelles were stacked with HCP
layers perpendicular to the X-ray beam. The “Six Point” image started at ε = 0.7. It was
clearly observed that as the strain increased, this phenomenon became increasingly ap-
parent. It can be inferred that the strain hardening of an ionic gel occurs under the effect
of continuous stress, and greater stress is required to continue deformation. At this time,
micelles are easier to stack in HCP layers [49]. It is worth noting that this transformation is
reversible, as the stress in the unloaded sample (such as in the 2D SAXS image marked as
“return” in Figure 3e and the corresponding curve in Figure 3f) was almost identical before
and after stretching, indicating a return to the same micelle structure.
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Figure 3. The stretching recovery process of IG75% ionic gel (75% ionic liquid) below 40 ◦C:
(a–e) 2DSAXS diagrams under different stress effects; (f) stress–strain curve.

In Figure 4b, as the strain increased, the second, third, and fourth peaks of the sample
gradually disappeared, which may have been due to the influence of stress leading to
changes in the microstructure. Since the plane density of the [1,1,1] plane was the highest
in the FCC structure, the micelles tended to stack along the [1,1,1] plane under stress. While
at low strain, the stress action was smaller than the intermolecular force, no slip occurred
between the [1,1,1] planes (stretched to 15%), and the position of the peak did not shift
relative to the original image. As the strain increased, the micelles on the [2,0,0] plane
were stacked along the [1,1,1] crystal plane before the micelles on the [2,2,0] and [3,1,1]
crystal planes (stretching to 30%). When the strain was too large (stretched to 100%), peak
positions 2, 3, and 4 disappeared, indicating that the micelles were stacked according to the
[1,1,1] crystal plane. In addition, it was also found that in the process of stretching the ion
gel, the scattering intensity gradually decreased with an increase in strain, indicating that
the degree of regularity of the micelles on the [1,1,1] plane also changed.
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Figure 5 provides further evidence in this regard, showing the one-dimensional SAXS
profiles of the samples before, during, and after stretching using azimuth integration.
Although the hexagonal diffraction pattern in the 2D SAXS data only penetrated the strain-
hardening regime, its formation began at lower strains, i.e., in the plastic deformation
state, which is evident in Figure 5b. Figure 5b shows the intensity variation in the azimuth
function. The earliest peak had already appeared occurring at ε = 0.3, as indicated by the
arrow in Figure 5b. The peak increase rates at points 2 and 5 were significantly slower
than the peak increase rates at the other four points, with the direction exactly parallel to
the tensile direction. The peak intensity increased with strain, indicating a decrease in the
randomly oriented region and that the FCC became a layered HCP [49–54].
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270◦-wide sectors of the parallel image (azimuthal angle −45◦ to 225◦).
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In previous studies, several colloidal systems were reported to induce crystal structure
transformation into HCP structures through shear. Under shear flow, the arrangement of
HCP layers is parallel to the velocity direction in the direction of dense packing. Due to
the higher planar density of the [1,1,1] surface of the face-centered cubic lattice (as shown
in Figure 6a), where adjacent micelles are closer in that plane than in the [1,0,0] or [1,1,0]
planes, the reason for the shear-induced FCC-to-HCP transition is easily understood. On
the [111] plane, the higher interaction force between adjacent micelles can make them
resist shear stress. The micelles in the [1,1,1] plane of an FCC structure have the same
configuration as those in the [0,0,[1]] plane of an HCP structure, with the latter having a
hexagonal geometric shape, forming a hexagonal scattering profile. Therefore, the transition
from an FCC structure to an HCP structure is only composed of shear arrangement layers
on the FCC [111] surface (as shown in Figure 6c) [55].
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Figure 6. (a) Schematic diagram of the FCC [1,1,1] plane. (b) Schematic diagram of the deformation
of the [1,1,1] plane during stretching. (c) Cartoon showing the layered HCP structure observed
during stretching. Schematic diagram of the layered HCP structure observed during stretching
(d) 1,2 orientation and (e) 1,3 orientation.

The formation of HCP layers that are perpendicular to the deformation plane creates
ion channels between the layers, as shown in Figure 6d,e. This configuration results in
an increased “void” for ion transport in the stretching direction compared to the initial
configuration of randomly oriented face-centered cubic grains. Therefore, the apparent
microstructural transition in the SAXS experiments under uniaxial deformation could
explain the decrease in the resistance of the ion gel upon stretching. During stretching,
mechanical energy is stored in elongated bridges that connect different micelles. Therefore,
when the stress is released, the bridges return to their initial state, and the micelles are
pulled back to their initial position, which may explain the reversibility of the FCC-to-HCP
transition observed via SAXS. This can also explain the increase in ionic resistance upon
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unloading due to the increase in tortuosity when a randomly oriented face-centered cubic
grain morphology is restored. Of course, not all bridge structures can withstand tension,
and when the bridge breaks, it is difficult to return to its original state, as reflected by the
measured permanent deformation.

To further explore the energy dissipation mechanism of the ion gel, the tensile-recovery
cycle test was performed on the IG75% sample. Figure 7 shows ten consecutive stretch
recovery cycles at three different strains, covering three deformation states: below the yield
point (strain = 10%), the plastic deformation region (strain = 50%), and the strain-hardening
state (strain = 620%). Hysteresis was observed in the three regimes, indicating that there
was a certain amount of internal viscoelasticity-induced friction and loss. The hysteresis
was significantly larger during the first stretch–recovery cycle than in subsequent cycles,
which is a typical response of gel composites known as the Mullins effect, as illustrated in
Figure 7b,c. If subsequent cycles were performed with increasing strain, the hysteresis also
increased accordingly, but the increase was not significant, indicating that the internal struc-
ture was not further damaged during cycling after the second cycle. Between the cycling
curves, representing the dissipation of energy during cycling, and between each tensile
state studied (as shown in Figure 7d), both the tensile set and dissipated energy increase by
approx. one order of magnitude. The difference between cycles 2–10 and the initial cycle
was large, indicating that irreversible deformation occurred, while the difference between
cycles 2–10 was not large, indicating that the rate of energy dissipation slowed down in
the subsequent cycles. Additionally, the tensile set increased with subsequent stretching
cycles, which also indicated material fatigue due to microstructural damage. In contrast,
there was no change after the first stretch–recovery cycle at low strain, which indicated that
the microstructure remained unchanged after the low-strain stretch cycle, indicating that
FDA/dEAN ion gel has excellent fatigue resistance, and can meet the basic requirements
of a flexible strain sensor. The second cycle in the strain-hardened state could only recover
to 120%, but no six-point scattering image was presented at 120%. This phenomenon was
different from the previous conclusions.
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Some conclusions about the effect of the rate on structural relaxation were obtained by
analyzing the SAXS data at different rates when stretched to the same strain. Based on the
2DSAXS image (Figure 8a), the ion gel is rate-dependent. Figure 8b shows azimuthal data
for three stretching rates at ε = 0.5. The stretch rate had a large effect on this feature, with the
lowest stretch rates showing little evidence of multiple peaks and the highest stretch rates
having a very pronounced “double peak”. When studying the ion gel’s relaxation process,
it was found that this “double-peak” characteristic disappeared quickly. At sufficiently
low rates, the relaxed orientation of the micelles themselves was fast enough to merge the
two peaks into one broader peak, even when flow occurred.
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Although the speed of data acquisition in the SAXS study was limited, the data
collected during stretching did reveal a trend related to the stretching rate (Figure 9a,b).
The orientation parameter (Figure 9a) showed almost rate-independent changes at low rates.
The rate maintained an approximately linear increase, but at the highest rate (0.20 s−1), a
higher 〈P2〉 was observed. Figure 9b summarizes the rate dependence of the orientation
parameters at ε = 1.0. As the stretching rate increased, the orientation parameters increased
linearly; that is, the orientation of the micelles was more pronounced at higher rates, but
not higher. The higher the rate, the more obvious the micelle orientation, because with
more deformation, the P2 value gradually decreased, which meant that an increase in
the stretching rate only sped up the micelle orientation and did not increase the micelle
orientation; that is, the degree of micelle orientation was limited.

At lower strains, the normalized deformation parameter (d-spacing) measured in
parallel and perpendicular directions (Figure 9c,d) trended similarly for all rates until
ε ≈ 0.3, at which point the data deviated from the change prediction. A certain degree
of deformation persisted throughout the stretching process: the deformation parameter
d-spacing measured along the tensile direction was higher than the d-spacing measured
along the compression direction.

The data above demonstrate the effect of the stretching rate on both parameters. For
the orientation parameter, its variation with the rate was constant; that is, the orientation
of a micelle did not change with the rate. For the deformation parameter, it varied with
the rate; that is, the deformation of a micelle changed quickly with the rate. The previous
azimuthal intensity scan also showed that the “double-peak” feature gradually became
weaker when the stretching stopped. After relaxation for 300 s, the differences between
data collected at different rates were largely “eliminated”. These phenomena indicate that
the relaxation process of the ion gel was rate-dependent. At a sufficiently low rate, the
ion gel maintained a stable microstructure, even during stretching. For the relaxation of
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the orientation parameter (P2) (Figure 9e), the relaxation times were investigated at all
rates, and it was found that the longest average relaxation time for all rates occurred at
ε = 0.1 and gradually decreased with increasing strain. The average relaxation time was the
longest at the lowest stretching rate for all strains and decreased by a factor of about three
when the stretching rate was increased to 0.2 s−1. For the relaxation of the deformation
parameter (d-spacing) (Figure 9f), the longest relaxation time also occurred at the lowest
strain. At higher strains, the relaxation time dropped sharply.
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At ε = 0.3, the relaxation time dropped to 15%–30% of that at ε = 0.1, and for higher
strains, the value was less than 10%. At higher strains, there was no apparent rate de-
pendence for relaxation time. Given the limited resolution at which the SAXS data were
obtained, the rapid relaxation of the deformation parameters was difficult to quantify under
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these conditions. While both variables showed a general tendency to accelerate relaxation
at high rates, the general characteristics described earlier for the sample at 0.01 s−1 were
found at all rates: (1) internal structural relaxation was slower than mechanical stress,
and (2) the structural variables relaxed significantly at low strains. After 300 s of relax-
ation, the differences between different rates were negligible, which also verified that
during the stretching process, although the stretching rates were different, the form of the
microstructural changes was the same.

From the six-point scattering pattern, it was inferred that the ion gel had an HCP
structure under large stress, and the stacking mode was ABAB, while after complete
relaxation, it had an FCC structure, and the stacking mode was ABCABC. It can be seen that
the deformation relaxation of a single micelle of the ion gel had a strong rate dependence,
and that the micelle deformation relaxation speed was faster than the micelle orientation
relaxation speed. This result can be seen intuitively in Figure 10. In conclusion, during
the relaxation process of the ion gel, the relaxation of micelle orientation was slower
than the relaxation of micelle deformation, that is; the relaxation speed of individual
micelles was faster than the relaxation speed of the arrangement of the micelles during the
relaxation process.
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4. Conclusions

We have presented advanced research on the characterization of structural changes in
F127 triblock copolymer ion gel during and after uniaxial extensional flow using in situ
SAXS. By stopping the flow at intermediate strains, we could observe the relaxation of
the structural states and mechanical stress created by the flow. Before the critical point
where Hencky strain = 0.1, the relaxation of flow-induced deformation and reorientation
in the microphase-separated region was retarded after stopping the flow. Under a small
strain, the micellar arrangement of the ion gel was relatively intact. Conversely, high strains
caused the long-range order to be disrupted. This also enabled more rapid relaxation at
high strains. We also discussed the effect of the stretching rate on the ion gel microstructure
and found a general trend towards shorter mean relaxation times at higher stretching rates.
The flow-induced domain orientation relaxation rate was lower than the flow-induced
d-spacing deformation at all rates. This material can be used as an intelligent or composite
material added to coatings to help the coatings interact with the outside world. However,
there may be difficulties in making thin films, such as interface bonding issues when in
direct contact with the substrate, and significant impacts on the interfaces on conductivity.
Future research will attempt to make progress in this area.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings14050562/s1, the mechanical and electrical performance
analysis. Ref. [56] is cited in Supplementary Materials.
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