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Abstract: Engineering managers leverage the expertise of engineers in their teams to inform decisions.
Engineers may convey their expertise in the form of opinions and/or judgements. Given a decision,
it is common to elicit and aggregate the expertise from various engineers to capture a broader set
of experiences and knowledge. Establishing an internally and externally consistent aggregation
framework is therefore paramount to yield a meaningful aggregation, that is, to make sure that the
expertise of each engineer is accounted for reasonably. However, we contend that most de facto
aggregation techniques lack such consistency and lead to the inadequate use and aggregation of
engineering expertise. In this paper, we investigate the consistency or lack thereof of various expertise
aggregation techniques. We derive implications of such inconsistencies and provide recommendations
about how they may be overcome. We illustrate our discussion using safety decisions in engineering
as a notional case.

Keywords: decision making; engineering management; expertise aggregation

1. Introduction

Engineers contribute to project decisions in two main ways. First, they generate
and characterize alternatives. Second, they identify and characterize uncertain events
associated with the potential execution of those activities [1]. When multiple engineers
work together on a given decision, the alternatives generated by the various engineers in
the team can be simply accumulated. That is, the alternatives can be joined as a larger set of
alternatives to be evaluated. The same approach can be used for the events that the different
engineers identify (even though, in this case, the process is a bit more sophisticated, as
relevance relationships need to be accounted for [2]). However, when various experts
provide different characterizations of a specific uncertain event, these characterizations
must be aggregated. That is, the set of characterizations needs to be consolidated into a
single characterization for that event so that it can be used in the decision model [3]. These
characterizations may be provided in the form of an opinion (a belief distribution on an
event) or a judgement (a bet on a specific outcome). Such an aggregation process is the
focus of this paper.

In the past, several methods have been proposed to aggregate the expertise of subject
matter experts (SMEs). These can be broadly classified as behavioral and mathematical [4].
Behavioral methods involve an information exchange and the negotiation of opinions
among the SMEs to arrive at a consensus. Mathematical aggregation involves obtaining
quantitative values (for the information sought) from the SMEs and applying some statisti-
cal averaging technique to combine the values [5]. These expertise aggregation methods
have been applied in several domains and contexts [6], and their characteristics, such as
robustness, traceability, prediction capabilities, and accuracy, have been studied [4]. How-
ever, the literature scarcely provides concrete guidelines in expertise aggregation specific
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to engineering decision-making. In fact, as we will show with an example, the protocols
and procedures established to guide the decision-making process in engineering contexts
do not prescribe, nor guide the adequate selection of expertise aggregation methods. It
should be noted that fuzzy rule-based methods are not included in this paper because of
their lesser adoption in engineering practice.

Consider, for example, the Safety Risk Management Policies (SRMPs) employed by
the Federal Aviation Administration (FAA) and the U.S. Navy [7,8]. These policies indicate
that multiple SMEs are to be involved in the decision process for safety risk assessment
and acceptance. SMEs are tasked with providing inputs into a safety risk matrix based
on their technical judgement [3], specifically in terms of the severity of a safety risk and
its likelihood of occurrence. While the SRMPs describe the actors that must be consulted
in the safety decision process, as well as their responsibilities, they do not prescribe the
process that dictates how their inputs must be aggregated. Therefore, freedom is granted to
choose the aggregation technique for each particular safety risk assessment scenario. No
prescription is provided for validating the adequacy of such a selection either. In fact, a
report published by the United States General Accounting Office states the following [9]:

“Both, the FAA and the military services have internal informal networks in place
among aviation safety personnel to share information. These exchanges are typically self-
initiated, occur on an ad hoc basis, and are based largely on personal relationships. It is a
primary means used among the military services’ safety centers to keep apprised of current
aviation safety issues”.

When a concrete procedure for expertise aggregation is not defined, we suggest that
inconsistency-prone behavioral aggregation methods that use expert judgement are likely
to be adopted due to their simplicity and low computational complexity, when compared
to those of mathematical methods. For example, FAA Orders 8040.4 B and 8040.6 and the
U.S. Navy’s OPNAVINST 3500.39 C indicate this trend by using terms such as “mutually
agreed upon”, “all stakeholders have been consulted”, “peer reviewed”, or “brainstorming”
to describe the aggregation process. As a result, an inadequate aggregation of expertise that
may yield an inappropriate selection of mitigation/control strategies would still be used
because they would still be seemingly compliant with the regulatory guidelines imposed
by the organization.

However, the selection of an aggregation approach is not trivial. The aggregation pro-
cess is sensitive to the type of data provided by the experts (e.g., probability distributions,
qualitative statements, arbitrary scores, etc.) that is being aggregated. Judgement aggrega-
tion, for example, is a problem for any group that tries to conclude a judgement based on
sets of rationally interconnected propositions [10]. In these cases, consistency problems,
such as the impossibility theorem or the discursive dilemma (also known as the doctrinal
paradox) [11], might easily emerge and remain undetected. Furthermore, the quality of
aggregating expertise depends on factors such as the competence of the expert, the expert
team composition, the method of expert elicitation, and the behavioral/mathematical
process of aggregation. While these problems have been traditionally associated with
issues in economics, social choice, and political theories, they have not been addressed
in engineering contexts. However, these factors must be taken into account to choose an
adequate aggregation method that achieves a consistent aggregation.

To understand the implications of these aspects, we explore in this paper the ability of
different expertise aggregation methods to preserve the premise and judgement consistency,
contextualized in engineering settings. While we use an engineering safety decision as a
notional case, the arguments presented in this paper are valid for any engineering decision
that involves the aggregation of expertise.

This paper is organized as follows. First, we summarize the existing work on problems
and potential solutions associated with the aggregation of expertise. Next, we describe the
methodology employed in this paper to show how those aggregation problems may be
exhibited in engineering decisions, followed by an analysis using an engineering safety
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decision as a notional case. At the end, we discuss the implications of the results of the
paper for engineering managers, followed by general conclusions.

2. Literature Review

In this section, we review the main expert aggregation techniques found in the litera-
ture, together with some of their potential drawbacks and limitations in their use. We start
by presenting the discursive dilemma and impossibility result, together with some possible
solutions for such a dilemma, and continue to present methods that are based on math to
perform the aggregation.

2.1. Discursive Dilemma and the Impossibility Result

The impossibility result [10] has important implications in domains such as political
theory, social epistemology, metaphysics [12], economics, logic, and computer science [13].
A common understanding of the impossibility statement is that, when a group of judges
hold a rational set of judgements, it is not always possible for them to aggregate their
judgements into a collective one in conformity to all possible constraints. When all the
judgements of group members are required to be aggregated, it might be logically impos-
sible to rationalize outcomes, which implies that perfect integrity is unattainable. Perfect
integrity is the state of constancy and coherence [14]. Coherence is the quality of being
logical and consistent, and constancy is the quality of being dependable [15]. Therefore,
being unable to achieve perfect integrity implies that logical relationships cannot always be
deduced from the aggregated outcome in any aggregation scheme.

An initial step in the task of aggregating judgements is that it should be distinguished
from “aggregating people’s sets of credences in respect of certain propositions” [10]. That
is, aggregating judgements should be distinguished from the task of belief or opinion
elicitation. According to List and Pettit [10], a judgement is “an on or off affair”, meaning
that the verdict of an individual concerning a proposition is binary (yes or no, true or
false) and should not be mixed with belief of the individual which can be modelled as a
probability distribution. Eliciting expert judgement from engineers is, in our experience,
common. Examples include, among others, asking experts to assess if the system will meet
the performance or not, if the test will be successful or not, if the design will be finished in
time or not, or if the material will provide the necessary attenuation or not. Other examples
are similar, but asking for a specific value, such as when an analysis may be finished or
what power consumption will a system have.

A well-known problem in judgment aggregation is the discursive dilemma [10,13,16].
A simple illustration of the discursive dilemma is shown in Table 1. Let p, q, and r be three
logically interconnected propositions, such that (p ∧ q) ↔ r. In a system of three people
(1, 2, and 3) making a judgement, each judge expresses his/her judgement on p, q, and r
abiding by the judgment rule (p ∧ q) ↔ r. When we observe the aggregated majority of the
individual propositions, the group’s collective judgment violates the logic (p ∧ q) ↔ r. The
discursive dilemma indicates that a procedure like, for example, systematic majority voting
or simple majority voting on each premise cannot guarantee a rational set of collective
judgements [10]. However, this type of aggregation is, in our experience, not uncommon in
engineering contexts.

Table 1. Illustration of the discursive dilemma.

Judge p q r

Judge 1 True True True
Judge 2 True False False
Judge 3 False True False
Majority True True False

The impossibility result also shows that such problems of deductive cogency and
consistency are not only confined to a majority procedure but also persistent in other
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aggregation procedures [13,16]. The other aggregation procedures that might be affected
by the impossibility results include unanimitarianism (virtue of pertaining to unanimity),
minoritarianism and other procedures that have conditional majoritarianism such as two-
thirds [10]. This further indicates that if the group follows some behavioral aggregation or
even a structured aggregation process [3] of coming to a group consensus, then they might
also fall into the problems of the discursive dilemma.

In fact, according to List and Pettit [10], an aggregation method does not exist that
jointly satisfies the following set of requirements:

• There must be a universal domain. The aggregation must accept any logical judgement
set (personal profile–individual expert’s judgement set).

• The judgements must be collected anonymously. The collective judgement must
provide the same result irrespective of the order in which the individual judgement
sets are collected.

• The rule of aggregation must be systematic. All individual propositions are treated
equally (no special weighting for any individual judgement set).

• The set of judgements must be consistent and deductively closed.

If all these criteria are fulfilled, then the aggregated judgement set can be termed
perfect. However, it is impossible for any aggregation method to jointly satisfy all these con-
straints and yet be collectively rational [10,12]. Such aggregation problems are applicable
to most situations that require combining binary evaluations of individual voters.

2.2. Potential Solutions to the Dilemma

The literature states that any aggregation procedure that satisfies the conditions of
universal domain, anonymity, and systematicity comes at the cost of collective rationality,
consistency, or deductive closure. In addition, there can only be a procedure that roughly
approximates adherence to all three principles [10]. However, there are two ways that
have been proposed to avoid the paradox: the premise-based procedure (PBP) and the
conclusion-based procedure (CBP) [13,17].

In the PBP, the individual judges express their judgement on the set of propositions p
and q (that is, the premises in Table 1), the majority of the premise is then aggregated, and a
conclusion is drawn from the aggregated premise set. In the PBP, the view taken by the
majority on the conclusion will be rejected, thereby ignoring individual responsiveness and
adhering to collective rationality [10].

In the CBP, the judges express their final verdict on conclusion r, which abides to the
logic (p ∧ q) ↔ r. Then, the majority of the conclusion is aggregated as the final judgement.
Thus, in the CBP, significance is given to the group’s conclusion, that is, maintaining
individual responsiveness but violating collective rationality [10].

In the literature, there has been considerable support for utilizing the PBP over the
CBP. An important result of Hartmann et al. [13] is that, in a voting procedure, the reasons
should carry more weight than the conclusion. Mosleh et al. [18] also supported the
use of decomposition to utilize experts’ information. It was stated that decomposition is
particularly useful when different experts have more information about different aspects
of the problem. Raiffa [19] and Armstrong [20] support decomposition, which indicates
indirect support of premise-based aggregation. The decomposition method is the technique
where the expert is asked to respond to a series of questions on parts of the problem rather
than the composite final question. Then, the analyst synthesizes the responses to construct
the forecast. While this is a preferred approach in the literature, we have not found any
evidence that it proves better results. Note that, regardless of the approach taken, there is
still a latent problem in aggregating judgement, since both approaches achieve consistency
by ignoring information from the experts.

A potential way to abide by both precepts of individual responsiveness and collective
rationality is to practice modus tollens instead of modus ponens [10]. Modus tollens is the
propositional logic that states that if a conditional statement (“if p then q”) is admissible, and
the consequent is not true (not-q), then the negation of the antecedent (not-p) can be inferred.
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Modus ponens is the propositional logic that states that if a conditional statement (“if p then
q”) is accepted, and the antecedent (p) holds, then the consequent (q) may be inferred [21].
As in the previous case, there is still a latent problem in aggregating a judgement that is
resolved by assuming certain precepts on the experts’ judgement procedure.

2.3. Endorsements for Mathematical Aggregation Techniques over Aggregation of Judgement
or Consensus

Mathematical aggregation is the integration of independent opinion assessments
into a singular opinion. Opinion here refers to a belief characterization of an uncertain
event. The level of complexity in mathematical aggregation procedures varies from simple
statistical averaging to approaches based on axiomatic information gathering methods that
incorporate the ‘expertise’ of the expert into the aggregation [5,22].

Mosleh et al. [18] classified ‘mathematical aggregation’ as potentially beneficial com-
pared to group consensus methods. In fact, there is conclusive evidence that indicates that
mathematical methods for aggregation generally provide better results than the behavioral
methods [23–27], yet mathematical aggregation techniques are rarely used in practice [18].

Mosleh et al. [18] presented the concepts of substantive goodness and normative
goodness as measures of quality for expert elicitation. Substantive goodness refers to the
knowledge of goodness relative to the problem at hand. Normative goodness refers to
the expert’s ability to accurately express that knowledge in accordance with the calculus
of probabilities. The latter is important to mathematically aggregate opinions. However,
choosing appropriate ‘weights’ for the experts, defining proper methods for elicitation, and
then combining them might be overly computationally intensive [28] and requires expert
guidance for the process itself.

Mathematical aggregation can be generalized into linear and logarithmic opinion
pools [5,28,29]. Contextually in belief aggregation, ‘opinion’ has been used extensively and
is often referred to as numerical statements that represent the experts’ degrees of belief
on a concerned subject [29]. The central idea in belief aggregation is to find a consensus
distribution that satisfies a set of reasonable axioms [22,28,30]. In the following sections,
linear, logarithmic, and Bayesian information pooling are explained.

Mathematical and statistical aggregation procedures are highly prevalent, yet most
of the literature is focused on aggregating probability distributions. That is, when one
must aggregate beliefs then a statistical aggregation procedure has been deemed useful.
For example, when we want to consider the individual team member’s competence to
arrive at the (factually) right conclusion or when the conclusion’s (prior) probability is
known, we can rely on Bayesian analysis to aggregate judgements [13,28]. Bayesian
analysis is also recommended when experts are exposed to incomplete or even misleading
information that shapes their beliefs. Rufo et al. [28] provided a Bayesian procedure to
aggregate experts’ information in group decision making. Here, the belief of each expert is
elicited as a multivariate prior distribution, followed by a linear or logarithmic combination
method to represent a consensus distribution. The choice of the strategy depends on the
decision maker.

2.4. Linear and Logarithmic Aggregation (Opinion Pooling)

One common averaging technique for aggregating expertise in the form of opinion
is classified as linear opinion pooling. Here, the combined final value that captures the
expertise of the group of experts is the weighted linear combination of the probability
distribution of the belief of each expert [5,22,29]. The linear opinion pooling was introduced
by Stone [31] and can be expressed as

π(θ) = ∑n
i=1 wiπi(θ) (1)

where π(θ) is the aggregated probability distribution, θ is the quantity of interest on which
the experts express their belief, n represents the number of experts who are involved in the
assessment process, πi(θ) is the ith expert’s individual probability distribution, wi is the
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weight allocated to the ith expert, with weights adding up to 1, and π represents a mass
function when θ is discrete and a density function when θ is continuous [22].

The other common form of opinion pooling is logarithmic pooling, where the com-
bined probability distribution can be expressed as

πlog(θ) = k∏n
i=1 πi(θ)

wi (2)

where k is the normalizing constant.
In logarithmic opinion pooling, the individual belief distributions are multiplied and

renormalized [28]. When the weights are equal to (1/n), then πlog(θ) is proportional to
the geometric mean of the individual distributions. A generalization of the linear and
logarithmic opinion pools is presented in [32].

Linear and logarithmic opinion pooling have been used in a wide variety of domains
such as medical consultation [33], marketing, banking, weather forecasting [22,34], and for
candidate selection of football games [35]. In most of these applications, the weights of the
experts were determined using empirical studies and were usually based on the subjective
trust or confidence that the decision maker has on the reliability of the experts [5]. Linear
and logarithmic pooling often lead to distinctively different distributions [28]. However,
there seems to be no exceptional advantage of one method over the other [36]. One seeming
advantage of logarithmic pooling over linear pooling is that, when combining density
functions, the results are always unimodal, whereas linear pooling of density functions can
produce combined distributions that are multimodal in nature and may cause a bias for
the analyst [5]. Unimodality can be interpreted here as a more accurate representation of
the collective beliefs of the experts, as the logarithmic effects dampen strong differences in
the assessments.

Other probability combination techniques based on other statistical methods, such
as frequency theory, have also been studied for opinion pooling [29]. However, for cir-
cumstances such as catastrophic disasters, common in engineering decisions, where the
interpretation of frequencies by the expert is stretched to the limits of plausibility, they
present greater difficulties to accurately represent the expert beliefs quantitatively. Further-
more, it has been established that frequency theory fails when data are sparse, unavailable,
or subjected to non-sampling errors, which are common scenarios in engineering. Such
problems gave endorsements to the development of Bayesian aggregation methods [29].

2.5. Advocacy for Bayesian Methods

There is extensive research in using a Bayesian aggregation scheme to support risk anal-
ysis that requires a group of experts to provide information to a decision maker [29,37,38].
When a prior probability distribution is available for the parameter of interest, then a
Bayesian technique can be applied to update the prior distribution with a combined
opinion pool [28]. The main advantage of Bayesian methods is that they allow for the
incorporation of the ‘expertise’ level of the expert and dependencies among the experts
into the aggregation model [22]. With n experts, providing information regarding a pa-
rameter of interest θ and the probability distribution of θ is known in prior π(θ), then the
analyst/decision maker can make use of Bayes’ Theorem to update π(θ) [22] using the
following relationship:

π∗ = π(θ|i1, i2, ..., in) ∝
π(θ)L(i1, i2, ..., in|θ)

π(i1, i2, ..., in)
(3)

where L is the likelihood function associated with the experts’ information.
However, Bayesian-based methods have been shown to be difficult to apply in prac-

tice [22] due to their computational complexity [5] and the difficulty of estimating the
likelihood function L, since it must account for the prediction accuracy and bias of the
individual expert.
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3. Application of Expert Aggregation to Safety Decisions

In this section, we apply some of the behavioral and mathematical aggregation
schemes discussed in the previous section to notional cases that involve a panel of en-
gineers assessing the criticality of safety hazards. Safety is used because safety-related
decisions are common to most engineering endeavors. The different aggregation schemes
are used to show the different effects that such schemes have on the resulting decisions.
The application of the chosen case and the different methods are representative of their
application in practice as per the experience of the authors.

3.1. Case Description

We used the SRMPs of the FAA and the U.S. Navy [7,8] as a reference for the safety
assessment process. Specifically, we explored cases in which the experts were tasked to
collectively categorize the criticality of a safety hazard as a function of the severity of
its consequences and its likelihood of occurrence (in this case through a risk matrix, as
shown in Figure 1, or a version of it). A conceptual argument was presented to verify if
those solutions were applicable to the safety risk assessment. We studied the conditions
under which the different aggregation methods preserved or failed to preserve the premise
and consistency.
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The following aggregation methods were studied:

• Judgement aggregation:

a. CBP and PBP;
b. Modus tollens vs. modus ponens;
c. Techniques to evade the dilemma;

i. Convergence;
ii. Authoritarian;
iii. Priority;
iv. Special support.
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• Mathematical aggregation:

a. Arithmetic and geometric aggregation of severity;
b. Belief aggregation for likelihood of hazard occurrence;
c. Belief aggregation using linear pooling;
d. Belief aggregation using logarithmic pooling.

For the assessments of likelihood, we used the definitions provided by the FAA:
likelihood is “the estimated probability or frequency, in quantitative or qualitative terms,
of a hazard’s effect or outcome” [39]. Table 2 provides the likelihood definitions followed
by the FAA based on which the experts assert their assessments for determining the safety
risk of a given hazard.

Table 2. Likelihood definitions (source: Appendix C Table C2. [39]).

Qualitative

Quantitative
Time/Calendar-Based

Occurrences
Domain-Wide/System-Wide

Frequent
A Expected to occur routinely

Expected to occur more than
100 times per year (or more than
approximately 10 times a month)

Probable
B Expected to occur often

Expected to occur between 10 and
100 times per year (or more than

approximately 1–10 times a month)
Remote

C Expected to occur infrequently Expected to occur one time every
1 month to 1 year

Extremely Remote
D Expected to occur rarely Expected to occur one time every

1 to 10 years
Extremely Improbable

E
Unlikely to occur, but not

impossible
Expected to occur less than one

time every 10 years

All data used in the studies are synthetic yet reasonable.

3.2. Judgement Aggregation

A notional case study involving a panel of three experts was presented to demonstrate
the possibility of the discursive dilemma (a problem giving rise to premise and judgement
inconsistencies) in a safety decision-making scenario. Their judgements on severity and
likelihood of an assumed hazard were synthetically established and the safety risk was
determined through a logical relationship between safety risk, severity, and likelihood. The
logical relationship was derived with reference to the safety risk matrix presented in [7].
The solutions to overcome the dilemma presented in earlier were applied to this case and
a ‘what if’ scenario analysis analogous to the practices in project management [40] was
performed. The critical impacts of the potential ‘solution’ methodology were discussed.

3.2.1. Base Case

Consider a safety risk assessment required to be performed by a team of three engi-
neers. The judgement of all three engineers is assumed to be equally trustable and relevant
for the decision. Using the risk matrix in Figure 1, the hazard is currently considered High
Risk because its severity is judged as level 3 (Major) and its likelihood of occurrence is
judged as A (Frequent). The experts are asked to judge such assessment.

To avoid issues of internal consistency, we assumed without loss of generality that the
judgement set of each engineer (that is, the severity, likelihood, and safety risk) satisfied
the three conditions of completeness, consistency, and deductive closure [10]. A personal
judgement set is said to be complete, consistent, and deductively closed if, for all propo-
sitions proposed by the expert, the final judgement is available in the universal domain
set (high, medium, and low risk), it conforms to a logical deduction, and the logic remains
true for the combinations of the propositions. In this context, the goal for aggregating the
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engineers’ expertise is to find an aggregation technique that conforms to the minimum
requirements of completeness, consistency, and deductive cogency [10].

The engineers’ individual judgements, prescribed by the SRMPs coded in Figure 1,
follow the logic given below (note that the symbol ‘∧’ represents the AND operation):

(Severity (Major 3) ∧ Likelihood (Frequent A)) → Safety Risk (High Risk)

Assume now, without loss of generality, that the three engineers provide assessments
as given in Table 3, and that the decision maker uses majority voting to arrive at a conclusion
(shown in the last row of the table). In such a case, as shown in Table 3, the requirements of
deductive cogency and consistency are violated. The majority asserts that the severity of the
hazard is Major, and that the likelihood of occurrence is Frequent. However, the majority
rules out the proposition that the safety risk of the hazard is High. Therefore, the aggregated
assessment of the engineers is illogical. We discuss next the implications of aggregating
only the conclusions or aggregating only the conditions as potential mechanisms to avoid
illogical reasoning.

Table 3. Discursive dilemma in safety risk assessment.

SME Severity
Major (3)

Likelihood
Frequent (A)

Safety Risk
High Risk

1 Yes Yes Yes
2 Yes No No
3 No Yes No

Majority Yes Yes No

3.2.2. Evaluation of Potential Solutions to the Discursive Dilemma

Practicing CBP and PBP

If the CBP is being practiced, then the individual engineers perform their personal
assessment of severity and likelihood to assess the criticality of the hazard, but only
communicate to the decision maker their assessment of criticality, not those of severity
or likelihood. The decision maker then aggregates their criticality assessment (i.e., the
engineers’ conclusions) to determine a criticality level for the hazard that reflects the
engineers’ assessments. The result of the CBP with respect to the premises of the engineers
presented in Table 3 is shown in Table 4. The result shows that the majority would decide
that the hazard is NOT High Risk.

Table 4. Aggregated judgement for CBP.

SME Safety Risk
High Risk

1 Yes
2 No
3 No

Majority No

When the PBP is practiced, the group’s assessments of the severity and likelihood
are first aggregated and then a conclusion is drawn from the aggregation. In other words,
engineers are asked in this case to assess the causes (i.e., hazard severity and likelihood),
not the conclusions (i.e., hazard criticality). Table 5 shows the application of the PBP for the
case shown initially in Table 3. In this case, the (aggregated) hazard is assessed as High Risk
based on the logical relationship shown earlier.
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Table 5. Aggregated judgement for PBP.

SME Severity
Major (3)

Likelihood
Frequent (A)

1 Yes Yes
2 Yes No
3 No Yes

Majority Yes Yes

From this, it can be seen that the same experts having the same judgement can poten-
tially end up with different assessments depending on the questions asked. This indicates
inconsistency and retraces back to the problems in expert elicitation [41]. A normative
aggregation method, however, should yield the same assessment, regardless of the method
of elicitation, and should abide by the logic used to derive the judgement.

In these cases, Hartmann et al. [13] suggest that, in a voting procedure, the reasons
should carry more weight than the conclusion. This implies that collective rationality
should be maintained and carries more significance. Therefore, we can choose to forego
adherence to individual responsiveness. If this reasoning is adopted to make safety deci-
sions in engineering, following the PBP leads to taking the safer route, since the relationship
between the conclusion and the premises is essentially a logical AND operation. In a
worst-case scenario, hence, the PBP leads to judge a safety risk higher than the individual
engineers intended.

Practicing modus tollens instead of modus ponens

Although practicing modus tollens could be a possible technique to avoid the dilemma,
it could have negative implications in safety risk assessments. If modus tollens is practiced,
then engineers are asked to assess either the severity or the likelihood, and their opinion
on the criticality of the hazard. Then, the unquestioned variable (either the severity or the
likelihood) is inferred from the relation. This method maintains deductive cogency and
collective reasoning, evading the dilemma.

Following the earlier example, consider now that the engineers are asked about their
agreement with the criticality assessment of hazard. If their answer is affirmative, then the
severity of the hazard is Major (3) and the frequency of the hazard is Frequent (A). If one
parameter is fixed, then the modus tollens method can be used to identify an inconsistency
in the judgement of an SME. Consider the judgement set of SME 3 in Figure 2. The SME
thinks that the safety risk posed by the hazard is severe but does not seem to accept that
the frequency of the hazard is Frequent. Such problems are attributed to inconsistencies in
expert elicitation and behavioral aggregation, where the judges may violate principles of
deductive cogency without realizing its implications.

Strategies that yield collectivized reason [10]
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Using a convergence strategy. By practicing interpersonal deliberations or by other
methods, if the views of the engineers are made to converge, then the conclusion of the
collective majority will be complete, consistent, and deductively closed. By doing so,
we relax the universal domain. This suggests adopting a behavioral technique where
the group comes to a consensus on the engineering assessment. However, while this
strategy can be useful to avoid the paradox, it may do so at the expense of becoming
unreliable. When interactions occur among the engineers, it might be difficult to distinguish
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if convergence occurs because the knowledge base of the engineers has unified or because
the group is biased towards the same opinion. It is also difficult to acknowledge group-level
consequences that emerge as a result of individual interaction systems [42]. Finally, the
group interactions could also give rise to a number of cognitive biases [43] that might
go undetected.

Using an authoritative strategy. In the example, where majority voting was used, each
engineer was considered to have equal weight and all their assessments were treated as
equally important. However, if modifying the group structure is permitted so that only the
input of some members is taken into consideration, then it is easy to avoid the paradox. This
is achieved by relaxing the rule of anonymity. This, however, is still subject to the problems
of assigning proper weights to the experts. Furthermore, considering the assessments of
only a limited number of engineers will place into question why the others were included
in the assessment in the first place and ignored later. Ignoring those engineers may lead to
selection biases [44], where only information that the decision maker wants to hear is used
to make the decision. Essentially, using an authoritative strategy may easily result in not
utilizing the expertise of the engineers involved in the decision.

Using a priority strategy. In this strategy, the team must decide on a set of propositions
to be given higher priority over the others. The team’s decision process of the other set of
propositions differs from the prioritized set and is determined on the overall decision of
the prioritized set of positions. If a conclusive judgement set is contradictory and/or does
not belong to the prioritized judgement set, then the team eliminates the judgement set
that has a lower priority, thus eliminating its impact on the final judgment. By following a
priority strategy, the rule of systematicity is relaxed. The implication of relaxing the rule
of systematicity can be that the logic used to arrive at the aggregated judgement might be
inconsistent. Although the dilemma might be evaded, the rationale behind the aggregated
judgement might be incorrect.

Using a special-support strategy. In this strategy, a proposition set proposed by each
expert must be endorsed or receive special support by the majority of the other experts.
This strategy can be thought of as a majority of the majorities. Each expert presents his/her
judgment set to the remainder of the group and asks for endorsements. The judgement
set that has the highest number of endorsements or amount of support from the super-
majority is concluded as the final collective judgement. By using this strategy, the rule
of completeness is relaxed. However, the collective assessment may still be flawed if the
engineer receiving the special support does not have a logical judgement. Furthermore, this
strategy also suffers from a potential bias of group thinking.

A summary of the implications of using each of these four strategies in safety risk
assessment is given in Table 6.

Table 6. Aggregation strategies that yield Collective Reason.

Strategy Implications

Convergence Unreliable method: gives rise to potential group biases that might
go undetected.

Authoritative Assigning weights or determining the authoritarian might lead to
selection bias.

Priority Logic between premise and conclusion might become deterred.

Special support Rationale behind the safety risk assessment might be illogical;
leads to potential group bias.

3.2.3. Implications of the Dilemma

The FAA and the U.S. Navy prescribe that, once a safety risk has been assessed and
documented, the decision process is solely based on the documented value of the safety
risk [7,8]. If the hazard has been determined as High Risk, the decision process is assigned
to higher authoritarian members of the organization. If the safety risk has been assessed as
Medium or Low, then the decision authority or advisors responsible for providing instruction
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for the mitigation and control activities of the hazard are members of lower authoritative
ranks. Hence, the dilemma poses a risk that the rightful authorities might not be called to
act on the hazard that has been incorrectly judged as Medium, Low, or High.

Furthermore, when undesirable outcomes emerge as a consequence of the decision
based on the safety risk assessment, the aggregation procedure might not be questioned
but rather the SMEs judgement (prediction accuracy) might be deemed unreliable. This
results in the ability to improve decision-making processes.

3.3. Mathematical Aggregation
3.3.1. Arithmetic and Geometric Averaging of Severity Rankings

Consider a notional case where an engineering manager requests five engineers to
assess the severity of three hazards. Assume that the engineering manager aggregates the
assessment using arithmetic (AM) and geometric (GM) averaging, as shown in Figure 3.
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Figure 3. Severity assessments for hazards X, Y and Z by five experts.

First, the results show that the choice of averaging technique yields different results
for some of the hazards. This is due to the calculation procedure behind the averaging
method. The AM is the sum of the assessments divided by the number of assessments
and the GM is the nth root of the product of the assessments, where n is the number of
assessments. In geometric averaging, the effect of ‘outliers’ is dampened. However, since
the possible set of assessments here lies only in the range of 1 to 5, the characteristic of
dampening outliers by the GM might not make a critical impact.

In aggregating severity rankings, when the assessments of the experts vary between
extreme points, then applying either the AM or the GM discounts the assessment of the
expert. For instance, in the assessments of Hazard X and Hazard Z (ref. Figure 3), Expert 3
has assessed the severity of that hazard to be catastrophic. However, when the assessments
of all the experts were averaged, the aggregated assessment indicated that the hazard was
not as ‘severe’ as anticipated by Expert 3. In a situation where Expert 3 has the highest
prediction accuracy, then the averaged aggregated assessment has discounted the input
of Expert 3 and has yielded a lower severity level, thus leading to an improper safety
risk assessment and thereby to inadequate mitigation and control strategies required for
the hazard.

Furthermore, it is worth noting that assessing rankings is a form of judgement. There-
fore, this kind of ranking inherits the problems associated with judgement presented
earlier, regardless of the sophistication of the mathematical approach used to aggregate
the judgments.

Finally, there are mathematical issues when averaging rank-ordered severity assessments
where the scale between the values is not linear. The notion of (Low + High)/2 = Medium does
not hold when the scale is not linear, which is generally the case, and particularly true for
the definitions from the literature used in this paper.



Systems 2024, 12, 180 13 of 16

3.3.2. Arithmetic and Geometric Averaging of Likelihood Rankings

Consider a similar case to the previous one, but this time the engineering manager asks
their team of engineers to assess the likelihood of different options, and the judgements
shown in Figure 4.
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Figure 4. Likelihood assessments for Hazards X, Y and Z by five experts.

First, the problems indicated earlier when using the AM and the GM to aggregate
severity assessments also apply to aggregating likelihood assessments. Furthermore, there
are some mathematical effects due to the underlying mathematical structures of beliefs and
likelihoods that can easily introduce significant errors in the assessment of likelihoods.

For example, when two experts assert the likelihood of a hazard being Probable, their
probability (belief) distribution could be quite different from each other’s. (Note that
objective probabilities do not exist, so it is sensible that each expert will have their own
belief distribution [2].) For instance, both belief distributions could follow a Poisson process
yet can have different mean rates of occurrence. Similarly, both engineers could have belief
distributions that are different in shape but with the same mean rates. Or even, different
engineers may use a different target to define the meaning of each likelihood category (e.g.,
different engineers assign different confidence targets to the occurrence rate of the event of
a given likelihood category). Therefore, even though their assessment may be identical in
the risk table, their internal interpretation is different.

3.3.3. Belief Aggregation Using Linear Pooling

Consider the same example but this time, instead of assessments, the experts’ beliefs
on the likelihood of the hazards are elicited as belief distributions. For simplicity and
without lack of generality, let us assume these are defined as dichotomic, assessing the
probability of a hazard existing to be 36%, 21%, and 45%, respectively.

With linear pooling, the beliefs of the three experts are aggregated using the following
formula:

πlinear(k) = ∑n
i=1 wiπi(k) (4)

where n = 3 and w1 + w2 + w3 = 1.
Let us assume, as a start, that the engineering manager trusts each expert equally, so

he/she decides to assign w1 = w2 = w3. This leads to an aggregated probability assessment
for the hazard of 34%.

Mathematically, linear pooling can be considered to be well constructed. However, its
use must meet several conditions for it to be meaningful. In particular, it is key to under-
stand both the purpose of the aggregation of beliefs and the way in which each expert’s
individual belief is formed. Let us start with one scenario that showcases these aspects.

Assume that the three experts have the same education, and their backgrounds only
differ in the projects they have worked on. Experts 1 and 2 worked together on the same
project (Project A), where the hazard under assessment did not occur. Expert 3, on the
contrary, has worked on three projects (Projects B, C, and D), and the hazard occurred in
two of them. Given that experts 1 and 2 are basing their beliefs on the “same” information,
the engineering manager is effectively overcounting the particular experiences of Project
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A over Projects B, C, and D, which results in skewing the belief aggregation (even if the
individual beliefs of the experts are accurate).

Linear pooling makes use of weights to calibrate or adjust aggregation to take these
aspects into account. Because, while probabilities are subjective, they must not be arbitrary,
meaning it is important to understand how engineers form their beliefs, so that the engi-
neering manager can account for individual biases and for biases injected as part of the
process of aggregation. Individual biases are discussed at length in the literature (e.g., [2]),
and will not be addressed in this paper. For biases in the aggregation of beliefs, we focused
on the alignment of the purpose of the aggregation and the bases to form experts’ beliefs.

An engineering manager may desire to aggregate beliefs for two reasons. First, to cali-
brate the assessments of the experts. This means that instead of relying on the assessment
of one expert, aggregating the beliefs of several experts can be used to filter the errors in
their assessments. Here, error does not refer to a delta between the expert’s assessment and
an objective reality, but the delta between the elicited, tangible belief and their real, inner
belief. Second, to comprehensively account for disparate experiences. This means that the
engineering manager attempts to avoid overcounting or skewing the belief assessment on
a particular set of experiences, reaching instead a wide variety of data points.

When attempting to calibrate experts’ assessments, it is then essential that experts use
the same set of information when their beliefs are elicited. Otherwise, one gets into the
problems shown in the previous example. It is the engineering manager’s responsibility
then to guarantee that experts have access to the same information set. For example, an
engineering manager could ask all experts to explain how they arrived at their belief
(without sharing what their belief is, to avoid injecting individual biases), so that the
information is levelled across all experts. Without doing so, the validity of using linear
pooling to calibrate experts’ assessments is jeopardized.

On the contrary, when attempting to account for different experiences, experts should
use non-overlapping information. That is, the information set of each expert should be
mutually exclusive, in order to avoid the overcounting of some experiences. For example,
consider three experts providing their expertise to a decision. Two of the experts have
had the same experience on the same project. Aggregating their expertise would be akin
to double counting what happened in just that one project. Avoiding overcounting, in
practice, is virtually impossible given that experts will likely share some educational or
professional baseline. As in the previous case, it is the engineering manager’s responsibility
to assess the baseline information that each expert is using to assess if the aggregation is
valid or not. Again, in this case, information sharing may be a valuable technique to at the
same time be comprehensive in the elicitation and calibrate it.

3.3.4. Belief Aggregation Using Logarithmic Pooling

Logarithmic pooling further emphasizes differences in which expert’s opinion to
account for. Therefore, the same discussion as for linear pooling is applicable here.

4. Conclusions

We have shown that common techniques to aggregate expertise from a team of en-
gineers lack internal consistency and lead to the inadequate use and aggregation of engi-
neering expertise. Particularly in safety risk assessment, the plausibility of the discursive
dilemma and its implications were demonstrated. We showed that, if a judgement aggre-
gation must take place, then a ‘better’ process to evade the dilemma would be the PBP
(premise-based procedure). However, all solutions explored had drawbacks, since all
solutions operate by ignoring information from experts, which includes either ignoring
individual responsiveness or violating collective rationality.

In general, we showed how using the current definitions of severity, which are abstract
and qualitative, and using them to perform a mathematical aggregation of the severity
judgments leads to problems associated with the proper use of each expert. Similarly, meth-
ods to aggregate likelihood assessments that are based on judgement led to an inaccurate



Systems 2024, 12, 180 15 of 16

aggregation. Even those that are based on mathematical formalization with a sound base
may become inadequate if the underlying conditions for the aggregation are not made
explicit and validated. Such inconsistencies lead to the mistreatment of expert knowledge,
by ignoring experts’ knowledge, emphasizing certain experts over other experts without a
good reason to do so, or double counting single experiences.

Overall, this paper has shown the importance of understanding how the aggregation
of expertise is performed. An engineering manager should not simply rely on consulting a
group of experts and try to make a sort of voting or simple averaging. Instead, information
must be elicited individually, and the purpose of the aggregation aligned with the experts
that are consulted and the information that is elicited.

We suggest future research to empirically evaluate the use and impact of expert
aggregation techniques in practice, that is, in real applications, including more granularity
of methods, particularly those that rely on mathematics to perform the aggregation.
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Nomenclature
The following nomenclature are used in this manuscript:

Acronym Description
AM Arithmetic Averaging
CBP Conclusion Based Procedure
FAA Federal Aviation Administration
GM Geometric Averaging
PBP Premise-Based Procedure
SME Subject Matter Expert
SRMP Safety Risk Management Policy
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