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Abstract: When a dielectric material undergoes mechanical impact, it generates a shock wave, causing
changes in its refractive index. Recent demonstrations have proven that the modified refractive index
can be determined remotely using a millimeter-wave interferometer. However, these demonstrations
are based on the resolution of an inverse electromagnetic problem, which assumes that the losses
in the material are negligible. This restrictive assumption is overcome in this article, in which
a new approach is proposed to solve the inverse electromagnetic problem in lossy and shocked
dielectric materials. Our methodology combines a one-dimensional convolutional neural network
architecture, namely Inverse problem of Lossless or Lossy Shocked Wavefront Network (ILSW-Net),
with a nonlinear optimization technique based on the Nelder–Mead algorithm to estimate losses
within dielectric materials under a mechanical impact. Experimental results for both simulated and
real signals show that our method can successfully predict the velocities and the refractive index
while accurately estimating the shock wavefront.

Keywords: convolutional neural network; nonlinear optimization; shocked materials; lossy dielectrics;
millimeter-wave interferometry; complex refractive index; shock wavefront velocity; particle velocity

1. Introduction

This study focuses on the field of shock physics—in particular, targeting accurate
estimation of the refractive index of dielectric materials under a mechanical impact using
interferometry techniques. Such estimation remains challenging due to the large variation
of the wave magnitude depending on the type of material.

To address this problem, existing works leverage either classic measurement-based [1–8]
or data-driven [9] approaches to characterize properties of shocked dielectric materials.
In detail, the method introduced by B. Rougier et al. [7,8] is based on the measurement
of two specific Doppler frequencies in the waveform delivered by a millimeter-wave
interferometer. This approach provided valuable information on the shock wavefront
velocity and particle velocity in shocked dielectric materials, as well as estimation of the
refractive index, supposing that material losses are negligible. In parallel, Ref. [9] makes
use of a regression learning-based approach using a one-dimensional convolutional neural
network (1D-CNN) to improve the estimation, even with a short-duration wavefront.
However, the dielectric losses in materials are still neglected; therefore, it can only estimate
the real part of the complex refractive index of the shocked dielectric materials.

Our work aims at overcoming the aforementioned limitation by adopting a novel
deep learning framework capable of dealing with dielectric losses in materials. Compared
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to the previous work reported in [9], our method is able to extend the outcome of the
regression problem by retrieving both real and imaginary parts of the complex refractive
index of shocked materials. This extension thus allows us to effectively address the impact
of dielectric losses (a crucial aspect often neglected in previous studies) on the waveforms
delivered by the millimeter-wave interferometer.

Our contributions are summarized as follows:

• A more robust 1D-CNN is proposed to address the inverse problem of lossless/lossy
shocked wavefront (ILSW-Net), which embeds information about the complex refrac-
tive index of the material at rest to boost the prediction performance. The model’s
performance is empirically validated on simulated validation data, demonstrating
ability to significantly reduce the prediction error.

• A physics-informed loss between the input signal and the approximated signal com-
puted through the estimation of the velocities and the complex refractive index is
introduced. Moreover, this loss is minimized using a nonlinear optimization tech-
nique, namely the Nelder–Mead algorithm, enabling estimation even in the case of
experimental data in which the measured complex refractive index is unavailable. The
results show out that the obtained approximated signal fits better with the original
one, and the estimation error is reduced.

This paper is organized as follows. In Section 2, the proposed methodology of in-
put/output data normalization (Section 2.1) is first described; then, the architecture of the
ILSW-Net model (Section 2.2) is presented before introducing the nonlinear optimization
algorithm used to minimize the physics-informed loss in the time domain (Section 2.3).
Next, the setting for the learning process is described in Section 3, including the loss func-
tion and hyper-parameter configuration. In Section 4, the proposed model is compared
with the model presented in [9], specifically focusing on lossless materials (Section 4.1).
Following this, the performance of the method is reported for both simulated and ex-
perimental data delivered by a millimeter-wave (94 GHz) interferometer during a shock
experiment involving High-Density Polyethylene (HDPE) and PolyMethyl Methacrylate
(PMMA) materials for the case of lossy material (Section 4.2). Finally, conclusions and
perspectives are presented in Section 5.

2. Proposed Method to Derive the Refractive Index of Lossy Dielectric Materials
Subjected to Shock
2.1. Data Preprocessing
2.1.1. Normalization of the Signal Delivered by the Millimeter-Wave Interferometer during
a Shock Experiment

A sample of lossy dielectric material of known thickness (d) and known complex
refractive index (n1) is considered here. When it is subjected to a mechanical impact, the
complex refractive index of the material is modified. Let n2 denote the complex refractive
index modified by the shock. V1 and V2 denote the shock wavefront velocity and particle
velocity, respectively. A millimeter-wave interferometer operating at 94 GHz is used here
to remotely characterize the shocked material (see, e.g., [8]). During the shock experiment,
the interferometer delivers a waveform in time-domain from which the complex refractive
index (n2) of the shocked material can be estimated.

The learning process of the proposed ILSW-Net utilizes simulated waveforms that
are generated from the theoretical extension of [10,11] to account for losses in dielectric
materials. The K waveforms (sk(t), where k = 1, 2. . ., 12,500 and t ≤ 5 µs) are approximately
expressed as follows:

sk(t) =
∞

∑
n=0,1,2,...

Ancos (2n f1t − n2π f2t − ψ + φn) (1)

with

f1
∼=

2V1

λ
r1, f2 ∼=

2(V 1 − V2)

λ
r2, ψ ∼= 2π

2d
λ

r1,
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An∼=
{

|R11|e−αd i f n = 0∣∣∣T12Rn−1
22 T21

∣∣∣e−αd i f n > 0
,

φn ∼=
{

Arg(R11) i f n = 0
Arg

[
T12(−1)nRn−1

22 T21

]
i f n > 0

and

λ =
c
f

, α = 2
2π

λ
κ1, R11

∼=
n1 − n2

n1 + n2
, R22 ∼=

n2 − n1

n2 + n1
, T12

∼=
2n2

n2 + n1
, T21

∼=
2n1

n1 + n2
,

where λ designates the wavelength of the incident electromagnetic wave in vacuum; f is
the operating frequency of the interferometer; c is the speed of light in vacuum; r1 (>0) and
r2 (>0) are the value of the real part of refractive indexes n1 and n2, respectively; and κ1(>0)
and κ2(>0) are the absolute value of the imaginary part (called absorption coefficient) of
refractive indexes n1 and n2, respectively.

Before being used as the initial features (input) for the ILSW-Net model, the K wave-
forms (sk(t)_ are normalized by e−αd, where α (>0) denotes the attenuation constant of the
electromagnetic field in the lossy dielectric material at rest. The resulting normalized signal
(
∼
s k(t)) used for the learning process is then given as follows:

∼
s k(t) = sk(t)/e−αd with α = κ14π/λ (2)

It is empirically observed that without the normalization of Equation (2), ILSW-Net
struggles to effectively learn and generalize from the data (see Section 4.1). Indeed, as
highlighted in Section 4, this preprocessing step ensures that the input data are appropri-
ately scaled, facilitating the model’s ability to discern patterns and relationships within the
waveform data.

2.1.2. Normalization of Output Variables

In our approach, a single 1D-CNN is used to solve a linear regression problem with
the following four outputs: the shock wavefront velocity (V1), the particle velocity (V2),
and the real part (r2) and the absolute value κ2 of the imaginary part of the refractive
index (n2) of the shocked material. This problem involves predicting a continuous numeric
output variable based on one or more input features. In this context, the min–max scaling
procedure could be used to standardize the labeled output in the linear regression process.
The normalized value (xscaled) of parameter x is defined as follows:

xscaled = (x − xmin)/(xmax − xmin) (3)

where xmax and xmin denote the maximum and minimum value within the dataset, respectively.

2.2. Architecture of ILSW-Net

A neural network architecture is introduced to tackle the inverse problem, i.e., re-
trieving V1, V2, r2, and κ2 from the lossy wavefront input signal. The primary goal is to
manipulate the normalized waveform (

∼
s k(t)) in the time domain, where each time sample

(
∼
s k(tn), where n = 1, 2, . . ., N) is assumed to be related to the unknown (complex) refractive

index (n2) of the shocked dielectric material.
Figure 1 shows the proposed ILSW-Net architecture dedicated to resolving the re-

gression problem. It consists of two main parts, namely a convolutional feature extractor
followed by a cascade of dense layers. The convolutional feature extractor is inspired by the
residual network architecture [12] and influenced by the 1D ResNet model [13]. It receives
the initial waveform of size 12,500 as input and learns discriminant features through the
cascade of 1D convolutions and max poolings. Specifically, it makes use of two residual
building blocks, namely a convolutional (Conv.) block and an identity (Iden.) block. the
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Conv. block has two branches, in which the first branch contains a Conv1D and the second
branch has 2 consecutive Conv1D layers, allowing feature learning at different receptive
fields of 3 and 5. These features are then combined by an addition. In the case of the Iden.
block, the first branch is simply the input of the block. At the end of the convolutional
feature extractor, global average pooling is used to obtain a vector with a length of 384.
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Figure 1. Architecture of ILSW-Net used to estimate the shock wavefront velocity (V1), particle
velocity (V2), and the complex refractive index (n2) of the shocked dielectric material from simulated
waveforms. Note that using the complex refractive index (n1) is a way to incorporate physical
knowledge into the model, advantageously boosting its performance.

The second part is the fully connected regressor, aiming at estimating the following
4 outcomes: the shock wavefront velocity (V1), particle velocity (V2), and the real and
imaginary parts of the refractive index (n2). In particular, the known complex refractive
index (n1) of the material at rest is used by concatenating its real part and imaginary
part with the features learned by the convolutional feature extractor. Including physical
knowledge in the model is necessary for effective learning. Without the information
provided by refractive index n1, the model cannot learn the relationships between the
input data and the output, leading to diminished performance. This is demonstrated in the
next section.
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2.3. Physics-Informed Loss and the Nelder–Mead Optimization Algorithm

Velocities V1 and V2 can be measured and/or calculated from the impact velocity
with hydrocode shock behavior numerical simulations. However, there does not exist
any method capable of precisely measuring the exact complex refractive index (n2) using
a radio-interferometer. Consequently, a simple confidence loss between the predicted
and measured values of the complex refractive index (n2) cannot be used in the case of
experimental signals. Even when the model is well trained on a simulated dataset with
available ground-truth values (V1, V2, r2, κ2), its performance on realistic data remains
uncertain due to the absence of measured values of the complex refractive index (n2). To
address this issue, we employ a physics-informed loss to constrain matching between the
reconstructed signal and the original experimental signal in the time domain. In particular,
we make use of Equation (1) to obtain an approximated waveform from the predicted
values of V1, V2, and n2. Then, we compute the mean square error (MSE) loss between this
approximated signal and the denoised original waveform as follows:

J(t1, t2, . . . , tn, . . . tN)=
1
N ∑N

n=1[
∼
s sim(tn)−

∼
s orig(tn)]

2 (4)

where
∼
s sim and

∼
s orig denote the approximately simulated and denoised original waveforms,

both normalized according to Equation (2). By minimizing this loss, we can ensure that
the waveform derived from calculations fits well with the original realistic waveform.
However, given the presence of complex numbers in Equation (1), this loss cannot be
minimized by canonical gradient descent algorithms. Instead, the recently proposed Nelder–
Mead algorithm [14] is employed, which is a versatile and robust numerical optimization
technique widely used in various scientific and engineering applications.

3. Learning Procedure and Hyper-Parameter Setting
3.1. Learning Procedure

As mentioned above, a two-stage learning procedure is conducted to deal with both
simulated and realistic signals taken from lossy materials. In the first stage, the ILSW-Net
model is trained with a mean absolute error (MAE) loss computed between the predicted
and ground-truth variables (V1, V2) and the real and imaginary parts of n2 as follows:

L =
1

4N ∑N
n=1

∣∣V1,n − V̂1,n
∣∣+ ∣∣V2,n − V̂2,n

∣∣+ |r2,n − r̂2,n|+ |κ2,n − κ̂2,n| (5)

where V1,n and V̂1,n denote the original and predictive values of shock wavefront velocity
V1, respectively; V2,n and V̂2,n designate the original and predictive values of particle
velocity V2, respectively; r2,n and r̂2,n are the original and predictive values of the real
part of refractive index n2, respectively; and κ2,n and κ̂2,n are the original and predictive
values of the imaginary part (absolute value) of refractive index n2, respectively. The
training and validation datasets, comprising 10,000 signals for training and 2000 signals for
validation, are generated via Equation (1). The dynamic ranges for each ground-truth value
of these datasets are detailed in Table 1. These ranges were selected to be representative
of the experimental values. Following [15], the real part of the refractive index of the
dielectric material increases when submitted to a shock wave. The loss function in this
stage is minimized by a standard gradient descent algorithm. Then, in the second stage, the
predicted values from the ILSW-Net model are refined by minimizing the physics-informed
MSE loss in the time domain using the Nelder–Mead algorithm.
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Table 1. Dynamic range of ground-truth values used for the generation of training and
validation datasets.

Ground Truth Minimum Value Maximum Value

Real part of the refractive index (n1 ) 1 2
Imaginary part of the refractive index (n1 ) 0.001 0.2
Real part of the refractive index (n2 ) 1 3
Imaginary part of the refractive index (n2 ) 0.001 0.2

Shock wavefront velocity (V1 ) 2000 m/s 6000 m/s
Particle velocity (V2 ) 200 m/s 600 m/s

3.2. Hyper-Parameter Setting

We initialize the model with He’ normal initializer [16]. The model is trained for
400 epochs using an Adam optimizer [17]. The learning rate is dynamically adjusted via a
learning rate scheduler with a reduced factor of 0.5, patience of 5 epochs, and a minimum
learning rate of 0. An early stopping mechanism is also used to prevent overfitting by
finishing the training if the training loss is not decreased within 10 epochs.

4. Results and Discussions
4.1. Lossless Material

In a previous study referenced [9], material losses were negligible, allowing us to con-
sider the corresponding signal as normalized by Equation (2). Consequently, a comparison
between our proposed model (ILSW-Net) and the model reported in [9] is conducted. More
explicitly, both models are trained on normalized simulated signals, along with the real
part of n1, serving as the additional input, while velocities V1 and V2 and the real part of
n2 are the output variables. This comparison is based on the mean absolute percentage
error (MAPE) of the models’ predictions on the validation dataset. In Table 2, our proposed
ILSW-Net model demonstrates lower MAPE values across all three dimensions (V1, V2, r2)
compared to the CNN model used in [9].

Table 2. The mean absolute percentage error (%) of ILSW-Net and the CNN model used in [9] for
velocities V1 and V2 and the real part of n2 on the validation set.

Model V1 V2 r2

Model [9] 2.46 3.59 0.75
ILSW-Net 0.68 1.37 0.5

4.2. Lossy Material

Since a two-stage training procedure is adopted to solve the inverse problem of a lossy
shocked wavefront, in this section, we first report the performance of the ILSW-Net model
on the simulated dataset, then present its application to the real-world signals.

4.2.1. Validation on Simulated Data

As mentioned earlier, the simulated data are used in both the validation and training
phases of the learning process. We conduct experiments using the different combinations
of algorithmic ingredients proposed in Section 2. This allows us to quantify the effect of
the data normalization process and the use of the refractive index (n1) in boosting the
performance of ILSW-Net. The configurations to be explored are listed as follows:

• ILSW-Net with only the waveform as input (one-input ILSW-Net);
• One-input ILSW-Net with the data normalization process;
• ILSW-Net with two inputs, namely the waveform and the complex refractive index

(n1) (two-input ILSW-Net);
• Two-input ILSW-Net with the data normalization process.
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Figure 2 shows the evolution of the training/validation loss during the learning
procedure. We can see that in the first two configurations, when using only the waveform
input (Figure 2a,b), the model cannot converge, with a high training loss at the end. When
using the complex refractive index (n1) as input (Figure 2c), the model can remarkably
converge, with training loss reduced significantly. This demonstrates the impact of using
n1 in facilitating the learning of ILSW-Net. However, the validation loss is still very high
compared to the training loss; this means that the model exhibits overfitting. Fortunately,
by normalizing the data (Figure 2d), the two-input ILSW-Net is successfully optimized,
with better convergence, no overfitting, and a more stable validation loss curve.

Electronics 2024, 13, 1664 7 of 12 
 

 

• ILSW-Net with two inputs, namely the waveform and the complex refractive index 
(𝑛 ) (two-input ILSW-Net);  

• Two-input ILSW-Net with the data normalization process. 
Figure 2 shows the evolution of the training/validation loss during the learning pro-

cedure. We can see that in the first two configurations, when using only the waveform 
input (Figure 2a,b), the model cannot converge, with a high training loss at the end. When 
using the complex refractive index (𝑛 ) as input (Figure 2c), the model can remarkably 
converge, with training loss reduced significantly. This demonstrates the impact of using 𝑛  in facilitating the learning of ILSW-Net. However, the validation loss is still very high 
compared to the training loss; this means that the model exhibits overfitting. Fortunately, 
by normalizing the data (Figure 2d), the two-input ILSW-Net is successfully optimized, 
with better convergence, no overfitting, and a more stable validation loss curve. 

Figure 2. Performance comparison for different ILSW-Net configurations: (a,b) using a normaliza-
tion (norm.) step; (c) using real and imaginary parts of the refractive index (𝑛 ) as input; (d) using a 
norm. step and real and imaginary parts of the refractive index (𝑛 ) as input. 

The mean absolute percentage error (MAPE) of our model prediction on the valida-
tion dataset is reported in Table 3. We can see that by using both 𝑛  and the data normal-
ization process, we can significantly reduce the MAPE from 14.59 to 0.69% (21×) for 𝑉 , 
from 16.2 to 1.28% (13×) for 𝑉 , and from 13.81 to 0.79% (17×) for 𝑟 . However, the error 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Performance comparison for different ILSW-Net configurations: (a,b) using a normalization
(norm.) step; (c) using real and imaginary parts of the refractive index (n1) as input; (d) using a norm.
step and real and imaginary parts of the refractive index (n1) as input.

The mean absolute percentage error (MAPE) of our model prediction on the validation
dataset is reported in Table 3. We can see that by using both n1 and the data normalization
process, we can significantly reduce the MAPE from 14.59 to 0.69% (21×) for V1, from
16.2 to 1.28% (13×) for V2, and from 13.81 to 0.79% (17×) for r2. However, the error of
κ2 is still large, although it is reduced from 70.65 to 16.95% (4×). These results are also
visually demonstrated in Figure 3 with scatter plots of ground-truth prediction values.
To investigate this result, the distribution of the κ2 MAPE relative to its ground truth is
explored. Figure 4 shows that the error is particularly high at low-ground-truth κ2 values.
In detail, for a ground-truth κ2 smaller than 0.025, our model exhibits an MAPE of 33.41%,
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while that for a ground-truth κ2 larger than 0.025 is only 3.13%. This result suggests the use
of another loss function (e.g., MAPE) to improve the performance of our model.
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Table 3. The mean absolute percentage error (%) of ILSW-Net for velocities V1 and V2 and the
real/imaginary parts of n2 on the validation set.

Method V1 V2 r2 κ2

One-input ILSW-Net (baseline) 14.59 16.2 13.81 70.65
One-input ILSW-Net using norm. step 9.49 9.82 9.22 136.62
Two-input ILSW-Net 4.29 10.38 2.75 77.62
Two-input ILSW-Net using norm. step (final model) 0.69 1.28 0.79 16.95

4.2.2. Application to Experimental Data

The result obtained with real-world data is achieved after applying both the final
model and the Nelder–Mead algorithm to two distinct physical waveforms delivered by a
millimeter-wave (94 GHz) interferometer during a symmetrical shock experiment on high-
density polyethylene (HDPE, n1 = 1.5 − 0.023i) and polymethyl methacrylate (PMMA,
n1 = 1.581 − 0.024i) dielectric material samples. The impactor material is the same as the
driver plate and the back plate of the target. The impactor is 90 mm in diameter and 10 mm
thick. The driver plate is 110 mm in diameter and 15 mm thick, and the back plate is 80 mm
in diameter and 25 mm thick. The impact velocity is measured with laser interferometry
and less than 2% uncertainty.

First, the initial predictions (V1, V2, r2, κ2) are generated by ILSW-Net using the
normalized physical signal and the real/imaginary parts of n1 as two inputs. Then, they
are refined by the Nelder–Mead algorithm, further enhancing their accuracy. In Figure 5,
the graph serves as a visual guide for comparing the differences between the experimental
waveform and the waveform calculated using known values of n1, along with the predicted
values of V1, V2, and n2. It is shown clearly that the signal reconstructed using the final
predictions from ILSW-Net and the optimization algorithm fit better with the original
signal. The estimations of V1, V2, and complex n2 are given in Table 4. The accuracy of
ILSW-net is compared for V1 and V2 values obtained from the experiments. These values
are calculated from the experimental impact velocities with hydrocode shock behavior
numerical simulations. The impedance-matching method is applied with a Mie–Gruneisen
equation of state for the materials [7]. Notably, the accuracy of V1 and V2 is increased
after applying the optimization algorithm. These improvements may suggest a positive
influence on the predicted values of the complex refractive index. The accuracy is better for
the shock velocity than for the particle’s velocity, which seems to be correlated with the
original signal itself, with a higher number of periods for the high-frequency part of the
double oscillations of the original signal and only one period for HDPE and half a period
for PMMA samples.

Table 4. Estimation of V1, V2, and n2 by ILSW-Net for both HDPE and PMMA dielectric materials
under mechanical impact with or without application of the optimization method. The accuracy is
obtained for V1 and V2 from the experiments, as deduced from the experimental impact velocities.

HDPE PMMA

Prediction Accuracy (%) Prediction Accuracy (%)

V1 without refinement 3616 m/s 99.06 3397 m/s 89.81
V1 with refinement 3631 m/s 99.47 3375 m/s 90.40
V2 without refinement 589 m/s 85.57 251 m/s 82.67
V2 with refinement 565 m/s 89.20 270 m/s 88.93
Real[n2] without refinement 1.63 1.616
Real[n2] with refinement 1.60 1.614
Im[n2] without refinement 0.036 0.0232
Im[n2] with refinement 0.031 0.0224



Electronics 2024, 13, 1664 10 of 12Electronics 2024, 13, 1664 10 of 12 
 

 

Before applying the optimization method After applying the optimization method 

  
(a) (b) 

  
(c) (d) 

Figure 5. Comparison of theoretical waveforms (simulated using Equation (1), which accounts for 
the dielectric losses with the parameters given Table 4) with experimental waveforms delivered by 
a 94 GHz interferometer during impact experimentation. (a,b) High-density polyethylene (HDPE) 
material; (c,d) polymethyl methacrylate (PMMA) material. 

Table 4. Estimation of 𝑉 , 𝑉 , and 𝑛  by ILSW-Net for both HDPE and PMMA dielectric materials 
under mechanical impact with or without application of the optimization method. The accuracy is 
obtained for 𝑉  and 𝑉  from the experiments, as deduced from the experimental impact velocities. 

 HDPE PMMA 
 Prediction Accuracy (%) Prediction Accuracy (%) 𝑉  without refinement 3616 m/s 99.06 3397 m/s 89.81 𝑉  with refinement 3631 m/s 99.47 3375 m/s 90.40 𝑉  without refinement 589 m/s 85.57 251 m/s  82.67 𝑉  with refinement 565 m/s 89.20 270 m/s 88.93 Real[𝑛 ] without refinement 1.63  1.616  Real[𝑛 ] with refinement 1.60  1.614  Im[𝑛 ] without refinement 0.036  0.0232  Im[𝑛 ] with refinement 0.031  0.0224  

  

Figure 5. Comparison of theoretical waveforms (simulated using Equation (1), which accounts for
the dielectric losses with the parameters given Table 4) with experimental waveforms delivered by
a 94 GHz interferometer during impact experimentation. (a,b) High-density polyethylene (HDPE)
material; (c,d) polymethyl methacrylate (PMMA) material.

5. Conclusions

In conclusion, our study demonstrates the relevance and effectiveness of the use of
neural networks in conjunction with the Nelder–Mead algorithm for remote characteriza-
tion of lossy dielectric materials subjected to a mechanical impact by a millimeter-wave
(94 GHz) interferometer.

When applied to simulated waveforms, our results are promising, revealing a neural
network mean absolute percentage error of approximately 1% for shock wavefront velocity,
particle velocity, and the real part of the refractive index in shocked dielectric materials.
The mean absolute percentage error is approximately 17% for the imaginary part of the
refractive index in shocked dielectric materials. This accuracy shows the intrinsic ability
of the proposed neural network to capture the subtle relationships between the input
waveform and the real and imaginary parts of the complex refractive index of shocked
materials. Furthermore, the proposed ILSW-Net provides an accurate estimation of the
shock wavefront and particle velocities in shocked dielectric materials. High prediction
performance on simulated waveforms validates the methodological approach that we
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adopted in this and underlines the robustness of our model. When tested on measured
waveforms delivered by a millimeter-wave interferometer, the use of a physics-informed
loss optimized by the Nelder–Mead algorithm enables a better fit between the reconstructed
signal and the original waveform in the time domain. Additionally, it improves accuracy
for shock wavefront and particle velocities compared to experimental values.

In summary, this study reports, for the first time, the estimation of the complex
refractive index of lossy dielectric materials under mechanical impact. Future work may
involve the exploration of more robust deep learning model architectures, along with
another loss function, to further improve the prediction performance, particularly in the
case of the imaginary part of the refractive index (n2).
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