
Citation: Zhang, P.; Wang, E.;

Luo, Z.; Bi, Y.; Liu, K.; Wang, J.

Energy-Efficient Virtual Network

Embedding: A Deep Reinforcement

Learning Approach Based on Graph

Convolutional Networks. Electronics

2024, 13, 1918. https://doi.org/

10.3390/electronics13101918

Academic Editor: Franco Cicirelli

Received: 2 April 2024

Revised: 2 May 2024

Accepted: 8 May 2024

Published: 14 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Energy-Efficient Virtual Network Embedding: A Deep
Reinforcement Learning Approach Based on Graph
Convolutional Networks
Peiying Zhang 1,2 , Enqi Wang 1, Zhihu Luo 1, Yanxian Bi 3,*, Kai Liu 4,5,* and Jian Wang 6

1 Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum
(East China), Qingdao 266580, China; zhangpeiying@upc.edu.cn (P.Z.); z23070086@s.upc.edu.cn (E.W.);
s21070076@s.upc.edu.cn (Z.L.)

2 Key Laboratory of Computing Power Network and Information Security, Ministry of Education,
Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China

3 China Academy of Electronic and Information Technology, CETC Academy of Electronics and Information
Technology Group Co., Ltd., Beijing 100041, China

4 State Key Laboratory of Space Network and Communications, Tsinghua University, Beijing 100084, China
5 Beijing National Research Center for Information Science and Technology, Tsinghua University,

Beijing 100084, China
6 College of Science, China University of Petroleum (East China), Qingdao 266580, China;

wangjiannl@upc.edu.cn
* Correspondence: biyanxian@cetc.com.cn (Y.B.); liukaiv@tsinghua.edu.cn (K.L.)

Abstract: Network virtualization (NV) technology is the cornerstone of modern network architec-
tures, offering significant advantages in resource utilization, flexibility, security, and streamlined
management. By enabling the deployment of multiple virtual network requests (VNRs) within a
single base network through virtual network embedding (VNE), NV technology can substantially
reduce the operational costs and energy consumption. However, the existing algorithms for energy-
efficient VNE have limitations, including manual tuning for heuristic routing policies, inefficient
feature extraction in traditional intelligent algorithms, and a lack of consideration of periodic traffic
fluctuations. To address these limitations, this paper introduces a novel approach that leverages
deep reinforcement learning (DRL) to enhance the efficiency of traditional methods. We employ
graph convolutional networks (GCNs) for feature extraction, capturing the nuances of network graph
structures, and integrate periodic traffic fluctuations as a key constraint in our model. This allows for
the predictive embedding of VNRs that is both energy-efficient and responsive to dynamic network
conditions. Our research aims to develop an energy-efficient VNE algorithm that dynamically adapts
to network traffic patterns, thereby optimizing resource allocation and reducing energy consumption.
Extensive simulation experiments demonstrate that our proposed algorithm achieves an average
reduction of 22.4% in energy consumption and 41.0% in active substrate nodes, along with a 23.4%
improvement in the acceptance rate compared to other algorithms.

Keywords: energy-efficient; virtual network embedding; deep reinforcement learning; graph
convolutional networks

1. Introduction

NV technology is one of the key technologies in building the network architectures of
the future, designed to improve resource utilization, flexibility, security and management
simplicity [1–4]. It enables networks to better adapt to rapidly changing requirements and
application scenarios, providing efficient, reliable and personalized network services. In a
virtual network environment, multiple applications share a single substrate network, each
relatively independent of the other, and each application’s requirements are presented as
a VNR [5,6]. The process of optimizing the mapping of VNRs to the substrate network

Electronics 2024, 13, 1918. https://doi.org/10.3390/electronics13101918 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101918
https://doi.org/10.3390/electronics13101918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0990-5581
https://orcid.org/0000-0002-4316-932X
https://doi.org/10.3390/electronics13101918
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101918?type=check_update&version=1

Electronics 2024, 13, 1918 2 of 20

is the main challenge for resource allocation in network virtualization, a challenge that is
commonly referred to as the VNE problem.

Most of the existing research on VNE focuses on resource provisioning, providing
the maximum hardware support for the life cycle of each VNR [7–11]. However, these
resource allocation schemes can result in a large amount of CPU computing power and link
bandwidth being underutilized, leading to serious energy wastage and economic loss. For
example, a server in a data center runs at 10–50% of its maximum load most of the time [12].
Furthermore, when the server is completely idle, it consumes 70% of its energy under the
maximum load [13]. This prompts us to design an energy-efficient and green VNE solution.
There are still some problems with the current energy-efficient VNE algorithm. Since the
VNE problem is proven to be NP-hard, it is not possible to obtain an optimal solution
in a large network setting. To simplify the VNE problem, a large number of scholars
have used heuristics to obtain suboptimal solutions in VNE [14]. However, heuristic
solutions usually follow a static improvement step manually designed by a dedicated
person and still take a long time to run in large-scale networks. Feature extraction is
one of the important steps in the VNE process. As the dimensionality and volume of
network traffic data continue to increase, the relationships between network nodes and
links become increasingly complex. This makes it difficult for traditional methods to obtain
network characterization information. For example, the manual extraction of network
features is inefficient, and feature extraction by RL directly for networks ignores the spatial
characteristics of the network [15]. In order to solve the energy problem in VNE, there are
many studies that have sought to find a VNE solution that consumes the smallest amount
of energy [16–19]. However, the arrival and departure of VNRs cannot be determined.
After a while, their solution may become less energy-efficient. As shown in Figure 1, the
network load is heavier in commercial areas on weekends, while the opposite is true in
office areas. If network resources are provided at the maximum demand, then a lot of
energy is wasted.

Commercial
Servers

Office
servers

Commercial
area

Office
area

Office Network

Commercial Network

Weekday demands Weekend demands

Weekday demands Weekend demands

9 7 2 1

1 2 8 9

6 2

63

Embeddings by
maximum demands

Office Network is embedded

Commercial Network is embedded

Weekday resource
utilizations

Weekend resource
utilizations

Weekday resource
utilizations

Weekend resource
utilizations

9/17 7/16 2/17 1/16

1/17 2/16 8/17 9/16

6/12 2/12

6/123/12

Figure 1. Network periodic fluctuation model. On weekends, commercial districts see a surge in
network loads, while office areas experience a decline.

In this study, we introduce a VNE algorithm underpinned by DRL to address the
limitations of existing methodologies. Our proposed approach harnesses deep learning
as an automated feature extractor, a technique that has demonstrated remarkable success
across various domains, including computer vision [20], natural language processing [21]
and voice recognition. Given the NP-hard complexity of VNE, which implies a lack of
polynomial-time algorithms capable of solving all instances, especially at scale, traditional
methods such as mixed integer programming (MIP) may fall short. This is due to the
absence of a known polynomial-time algorithm that can consistently identify optimal solu-
tions across all problem instances. To overcome these challenges, we propose a DRL-based
method characterized by its robust adaptability and swift decision-making capabilities.
DRL’s strength lies in its ability to autonomously learn and extract features, which not only
accelerates the computational process through parallelization but also excels in managing

Electronics 2024, 13, 1918 3 of 20

uncertainty and continuous decision spaces. Furthermore, DRL exhibits strong generaliza-
tion post-training, enabling it to adapt to various network topologies and demand patterns.
It adeptly handles large-scale data and high-dimensional features, automatically learning
feature representations to extract meaningful information from the data. Reinforcement
learning further optimizes the parameters of the deep learning network, enhancing the
model’s convergence rate.

Within this framework, an agent interacts with the network environment, selecting
appropriate embedding actions based on the current state and continually refining its policy
to maximize the cumulative rewards. Additionally, we integrate a GCN to automate the
extraction of network features, a critical step in VNE problem-solving. Unlike previous
methods that depend on manual tuning and heuristic algorithms, a GCN captures the
intricate relationships between network nodes and edges through its convolutional layers.
This approach minimizes potential biases associated with manual feature extraction. The
GCN’s suitability for graph-structured data processing allows it to consider the topological
interconnections between nodes, offering a distinct advantage over conventional methods.
When combined with DRL, the GCN facilitates an end-to-end optimization process that
streamlines feature extraction toward embedding decision-making. This integrated ap-
proach maintains efficiency as the network sizes increase, making it viable for large-scale
VNE problems. The feature representations learned by the GCN generalize well, ensuring
that our model performs effectively across diverse network structures and environments.

Moreover, to counteract the degradation of embedding strategies over time, we intro-
duce a mechanism that leverages the periodic fluctuations in network traffic to adjust the
embedding strategies dynamically. Timestamps are incorporated into the feature extraction
process to analyze and predict traffic fluctuations, providing a foundation for responsive
strategy adjustments. The primary contributions of this paper are as follows.

(1) We use RL as the learning agent and introduce the Asynchronous Advantage Actor–
Critic (A3C) algorithm to ensure the efficiency and robustness of sample training and
to optimize the learning agent. Experiments show that the learning agent using the
A3C algorithm converges faster than with other algorithms.

(2) We use the GCN-based DL algorithm as the feature extractor for the VNE. In particular,
the convolutional kernel of our constructed convolutional network can automatically
extract features from the substrate network, providing an important basis for network
resource scheduling.

(3) We add a temporal attribute to the state of the network and simulate the periodic
fluctuations of the network. Experiments show that our algorithm can sense the
periodic fluctuations in network traffic, providing an important basis for the prediction
of the level of the network load.

The rest of the paper is organized as follows. Section 2 describes the VNE algorithm
and related work on energy saving. Section 3 presents the VNE model and gives the
problem statement. Section 4 describes our energy-efficient VNE algorithm in detail.
Section 5 presents and analyzes the simulation experiments and experimental results.
Finally, a summary and outlook is given.

2. Related Works

In this section, we first introduce VNE-related research, and then we compile recent
relevant research in the field of energy-efficient VNE.

2.1. Virtual Network Embedding

Early research in VNE focused on designing efficient algorithms to maximize the
utilization of substrate resources [22]. The best known example is the node–link two-
stage coordination algorithm ViNEYard-VN proposed by Chowdhury et al. [22]. The
modified approach describes the VNE problem as a linear program and then designs two
online VNE algorithms, D-ViNE and R-ViNE, using deterministic and random rounding
techniques, respectively. The results show that these algorithms can effectively improve

Electronics 2024, 13, 1918 4 of 20

the revenue of VNE. In order to reflect the relative importance of different nodes, a Markov
Random Wander (RW)-based model has been used, which ranks network nodes according
to their resources and topological characteristics [7]. Based on the model, the research
introduces two VNE algorithms: the first is a two-stage embedding process that emphasizes
the importance of nodes, and the second is a backtracking VNE method that employs a
breadth-first search for network traversal. Extensive simulation experiments show that
the RW-based algorithm improves the long-term average revenue and acceptance rate of
VNE. In response to the huge overhead of embedding in single-domain VENs, an improved
particle swarm algorithm combined with a multi-domain embedding scheme has been
introduced into VNE, and experiments show that the scheme can effectively improve
resource utilization [23]. With the development of artificial intelligence, many machine
learning (ML) algorithms have been used instead of heuristic algorithms to solve VNE
problems [24]. To obtain the embedding solution in an acceptable time, the VNE problem
has been described as a Markov Decision Process (MDP) and a Monte Carlo Tree Search
(MCTS) algorithm has been used to design an action strategy (node mapping) for the
proposed MDP [25]. However, MCTS requires a full process to be run for each embedding
decision, so this makes the algorithm time-consuming.

2.2. Energy-Efficient Virtual Network Embedding

In response to rising energy costs and concerns about the energy consumption of
network service infrastructures, Botero et al. first extended the well-known virtual network
embedding problem to energy awareness and proposed an MIP [26]. This approach
minimizes the overall network consumption of the substrate network by shutting down the
remaining unused interfaces and nodes. Due to the NP-hard nature of VNE, the method
does not perform well under large-scale networks. Wireless sensor networks (WSNs)
have a limited amount of energy available to the sensor nodes. In order to minimize the
overall energy consumption, the VNE problem is described as integer linear programming
(ILP) [27]. In combination with the so-called E2NE heuristic, a highly efficient VNE is
achieved. However, this scheme cannot be applied to large-scale networks due to the
limitations of the heuristics. In response to the lack of consideration of network topology
information in energy-efficient VNE, field theory-based spectral clustering is applied to
extract network features [28]. The modified method builds dynamic regions of interest
based on the topological information of the network and then updates the mappable regions
in real time, avoiding the local optimum problem. The experiment showed that both the
average revenue–cost ratio and the request acceptance rate were improved. However,
feature extraction for this method is manual. To alleviate the problem of service degradation
due to energy savings, two migration policies were mirrored in VNE [29]. The first is called
‘global’ and is derived by analyzing the context of the day’s traffic and then using a
Markov decision process to obtain an embedding solution. The second, referred to as
‘local’, is obtained by observing only the current traffic. The results obtained show that
the application of the global policy yields better performance than that of the local policy.
Through the analysis, it was found that the state space and state transfer probabilities of the
method need to be defined in advance, which may require a lot of computational resources
and data for a complex network state space.

3. Network Model and Problem Statement

This section meticulously delineates the models of both the virtual network and the
substrate network. It then succinctly outlines the problem at hand and articulates the
proposed solution, providing a comprehensive overview of the research’s framework.

3.1. Substrate Network and Virtual Network Model

The substrate network is formally represented by an undirected graph denoted as
Gs = {Ns, Ls, Cs, Bs}, which encapsulates the network’s underlying structure and connec-
tivity. Ns = {ns

1, ns
2, . . . , ns

|Ns |} denotes the set of nodes, consisting of the substrate nodes,

Electronics 2024, 13, 1918 5 of 20

which provide the substrate node resources (e.g., CPU resources, etc.) for virtual network
requests. Correspondingly, Ls = {ls

1, ns
2, . . . , ls

|Ls |} denotes the set of links, consisting of
the substrate links, which provide the substrate link resources (e.g., bandwidth, etc.) for
VNRs. Cs = {cns

1
, cns

2
, . . . , cns

|Ns |
} denotes the set of CPU resources for the substrate network.

Bs = {bls
1
, bls

1
, . . . , bls

|Ls |
} denotes the link resources for the substrate network. |Ns| and |Ls|

are utilized to represent the quantities of substrate nodes and substrate links, respectively.
Similarly, the virtual network can be described as Gv = {Nv, Lv, Cv, Bv}.

Nv = {nv
1, nv

2, . . . , nv
|Nv |} denotes the set of all virtual nodes, and Lv = {lv

1 , lv
2 , . . . , lv

|Lv |}
denotes the set of all virtual links. Cv = {cv

1, cv
2, . . . , cv

|Nv |} and Bv = {bv
1 , bv

2 , . . . , bv
|Lv |}

denote the set of resource constraints for virtual nodes and virtual links, respectively, where
cv

1 denotes the constraint attribute (e.g., CPU capacity, etc.) of the virtual node with serial
number 1, and bv

1 denotes the virtual link constraint attributes (e.g., link bandwidth, etc.)
of the virtual link with serial number 1. |Nv| and |Lv| denote the cardinality of the sets Nv

and Lv, respectively.

3.2. Virtual Network Embedding Model

In the realm of VNE, the fusion of the substrate network model and the virtual network
model facilitates the representation of a VNR as VNRi = {Gv, ta, te}, where ta signifies
the arrival timestamp and te denotes the departure timestamp of the ith VNR. Upon the
reception of a VNR, it is imperative to identify a subset Gs′ ⊆ Gs within the substrate
network Gs that can fulfill the VNR’s requirements, followed by the deployment of the
VNR on the selected subset Gs′ . In the event that a suitable subset is not identified, the
VNR is consequently rejected. The VNE process is typically bifurcated into two distinct
phases: node mapping and link mapping. As delineated in Figure 2, VNR1 and VNR2 are
instantiated at disparate locations within the substrate network.

The overarching objective of this endeavor is to enhance the substrate network’s
capacity to accommodate a continuous influx of VNRs, each accompanied by a unique set
of constraints, while simultaneously minimizing the energy consumption and maintaining
a robust acceptance rate.

a c

b

d e

g f

A F

B E

C D

G

1

2

6

5

1

1

2
3 3

1

5

32

4

10

30

12

7 5

9

6

20

2
10

7
10

8

10

15

15

a

c

b e

d

g

fVNR1

VNR2 substrate network

Figure 2. Virtual network embedding model. The first virtual network, VNR1, comprises three nodes
labeled ‘a’, ‘b’, and ‘c’, interconnected by solid lines with numerical values indicating the link weights.
The second virtual network, VNR2, consists of four nodes labeled ‘d’, ‘e’, ‘f’, and ‘g’, connected in a
similar fashion. The underlying substrate network is illustrated in a peach color, with nodes labeled
from ‘A’ to ‘G’, interconnected by dashed lines, also annotated with link weights. Nodes from the
virtual networks are mapped to the substrate network; for instance, node ‘a’ from VNR1 is mapped
to node ‘A’ of the substrate network, as indicated by red arrows.

3.3. Optimization Objective

The energy consumption index emerges as a critical metric for comparison and assess-
ment; within a network, it can be divided into three distinct facets.

Electronics 2024, 13, 1918 6 of 20

(1) The energy expenditure of the substrate node is directly proportional to its opera-
tional load, with the proportionality coefficient denoted as p1. The baseline energy
consumption is also considered, which is represented by the constant p2.

(2) The constant p2 is defined as the energy consumption at 50% of the substrate node’s
peak load, thereby providing a reference point for the node’s energy utilization at
sub-maximum capacities.

(3) Additionally, the transition of an actual substrate node from an inactive (off) state to
an active (on) state incurs an energy cost, termed the switching cost and quantified by
the variable Es. Given that the energy consumption at time ts is denoted as E(ts), the
energy consumption at any other time te can be similarly characterized.

Let E(ts) represent the energy consumption at a starting time ts; then, the energy
consumption E(te) at current time te can be calculated as

E(te) = E(ts) + Ea − Ee (1)

where Ea denotes the increase in energy consumption for VNRs accepted during the time
period (ts, te) and Ee denotes the decrease in energy consumption for VNRs exited during
the time period (ts, te). We denote by Ts the number of substrate nodes required to start
the time period (ts, te) and by Tc the number of substrate nodes to be closed. Ea and Ee are
calculated as shown below:

Ea =
Ts · Es

te − ts
+ Ts · p2 + p1 ·

|Gv
a |

∑
i=1

|Nv
i |

∑
j=1

cv
j (2)

Ee = Tc · p2 + p1 ·
|Gv

e |

∑
i=1

|Nv
i |

∑
j=1

cv
j (3)

where Gv
a and Gv

e denote the number of VNRs accepted and the number of VNRs exited in
time period (ts, te), respectively. We express the energy consumption of the current network
by calculating the total energy consumption of the substrate nodes, and a smaller E(te)
indicates better performance.

Consequently, our primary goal is to identify an optimal VNE strategy, which is
designed to efficiently minimize the network’s energy consumption, denoted as E(te),
thereby enhancing the overall energy efficiency of the system.

4. Deep Reinforcement Learning Algorithms Based on GCNs in VNE

In this section, we first give the definition of reinforcement learning in VNE; then, we
describe how to use a GCN to extract feature information from the network; and, finally,
we describe the use of the A3C algorithm to enable the training process to converge faster.

4.1. Definition of RL Environment in VNE

RL is a machine learning paradigm that aims to learn how to make optimal decisions
in an environment through the interaction between an agent and the environment. In the
VNE environment, the agent adopts the corresponding embedding scheme by analyzing
the state of the network, and it learns and adjusts the strategy according to the income
signal of the embedding scheme. Therefore, RL in the VNE environment consists of four
parts: policy, state, action and reward.

4.1.1. Network Status and Policy Definition

In RL, the state is a description of the environment at a specific moment, which
contains information perceived by the agent and is used to make decisions. In a VNE
environment, the state is a real-time representation of the network state and serves as
input for subsequent feature extraction. The state of the substrate network consists of two
matrices, as shown in Figure 3.

Electronics 2024, 13, 1918 7 of 20

Node a Node b Node c

Node a - (1, 2) (0, 0)

Node b (1, 2) - (1, 1)

Node c (0, 0) (1, 1) -

Link (a, b) : (1, 2)

Link (a, c) : (0, 0)

Link (b, c) : (1, 1)

No Link -

* (maximum bandwidth, available bandwidth)

(a) Link Bandwidth Status Matrix

Node a Node b Node c

Node a - (1, 2) (0, 0)

Node b (1, 2) - (1, 1)

Node c (0, 0) (1, 1) -

Link (a, b) : (1, 2)

Link (a, c) : (0, 0)

Link (b, c) : (1, 1)

No Link -

* (maximum bandwidth, available bandwidth)

Node a Node b Node c

Cpu
Max 10 20 15

Cpu
Free 2 19 0

p1 2 3 2

p2 10 10 5

(b) Node CPU State Matrix

Figure 3. The state of the substrate network. The figure illustrates the underlying network state
comprising three nodes. In this network, the link (a, b) : (1, 2) has a maximum bandwidth of 2
and an available bandwidth of 1. The term cpu_max denotes the maximum capacity of the un-
derlying node, and cpu_ f ree indicates the available resources of the underlying node. The coeffi-
cients p1 and p2 represent the energy consumption with an increasing load and the baseline energy
consumption, respectively.

The diagram above depicts a substrate network state with three nodes, where link
(a, b) : (1, 2) has a maximum bandwidth of 2 and an available bandwidth of 1. cpu_max
represents the maximum capacity of the substrate node, and cpu_ f ree represents the
available resources of the substrate node. p1, p2 represent the coefficient of the energy
consumption increasing with the load increase and the start-up energy consumption,
respectively.

In the context of a VNE, the network state also contains information about the VNR,
which is described similarly but is simpler than the substrate network. The VNR does not
contain other information, such as the power consumption and load, as shown in Figure 4.
The elements of the matrix on the left in Figure 4 represent the VNR link requirements, and
the vectors on the right represent the CPU requirements.

Node a Node b Node c

Node a - 3 2

Node b 3 - 0

Node c 2 0 -

Link (a, b)

Link (a, c)

Link (b, c)

No Link -

* VNR link requirements

Node a Node b Node c

VNR
CPU 8 10 17

* VNR CPU requirements

(a) Link Bandwidth Demand Matrix

Node a Node b Node c

Node a - 3 2

Node b 3 - 0

Node c 2 0 -

Link (a, b)

Link (a, c)

Link (b, c)

No Link -

* VNR link requirements

Node a Node b Node c

VNR
CPU 8 10 17

* VNR CPU requirements

(b) Node CPU Demand Matrix

Figure 4. The demands of the VNR. Within the figure, the matrix on the left delineates the req-
uisite specifications for the VNR link, while the vector positioned to the right corresponds to the
CPU requirement.

A policy defines which actions an agent should take in a given state. Specifically, a
policy is a function that maps states to the probability distributions of actions.

4.1.2. Network Action Definition

In RL, an action is a decision that an agent can perform in a given state. The choice
of action has an important influence on the behavior and strategy of the agent. In the
VNE environment, an action is an executable embedding process that assigns the VNR to
a subset of the substrate network. Since the number of subsets of the substrate network

Electronics 2024, 13, 1918 8 of 20

rises exponentially with the size of the network, we cannot treat all subsets of the substrate
network as actions.

We sort all virtual nodes in breadth-first order and then host them one by one in order
to the substrate network, and an action is not complete until the last virtual node is hosted
in the substrate network. In the process of the virtual nodes being embedded into the
substrate network in an orderly manner, we use the K-shortest path algorithm to solve for
the link between two nodes, if it exists.

4.1.3. Network Reward Definition

In RL, the agent’s direction of optimization differs from that in traditional supervised
learning in that it optimizes the algorithm through feedback obtained from the constant
interaction with the external environment. In the VNE environment, in order to maximize
the estimated energy consumption, the agent may forgo the currently best-rewarded action
in order to obtain better long-term performance.

In this paper, good actions (low energy consumption, meeting resource constraints,
etc.) can return positive rewards to increase the probability of the action being selected.

4.2. GCN-Based Deep Learning Algorithms in VNE

In the RL mentioned above, network features are fed into the agent as states, and the
agent then outputs a probability distribution of actions based on the states. In order to
better implement this process, network features are crucial. Since the network features
are constantly changing (with constant VNR additions and departures), we use neural
networks with trainable parameters for feature extraction and policy generation, and we
use the classical gradient descent method to improve the training parameters.

4.2.1. Feature Extraction in VNE

Within the realm of machine learning, an array of feature extraction methodologies
have been introduced, with convolutional neural networks (CNN) and recurrent neural
networks (RNN) being prominent examples. CNNs, renowned for their prowess in image
processing, employ a series of convolutional and pooling layers to distill local image
features, followed by fully connected layers that consolidate these into a comprehensive
feature representation. These models excel at capturing the textures, shapes and spatial
relationships inherent in image data. RNNs, in contrast, are adept at handling sequential
data, adeptly capturing the temporal dynamics characteristic of domains such as stock
price forecasting.

However, the application of CNNs and RNNs to graph-structured networks is not
straightforward due to the non-Euclidean nature of graph data, which undermines the
efficacy of these models designed for Euclidean and temporal data, respectively. To address
this, we have adopted the GCN, a paradigm that has emerged as a powerful tool for semi-
supervised learning on graph-structured data [30]. GCNs extend the concept of convolution
to the graph topology, allowing for the effective capture of the spatial dependencies inherent
in the network’s structure.

Our use of GCNs confers several advantages over traditional CNN and RNN models.
Firstly, GCNs are inherently suited to the non-Euclidean domain of graph data, enabling the
more nuanced and accurate extraction of features that reflect the complex interconnections
and relationships within the network. This is particularly beneficial for our VNE problem,
where the network’s topological features are paramount to achieving an efficient and
energy-conscious embedding strategy. Furthermore, GCNs automate the feature extraction
process, eliminating the need for manual feature engineering, which can be both labor-
intensive and biased.

By integrating GCNs into our DRL framework, we have developed a model that not
only automates the extraction of topological features but also aligns seamlessly with the
reinforcement learning process to optimize network embedding. This unified approach
streamlines the optimization process and equips our model with the flexibility to adapt to

Electronics 2024, 13, 1918 9 of 20

varying network conditions and requirements, thereby enhancing the overall performance
and scalability of our VNE solution.

We assume that the graph G has m nodes and each node has n features; then, the node
features of the graph G can be represented by a matrix of n ∗ m. To represent the spatial
features of the graph G, a Laplacian matrix and an orthogonal factorization are used. The
Laplace matrix L is expressed as

L = I − D− 1
2 AD− 1

2 (4)

where D is the degree matrix (diagonal matrix) of the graph G, and the elements on the
diagonal are the degrees of each node in turn. A is the adjacency matrix of the graph G. I
is the unit matrix. Considering that L is semi-positive definite, we factorize L. Then, the
eigenvectors of L can form an orthogonal basis U in n dimensions. We assume that the
vector consisting of the features of each node of the graph G is denoted by f . The Fourier
transformation of the vector f , represented by f̂ , on graph G can be computed as

f = U f̂ (5)

According to the convolution theorem, the Fourier transform of the function convo-
lution is the product of the function Fourier transform, and the convolution of f and the
convolution kernel h on graph G can be stated as

(f ∗ h)G = U
(
(UTh)⊙ (UT f)

)
(6)

where ⊙ is the element-wise Hadamard product. By continuously optimizing the parame-
ters in h, the output will become better and better. In order to extract features that are biased
(energy and CPU, etc.), we set up the filter h = ∑K

j=0 αjΛ
j, where (α0, α1, α2, . . . , αK−1) are

arbitrary parameters, which is initialized and then adjusted using error direction propaga-
tion. Λ is a diagonal matrix with the eigenvalue of L. Combined with the above, the output
of the GCN can be expressed as

houtput = σ

(
K

∑
j=0

αjLj f

)
(7)

where σ(·) is the activation function. K indicates the radiation range of a node by other
nodes, i.e., the maximum number of hops by which nodes can influence each other. Due to
the nature of the network, the characteristics of a node are influenced by all other nodes,
and the closer the node is to another one, the stronger the influence. If the K value is set too
large, not only will the algorithm performance be affected but also the nodes located far
from the target will have little influence on the target. If the K value is set too small, nodes
close to the target will be ignored. Therefore, we set K to 3 in comprehensive consideration
of this.

4.2.2. Policy Generation

In the previous subsection, we have extracted the feature information of the network
using a GCN; we use feature vectors to describe these features and then use softmax to
equate these outputs to a probability distribution of the number of substrate network nodes.
This narrows down the output without changing the order of the results. The learning
agent can select actions based on the probabilities.

To optimize the parameters of the neural network using the embedded feedback data,
we chose the Asynchronous Advantage Actor–Critic (A3C) algorithm. It combines the
Actor–Critic method and the idea of asynchronous updating to solve the training problem of
traditional reinforcement learning algorithms in massively parallel environments. The main
idea of the A3C algorithm is that exploration and learning are performed simultaneously
in multiple parallel environments, each of which is operated by independent agents, which

Electronics 2024, 13, 1918 10 of 20

share a global neural network model. Each agent learns based on its own experience and
updates the learned results to the global model. This asynchronous updating method can
increase the diversity of the data, avoid the sample correlation problem in reinforcement
learning, and also improve the efficiency of learning. The algorithm consists of an actor
network (consisting of a set of parameters θ) and a critic network (consisting of a set of
parameters θv). Although the actor network and the critic network are very similar, their
outputs are quite different. The former is used to generate a set of parameterized strategies
πθ , and the latter is used to generate a set of parameterized estimated values vπθ(st, θv).
The process of the training algorithm is shown in Algorithm 1.

Algorithm 1: Training process
1: Initializing global shared network θ and θv;
2: Initializing global counter T = 0;
3: Initializing thread-specific network θ′ and θ′v;
4: Initializing thread step count t = 1;
5: while T < Tmax do
6: Reset gradients: dθ = 0 and dθv = 0;
7: Synchronize thread-specific parameters θ′ = θ and θ′v = θv;
8: tstart = t;
9: Get initial state st;

10: while st ! = terminal and t − tstart < tmax do
11: Perform at according to policy πθ′(at|st);
12: Receive reward rt and new state st+1;
13: t = t + 1;
14: T = T + 1;
15: end while
16: R = V(st, θ′v);
17: for i = t − 1; i < tstart; i++ do
18: R = ri + R;
19: accumulate gradients dθ and dθv;
20: end for
21: perform asynchronous update of θ using dθ and of θv using dθv;
22: end while

4.3. Implementation

In RL, successful embedded programs usually return positive rewards, but this does
not mean that all successful programs are considered equally good. In fact, successful
programs can be further subdivided into two categories: those that are categorized as
“good” and those that are categorized as “generally good”. The need for this distinction
stems from our understanding of the complexity of the substrate network and the diversity
of VNR objectives.

A “good” solution is one that not only meets the functional constraints of the network
(e.g., CPU and bandwidth), but also maintains low energy consumption and a high revenue-
to-cost ratio. On the other hand, “generally good” solutions are those that achieve the
desired goals but may not be as good as “good” solutions in some aspects (e.g., energy
consumption, long-term accumulative revenue). The distinction between “good” and
“generally good” solutions is crucial for the optimization of reinforcement learning. This
distinction allows us to evaluate and select the best strategies more precisely. The reward is
set as follows.

(1) Reward Setting for Node: To improve the acceptance rate of the VNR, we return a
positive reward of 100 for successful embedding strategies and a negative reward
of −100 for failed embedding strategies. In this case, the algorithm converges more
slowly, making it difficult to obtain good embedding schemes within an accept-

Electronics 2024, 13, 1918 11 of 20

able time frame. Therefore, we add a coefficient λ to the reward so that nodes that
are embedded later return a higher reward. The specific node reward settings are
as follows:

Rn =

{
100λi, if at is successful,
−100λi, otherwise.

(8)

where λi =
i

|Nv | denotes the reward factor of the ith embedded node. |Nv| denotes the

total number of virtual nodes. λi gradually increases from 1
|Nv | to 1. This is because

the embedding options of the subsequent nodes may be limited by the locations or
paths already chosen by the previous nodes, resulting in a reduction in their available
resources. To better accommodate such differences, we guide the RL algorithm to opti-
mize the embedding order by setting different rewards to better target the embedding
selection problem of subsequent nodes.

(2) Reward Setting for Energy: The learning agent not only needs to be effectively embedded
in the virtual network by selecting successful actions, but also needs to consider the
energy consumption level of the actions. In order to realize actions with low energy
consumption, we set a corresponding energy consumption reward for each action.
By setting higher reward values to encourage learning agents to select actions with
lower energy consumption, we motivate the agents to consider the node energy
consumption in their embedding decisions and to adopt strategies that can reduce
the energy consumption of the network. We therefore add another factor into the
reward function:

Re =

100

Es+p2+p1·cv
i
, if node is off,

100
p1·cv

i
, otherwise.

(9)

where Es denotes the startup energy consumption, and p1 and p2 denote the coefficient
of the energy consumption rise with the load and the baseline energy consumption,
respectively. In Equation (9), due to the presence of the startup energy consumption,
the selection of a substrate node in the off state significantly increases the startup
energy consumption Es and the baseline energy consumption p2 of the network, and
vice versa. We let the reward be inversely proportional to the energy consumption so
that actions with low energy consumption are able to obtain higher rewards.

(3) Reward Setting for Balance: The selected action tends to be more likely to be selected
again. In this case, the strategy may be fixated on the local optimal solution and
unable to discover a better solution. The lack of exploration means that the strategy is
unable to explore and try out new actions to adapt to environmental changes, thus
limiting its performance from further improvement. To address this problem, we use
a Multi-Level Feedback Queue (MLFQ) to record actions, with the rewards of different
queues as shown below:

Rb =

100, if level is 1 queue,
90, if level is 2 queue,
70, if level is 3 queue.

(10)

In accordance with the formulation presented in Equation (10), it is observed that
queue 1 is associated with an action reward of 100, queue 2 corresponds to an action
reward of 90, and queue 3 is allocated an action reward of 70. To effectively manage
the system, we implement a set of three operational rules. Firstly, upon initial entry
into the system, actions are systematically assigned to the level 1 queue. Secondly,
once an action has been selected a predetermined number of times at a specific level,
its priority is adjusted by moving it to a lower-level queue. Lastly, after a designated
temporal interval, all actions currently in the queue are reintegrated into the level
1 queue.

Electronics 2024, 13, 1918 12 of 20

The integration of Equation (10) with the aforementioned rules facilitates a strategic
reduction in the rewards of highly favored actions. This gradual decrement in rewards
enhances the likelihood of selecting actions with lower rewards, thereby circumventing
the potential for suboptimal outcomes.
Ultimately, the reward function associated with the action at is delineated as follows:

Reward(at) = RnReRb (11)

5. Performance Evaluation and Analysis

In this section, we first describe the virtual network environment that we used for
our evaluation. Then, we compare the proposed algorithm with the current state-of-the-art
energy-efficient virtual network mapping algorithms. We aim to demonstrate the superiority
of our proposed algorithm for the energy-efficient virtual network mapping problem.

5.1. Experimental Setup

Referring to the previous work [31], we use the GT-ITM tool to generate the substrate
and virtual network topology in a grid (50 ∗ 50). The number of substrate nodes is 100
and the node CPU capacity is between 50 and 100. The probability of the existence of
links between the substrate nodes is 50% and the link bandwidth is between 50 and 100.
Considering the startup energy consumption of the nodes, the default state of the substrate
node is off. We categorize VNRs into three sizes: small, medium and large. The number of
virtual nodes for these three sizes of VNRs is 2 to 5, 6 to 9 and 10 to 15. The probability of
the existence of links between virtual nodes is 50% and the link bandwidth is between 1
and 20. The CPU capacity of the virtual nodes is between 1 and 10. To simulate the periodic
fluctuation of the network, the VNR arrives periodically. The life cycle of each VNR in a
network fluctuation cycle is exponentially distributed. The main parameters used in the
simulation experiment are shown in Table 1. Our simulation experiment is carried out in
Anaconda3 + PyCharm3.6.

Table 1. Parameter settings.

Parameter Value

Substrate Nodes 100
Substrate Links Approximately 2500
Substrate Nodes’ CPU Uniform Distribution [50,100]
Substrate Links’ Bandwidth Uniform Distribution [50,100]
Virtual Nodes Uniform Distribution [2,15]
Virtual Links Approximately Uniform Distribution [1,105]
Virtual Nodes’ CPU Uniform Distribution [1,10]
Virtual Links’ Bandwidth Uniform Distribution [1,20]

5.2. Comparison Algorithms and Evaluation Indexes

To evaluate our proposed energy-efficient VNE algorithms, we choose the VNE-EA
algorithm, based on mixed integer programming [26]; the MCMCF algorithm, which is a
dynamic remapping method [32]; and the heuristic-based EA-VNE algorithm [19]. Table 2
lists the key features of these algorithms, including the ideas and advantages of the algorithms.

Table 2. Algorithm characterization.

Algorithm Description

Our algorithm
Utilizes a deep learning approach based on a GCN to extract network features. It employs
a reinforcement learning prediction scheme that continually learns from the environment,
particularly when the network traffic exhibits periodic fluctuations.

VNE-EA Formulates the VNE problem as MIP while incorporating energy-related variables.

MCMCF
Balances the load on the substrate network by dynamically reconfiguring the embedding of
virtual nodes and links. Linear programming and Markov chains are employed for virtual
node selection and remapping, respectively.

EA-VNE A heuristic algorithm that employs the best match and weighted shortest path approaches
during the node mapping and link mapping phases.

Electronics 2024, 13, 1918 13 of 20

In addition, we explore the impact of changing resource requirements on the flexibility
of the algorithm. Specifically, we conduct experiments using VNRs of different sizes and
evaluate the performance of the algorithm from three perspectives: energy consumption,
active nodes, and the acceptance ratio.

5.3. Simulation Results and Performance Analysis

We first compared the instantaneous energy consumption of the algorithms, as shown
in Figure 5. It is obvious that our algorithm has lower power consumption than the other
three algorithms. Our algorithm allocates the substrate network resources more rationally.
VNE-EA performs the worst due to the defects in the mixed integer program. Furthermore,
the energy consumption of our algorithm is relatively smooth. On the contrary, the energy
consumption of the other three algorithms fluctuates more significantly over time, and all
of them reach the highest value at Time = 100. This indicates that at Time = 100, a large
number of VNR requests arrive, making the energy consumption of the network increase.
This is because our algorithm learns the network fluctuations through the interaction of RL
with the network and thus computes a more reasonable VNE scheme than the other three
algorithms. From the experimental results, at the end of the experiment, our algorithm
consumes 24.9%, 21.6% and 20.8% less power than the other algorithms for small, medium
and large VNRs, respectively. It is not difficult to find that the relative advantage of our
algorithm over others decreases as the VNR size increases. The reason for this is that the
resource availability of the substrate network decreases as the VNR size increases, which
leads to a decrease in the available optimization space.

We also compared the differences between the four algorithms in terms of active
substrate nodes, as shown in Figure 6. The variation curve of the active substrate nodes
is similar to the energy consumption, which is due to the fact that the network’s energy
consumption is positively correlated with the number of active substrate nodes. Overall,
our algorithm outperforms the other algorithms. After calculation, we found that the other
algorithms had 40.2%, 42.6%, and 40.4% more active substrate nodes than our algorithm for
small, medium, and large VNR sizes, respectively. We believe that there are two reasons for
this. The first one is due to the fact that the other algorithms use the method of manually
extracting features when constructing the network feature model. This method is not only
inefficient, but also does not describe the topological features of the network well. On the
contrary, our algorithm utilizes a GCN combined with DL to obtain the topological features
of the network very well. Second, the stability of the other algorithms is relatively poor.

From Figure 6a, we can find that the other three algorithms have a more obvious peak,
which indicates that they are more affected by network fluctuations. On the contrary, our
algorithm can ensure that the network is relatively stable thanks to the feature of traffic
fluctuation awareness. It is worth noting that the fluctuation in the number of active sub-
strate nodes increases as the VNR size increases. This is because the arrival and departure
of large-sized VNRs are accompanied by a large number of substrate resource changes.

Smaller-sized VNRs have relatively low resource requirements, resulting in acceptance
rates that are not significantly different among the four algorithms. Thus, we only analyze
the acceptance rates of the large-sized VNRs, as shown in Figure 7. At the beginning of
VNR, all algorithms have relatively high acceptance rates and our algorithm has a slight
disadvantage. This is due to the fact that our algorithm considers the maximum return
over a future period of time, whereas the other algorithms consider the current maximum
return. Nevertheless, our algorithm has a higher acceptance rate in the middle and late
stages of VNR, which indicates that our algorithm is more suitable for the allocation of
resources. From the experimental results, in the late stage of VNR, our algorithm has a
higher acceptance rate than the other algorithms by 40.6%, 10.9% and 18.9%, respectively.
This phenomenon is also verified in Figures 5c and 6c. In Figures 5c and 6c, the gap between
our algorithm and the other algorithms decreases in the late stage of VNR. This is due to the
fact that the acceptance rate of our algorithm is higher than those of the other algorithms,
which results in our algorithm occupying more substrate resources.

Electronics 2024, 13, 1918 14 of 20

40 80 120 160 200 240 280 320 360 400
100

110

120

130

140

150

160

170

180

190

E
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

Time (100 time units)

 VNE-EA
 MCMCF
 EA-VNE
 Our

(a) small-sized VNR

40 80 120 160 200 240 280 320 360 400
100

120

140

160

180

200

220

240

E
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

Time (100 time units)

 VNE-EA
 MCMCF
 EA-VNE
 Our

(b) medium-sized VNR

40 80 120 160 200 240 280 320 360 400
120

140

160

180

200

220

240

260

280

300

E
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

Time (100 time units)

 VNE-EA
 MCMCF
 EA-VNE
 Our

(c) large-sized VNR
Figure 5. Comparison of energy consumption with other algorithms. Our proposed algorithm
demonstrates a superior energy efficiency profile when compared to the three alternative algorithms
under consideration. This enhanced performance is attributed to its capacity for the more judicious
allocation of underlying network resources.

Electronics 2024, 13, 1918 15 of 20

40 80 120 160 200 240 280 320 360 400
20

25

30

35

40

45

50

55

60

A
c
t
i
v
e

s
u
b
s
t
r
a
t
e

n
o
d
e
s

Time (100 time units)

 VNE-EA
 MCMCF
 EA-VNE
 Our

(a) small-sized VNR

40 80 120 160 200 240 280 320 360 400
30

35

40

45

50

55

60

65

70

75

80

A
c
t
i
v
e

s
u
b
s
t
r
a
t
e

n
o
d
e
s

Time (100 time units)

 VNE-EA
 MCMCF
 EA-VNE
 Our

(b) medium-sized VNR

40 80 120 160 200 240 280 320 360 400
40

45

50

55

60

65

70

75

80

85

90

95

100

A
c
t
i
v
e

s
u
b
s
t
r
a
t
e

n
o
d
e
s

Time (100 time units)

 VNE-EA
 MCMCF
 EA-VNE
 Our

(c) large-sized VNR
Figure 6. Comparison of active substrate nodes with other algorithms. We conducted a comparative
analysis of the four algorithms with respect to the number of active underlying nodes. The observed
trend in the variation in active substrate nodes closely mirrors that of the energy consumption, a
phenomenon that can be ascribed to the established positive correlation between the network’s energy
expenditure and the quantity of active nodes within the substrate.

Electronics 2024, 13, 1918 16 of 20

40 80 120 160 200 240 280 320 360 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

V
N
R

a
c
c
e
p
t
a
n
c
e

r
a
t
e

Time (100 time units)

 VNE-EA
 MCMCF
 EA-VNE
 Our

Figure 7. Comparison with the VNR acceptance rates of other algorithms. At the onset of the VNR
phase, all algorithms show a high acceptance rate, with our proposed algorithm slightly lagging
due to its future-oriented payoff optimization. Despite this initial shortfall, our algorithm surpasses
others in the mid to late VNR stages, indicating a more rational approach to resource allocation.

Building on our previous discussion regarding the superior performance of our al-
gorithm in reducing the energy consumption and optimizing the resource allocation, we
extend our evaluation to include the algorithm’s robustness and sustainability in long-
term operations. To this end, we introduce the metric of ‘long-term average revenue’ as a
means to assess the comprehensive performance of our algorithm over extended periods
of operation.

Figure 8 presents a comparative analysis of the cumulative returns generated by our
algorithm alongside existing methods such as VNE-EA, MCMCF, and EA-VNE, over the
course of the simulation period. The graph is plotted with time (measured in units of
100 time units) on the x-axis and cumulative payoff on the y-axis, illustrating the sustained
performance of each algorithm. Our algorithm, distinguished by the label ‘Our’, sustains a
high level of payoff throughout the simulation, underscoring its stability and reliability in
continuous operation.

During the initial phases of the simulation, our algorithm rapidly adapts to the pre-
vailing network conditions, yielding a swift escalation in revenue. This initial performance
is followed by a consistently maintained revenue trajectory, indicative of the algorithm’s
adaptability and robustness amidst the periodic fluctuations in network traffic. Conversely,
the VNE-EA algorithm exhibits sluggish revenue growth when scaled to larger networks,
a limitation that may stem from its foundational MIP approach. While MCMCF demon-
strates strengths in dynamic remapping, it does not outperform our algorithm in terms of
long-term cumulative gains. The EA-VNE algorithm, though initially promising, shows a
modest decline in the continuity of long-term revenue generation.

These observations suggest that our algorithm offers not only a technically proficient
solution but also presents significant benefits in terms of operational stability and sus-
tainability. The graph in Figure 8 corroborates these advantages, further attesting to the
algorithm’s comprehensive and pragmatic utility in addressing the complexities of the
VNE problem.

Electronics 2024, 13, 1918 17 of 20

�� �� ��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

��
��
��

�

�
��
	
��
��

��
��

��
��

�

��

��	���������	��
����

�
�����

������

����
��

�	��

Figure 8. Comparison with the long-term average revenues of other algorithms. These observations
indicate that our proposed algorithm delivers a technically adept solution while also conferring
substantial benefits in terms of operational stability and sustainability.

5.4. Adaptability Analysis to Data and Environmental Variations

When considering the adaptability of our proposed DRL and GCN-based VNE al-
gorithm to changes in data and environmental conditions, we acknowledge the dynamic
and complex nature of real-world network environments, which can significantly impact
algorithmic performance. To evaluate the performance of our algorithm under various
conditions, we designed a series of simulation experiments to mimic different network
loads and data traffic patterns.

In our experiments, particular attention was given to the periodic fluctuations in
network traffic and how this information could be leveraged to optimize the embedding
strategies. By incorporating a temporal attribute into the network state, our algorithm
demonstrated the ability to sense periodic fluctuations in network traffic and adjust the
embedding strategies accordingly. Additionally, we considered different sizes of VNRs to
simulate a range of environmental conditions and data demands.

Figure 6 indicates that our algorithm exhibits robustness in the face of changing
network conditions. Although the performance may be affected under certain extreme
scenarios, such as a surge in VNRs arriving simultaneously, overall, the algorithm can
quickly adapt to these variations while maintaining low energy consumption and efficient
resource allocation.

However, we also recognize that the algorithm may encounter challenges when dealing
with unknown or unseen data patterns. To enhance the algorithm’s adaptability and
generalization capabilities, future work will focus on developing more advanced feature
extraction techniques and exploring the use of unsupervised or semi-supervised learning
methods to improve the algorithm’s adjustment speed to novel environments.

Electronics 2024, 13, 1918 18 of 20

6. Conclusions

While notable advancements have been achieved in VNE, the domain continues to face
challenges, such as protracted solution times, multi-objective optimization, and dynamic
network adaptation. This study introduces a DRL algorithm, underpinned by a GCN,
designed to address the VNE challenge. Our proposed algorithm aims to fulfill dual
objectives: augmenting the performance and promoting energy efficiency. Through the
integration of the GCN, we have significantly enhanced the feature extraction capabilities,
thereby bolstering the algorithm’s efficiency. Furthermore, this research contributes to
network resilience against peak traffic fluctuations by incorporating temporal elements into
network feature considerations. We leverage the asynchronous A3C algorithm within an
RL framework to facilitate parallel agent training. This methodology encompasses pivotal
processes such as policy formulation and model development. The parallel training scheme
instituted not only elevates the algorithm’s efficacy but also expedites the learning trajectory.
Empirical evaluations underscore that our algorithm outperforms comparative models by
demonstrating lower energy consumption and a reduced count of active substrate nodes
across varying VNR dimensions. Additionally, our algorithm exhibits superior adaptability
to peak VNR scenarios, underscoring its robustness and potential for practical applications
in VNE.

Despite the promising results, this study has certain limitations. The algorithm’s
performance has been evaluated in controlled scenarios, and its effectiveness in real-world
environments remains to be verified. The reliance on simulated data for training and
evaluation may not capture the full complexity of the actual network conditions. Addition-
ally, the computational demands of the algorithm could pose deployment challenges in
resource-constrained settings.

In light of these limitations, future work should concentrate on refining the DRL algo-
rithm to reduce the computational complexity and enhance the scalability. Investigating the
integration of other machine learning techniques to bolster the algorithm’s predictive accu-
racy is also recommended. Furthermore, developing a more comprehensive benchmarking
framework to assess VNE algorithms under a broader spectrum of network conditions
would be invaluable.

Author Contributions: Conceptualization, P.Z. and Y.B.; methodology, E.W. and Z.L.; software, K.L.;
validation, Y.B., P.Z. and Z.L.; formal analysis, Z.L.; investigation, J.W.; resources, K.L. and P.Z.; data
curation, J.W.; writing—original draft preparation, E.W. and Y.B.; writing—review and editing, P.Z.
and E.W.; visualization, Z.L.; supervision, P.Z.; project administration, Y.B.; funding acquisition, P.Z.
and K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Natural Science Foundation of Shandong Province
under Grants ZR2023LZH017 and ZR2022LZH015, is partially supported by the Open Foundation of
the Key Laboratory of Computing Power Network and Information Security, Ministry of Education,
Qilu University of Technology (Shandong Academy of Sciences) under Grant 2023ZD010 and is
partially supported by the National Natural Science Foundation of China under Grant 62341130.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: Author Yanxian Bi was employed by the company CETC Academy of Elec-
tronics and Information Technology Group Co. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
1. Wang, A.; Iyer, M.; Dutta, R.; Rouskas, G.N.; Baldine, I. Network virtualization: Technologies, perspectives, and frontiers. J. Light.

Technol. 2012, 31, 523–537. [CrossRef]
2. Liang, C.; Yu, F.R. Wireless Network Virtualization: A Survey, Some Research Issues and Challenges. IEEE Commun. Surv. Tutor.

2015, 17, 358–380. [CrossRef]

http://doi.org/10.1109/JLT.2012.2213796
http://dx.doi.org/10.1109/COMST.2014.2352118

Electronics 2024, 13, 1918 19 of 20

3. Chowdhury, N.M.M.K.; Boutaba, R. Network virtualization: State of the art and research challenges. IEEE Commun. Mag. 2009,
47, 20–26. [CrossRef]

4. Chowdhury, N.M.M.K.; Boutaba, R. A survey of network virtualization. Comput. Netw. 2010, 54, 862–876. [CrossRef]
5. Khan, I.; Jafrin, R.; Errounda, F.Z.; Glitho, R.H.; Crespi, N.; Morrow, M.; Polakos, P. A Data Annotation Architecture for Semantic

Applications in Virtualized Wireless Sensor Networks. In Proceedings of the 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015.

6. Nkomo, M.; Hancke, G.P.; Abu-Mahfouz, A.M.; Sinha, S.; Onumanyi, A.J. Overlay Virtualized Wireless Sensor Networks for
Application in Industrial Internet of Things: A Review. Sensors 2018, 18, 3215. [CrossRef] [PubMed]

7. Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.; Wang, J. Virtual network embedding through topology-aware node
ranking. Comput. Commun. Rev. 2011, 41, 38–47. [CrossRef]

8. Chowdhury, N.M.M.K.; Rahman, M.R.; Boutaba, R. Virtual Network Embedding with Coordinated Node and Link Mapping. In
Proceedings of the INFOCOM 2009, 28th IEEE International Conference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 783–791. [CrossRef]

9. Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking virtual network embedding: Substrate support for path splitting and migration.
ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 17–29. [CrossRef]

10. Zhu, Y.; Ammar, M.H. Algorithms for Assigning Substrate Network Resources to Virtual Network Components. In Proceedings of
the INFOCOM 2006, 25th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer
and Communications Societies, Barcelona, Spain, 23–29 April 2006. [CrossRef]

11. Zhang, S.; Wu, J.; Lu, S. Virtual network embedding with substrate support for parallelization. In Proceedings of the 2012 IEEE
Global Communications Conference, GLOBECOM 2012, Anaheim, CA, USA, 3–7 December 2012; pp. 2615–2620. [CrossRef]

12. Barroso, L.A.; Hölzle, U. The Case for Energy-Proportional Computing. Computer 2007, 40, 33–37. [CrossRef]
13. Fan, X.; Weber, W.; Barroso, L.A. Power provisioning for a warehouse-sized computer. In Proceedings of the 34th International

Symposium on Computer Architecture (ISCA 2007), San Diego, CA, USA, 9–13 June 2007; pp. 13–23. [CrossRef]
14. Fischer, A.; Botero, J.F.; Beck, M.T.; de Meer, H.; Hesselbach, X. Virtual Network Embedding: A Survey. IEEE Commun. Surv.

Tutor. 2013, 15, 1888–1906. [CrossRef]
15. Yan, Z.; Ge, J.; Wu, Y.; Li, L.; Li, T. Automatic Virtual Network Embedding: A Deep Reinforcement Learning Approach With

Graph Convolutional Networks. IEEE J. Sel. Areas Commun. 2020, 38, 1040–1057. [CrossRef]
16. Amokrane, A.; Zhani, M.F.; Langar, R.; Boutaba, R.; Pujolle, G. Greenhead: Virtual Data Center Embedding across Distributed

Infrastructures. IEEE Trans. Cloud Comput. 2013, 1, 36–49. [CrossRef]
17. Zhani, M.F.; Zhang, Q.; Simon, G.; Boutaba, R. VDC Planner: Dynamic migration-aware Virtual Data Center embedding for

clouds. In Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Ghent,
Belgium, 27–31 May 2013; pp. 18–25.

18. Su, S.; Zhang, Z.; Liu, A.X.; Cheng, X.; Wang, Y.; Zhao, X. Energy-Aware Virtual Network Embedding. IEEE/ACM Trans. Netw.
2014, 22, 1607–1620. [CrossRef]

19. Su, S.; Zhang, Z.; Cheng, X.; Wang, Y.; Luo, Y.; Wang, J. Energy-aware virtual network embedding through consolidation. In
Proceedings of the 2012 Proceedings IEEE INFOCOM Workshops, Orlando, FL, USA, 25–30 March 2012; pp. 127–132. [CrossRef]

20. Girshick, R.B. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448. [CrossRef]

21. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, Doha, Qatar, 25–29 October 2014; pp. 1746–1751. [CrossRef]

22. Chowdhury, M.; Rahman, M.R.; Boutaba, R. ViNEYard: Virtual Network Embedding Algorithms with Coordinated Node and
Link Mapping. IEEE/ACM Trans. Netw. 2012, 20, 206–219. [CrossRef]

23. Zhang, P.; Hong, Y.; Pang, X.; Jiang, C. VNE-HPSO: Virtual Network Embedding Algorithm Based on Hybrid Particle Swarm
Optimization. IEEE Access 2020, 8, 213389–213400. [CrossRef]

24. Yao, H.; Zhang, B.; Zhang, P.; Wu, S.; Jiang, C.; Guo, S. RDAM: A Reinforcement Learning Based Dynamic Attribute Matrix
Representation for Virtual Network Embedding. IEEE Trans. Emerg. Top. Comput. 2021, 9, 901–914. [CrossRef]

25. Haeri, S.; Trajkovic, L. Virtual Network Embedding via Monte Carlo Tree Search. IEEE Trans. Cybern. 2018, 48, 510–521.
[CrossRef] [PubMed]

26. Botero, J.F.; Hesselbach, X.; Duelli, M.; Schlosser, D.; Fischer, A.; de Meer, H. Energy Efficient Virtual Network Embedding. IEEE
Commun. Lett. 2012, 16, 756–759. [CrossRef]

27. Raee, V.M.; Ebrahimzadeh, A.; Rayani, M.; Glitho, R.H.; Barachi, M.E.; Belqasmi, F. Energy Efficient Virtual Network Embedding
in Virtualized Wireless Sensor Networks. In Proceedings of the 19th IEEE Annual Consumer Communications & Networking
Conference, CCNC 2022, Las Vegas, NV, USA, 8–11 January 2022; pp. 187–192. [CrossRef]

28. He, M.; Zhuang, L.; Tian, S.; Wang, G.; Zhang, K. DROI: Energy-efficient virtual network embedding algorithm based on dynamic
regions of interest. Comput. Netw. 2020, 166, 106952. [CrossRef]

29. Eramo, V.; Miucci, E.; Ammar, M.H. Study of Reconfiguration Cost and Energy Aware VNE Policies in Cycle-Stationary Traffic
Scenarios. IEEE J. Sel. Areas Commun. 2016, 34, 1281–1297. [CrossRef]

30. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

http://dx.doi.org/10.1109/MCOM.2009.5183468
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.3390/s18103215
http://www.ncbi.nlm.nih.gov/pubmed/30249061
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1109/INFCOM.2009.5061987
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1109/INFOCOM.2006.322
http://dx.doi.org/10.1109/GLOCOM.2012.6503511
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1145/1250662.1250665
http://dx.doi.org/10.1109/SURV.2013.013013.00155
http://dx.doi.org/10.1109/JSAC.2020.2986662
http://dx.doi.org/10.1109/TCC.2013.5
http://dx.doi.org/10.1109/TNET.2013.2286156
http://dx.doi.org/10.1109/INFCOMW.2012.6193473
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.3115/v1/d14-1181
http://dx.doi.org/10.1109/TNET.2011.2159308
http://dx.doi.org/10.1109/ACCESS.2020.3040335
http://dx.doi.org/10.1109/TETC.2018.2871549
http://dx.doi.org/10.1109/TCYB.2016.2645123
http://www.ncbi.nlm.nih.gov/pubmed/28237939
http://dx.doi.org/10.1109/LCOMM.2012.030912.120082
http://dx.doi.org/10.1109/CCNC49033.2022.9700627
http://dx.doi.org/10.1016/j.comnet.2019.106952
http://dx.doi.org/10.1109/JSAC.2016.2520179

Electronics 2024, 13, 1918 20 of 20

31. Zhang, P.; Pang, X.; Bi, Y.; Yao, H.; Pan, H.; Kumar, N. DSCD: Delay Sensitive Cross-Domain Virtual Network Embedding
Algorithm. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2913–2925. [CrossRef]

32. Gao, L.; Rouskas, G.N. Virtual Network Reconfiguration with Load Balancing and Migration Cost Considerations. In Pro-
ceedings of the 2018 IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, 16–19 April
2018; pp. 2303–2311. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNSE.2020.3005570
http://dx.doi.org/10.1109/INFOCOM.2018.8485903

	Introduction
	Related Works
	Virtual Network Embedding
	Energy-Efficient Virtual Network Embedding

	Network Model and Problem Statement
	Substrate Network and Virtual Network Model
	Virtual Network Embedding Model
	Optimization Objective

	Deep Reinforcement Learning Algorithms Based on GCNs in VNE
	Definition of RL Environment in VNE
	Network Status and Policy Definition
	Network Action Definition
	Network Reward Definition

	GCN-Based Deep Learning Algorithms in VNE
	Feature Extraction in VNE
	Policy Generation

	Implementation

	Performance Evaluation and Analysis
	Experimental Setup
	Comparison Algorithms and Evaluation Indexes
	Simulation Results and Performance Analysis
	Adaptability Analysis to Data and Environmental Variations

	Conclusions
	References

