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Abstract: Autonomous parking systems (APSs) can help drivers complete the task of finding a
parking space and the parking operation, which improves driving comfort. Current research on APSs
focus on the perception, localization, planning, and control modules, while few pay attention to the
decision modules. This paper proposes a method for optimal parking space selection and vehicle
driving decisions. In terms of selecting the optimal parking space, a multi-attribute decision method
is designed considering the type of parking space, walking distance, and other factors. In terms of
vehicle driving decisions, we first predict the behavior and trajectory of the target vehicle in a specific
scenario, and then use a combination of rule-based and learning-based decision methods for safe and
comfortable vehicle driving behavior decisions. Simulation results show that the proposed methods
can find the optimal parking space according to the parking lot map and improve the efficiency and
smoothness of vehicle driving while ensuring driving safety.

Keywords: autonomous parking system (APS); multi-attribute decision; driving behavior and
trajectory; optimal parking space selection; driving decision

1. Introduction

In the early stage of vehicle intelligence development, three technical routes have
emerged for autonomous parking systems (APSs) based on the resources, costs, and
other factors: vehicle-side intelligence solutions, field-side intelligence solutions, and
vehicle–field collaboration solutions. An APS based on vehicle-side intelligence perceives,
locates, makes decisions, plans [1], and controls [2,3] entirely through vehicle-side soft-
ware and hardware technology. It can perform various driving operations without human
intervention, including obstacle avoidance, scanning for empty parking spaces, and park-
ing navigation [4–6], and is technically closer to low-speed Level-4 autonomous driving
scenarios with scene migration capabilities.

While many car companies prefer vehicle-side intelligence solutions in selecting
parking spaces, a lot of research prefer parking guidance systems based on smart parking
lots. Young proposed a PARKSIM model to simulate the driver’s behavior of finding a
parking space in the parking lot where the spaces are known [7]. Idris MYI et al. designed
a parking service system that uses an algorithm for selecting the shortest path to provide
the user with a suitable parking location [8]. Liu et al. proposed a parking space selection
model based on the main considerations such as parking difficulty and walking distance [9].
Gao proposed a method using the shortest route to choose the optimal parking space [10].
Lee et al. and Chen et al. both proposed a fuzzy multi-attribute-related method to search
for the optimal parking space; while Lee et al. only considered the objective factors of the
available parking space [11], Chen et al. only took the subjective factors into account [12].
Currently, the commercialized APS prefers to use a cruising method to find an available
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parking space with the sensing system, but this method lacks the decision of selecting an
optimal parking space.

In terms of vehicle driving decisions in parking lots, many studies pay more attention
to perception, localization, planning, and control. Nakrani et al. proposed a fuzzy-based
obstacle avoidance controller that could perform smart parking like a person by avoiding
static and moving obstacles [13]. Jiménez et al. integrated the perception, localization,
decision, and maneuvering methods for the control of an autonomous vehicle to enable the
vehicle to drive safely in the parking lot [14]. Although some studies have achieved many
compelling results in the above part, unreasonable decision behaviors also have a certain
impact on the safety and efficiency of autonomous vehicle driving. In light of these risks,
autonomous vehicles need to establish a more comprehensive decision system to improve
their driving safety and efficiency. However, few researchers concern and cope with the
aforementioned issues. Only Bi et al. constructed a rule-based behavior tree decision model
for an APS and verified its soundness and implementability [15].

Therefore, in this paper, a method for optimal parking space selection and vehicle
driving decision is proposed to find the optimal parking space according to the parking
lot map and to improve the efficiency and smoothness of vehicle driving in the parking
lot while ensuring driving safety. The main contributions of the paper are summarized
as follows:

(1) A novel method to select the optimal parking space is proposed. Different from the
existing studies that only aim to find an available parking space, the proposed method
uses multi-attribute decision to evaluate the candidate parking spaces in a parking lot
map and select the optimal parking space by considering the driver’s preference.

(2) A model to make vehicle driving decisions in the parking lot is then designed, which
combines a behavior tree with a deep Q-learning network (DQN) to improve the
efficiency of vehicle driving while ensuring driving safety during the parking process.

(3) A method for conflict target vehicle trajectory prediction is designed. The behavior of
the target vehicle is predicted with a long and short-term memory (LSTM) model, and
the trajectory of the target vehicle is predicted with a constant velocity (CV) model
and a five-degree polynomial. Then the prediction results are substituted into the
decision model to improve the rationality of the decision.

Compared to references [11,12], reference [11] primarily considered objective factors
in selecting parking spaces, while reference [12] focused on subjective factors. This bias
makes both studies somewhat one-sided. In contrast, this paper adopts a method that
integrates both subjective and objective factors, considering not only the decision maker’s
subjective preferences but also the objective attributes of each alternative, thereby making
the decision-making process more comprehensive and reasonable. Furthermore, compared
to reference [15], which only established a simple behavior tree decision model with
insufficient consideration of scenarios, in this paper, a more complex behavior tree decision
model is developed, and DQN technology is combined, which can not only make more
reasonable decisions about the behavior of vehicles, but also reasonably determine the
driving speed of vehicles and significantly improve the applicability and efficiency of
the model.

The remainder of the paper is organized as follows. Section 2 proposes the model
about selecting the optimal parking space decision and vehicle driving decision; Section 3
presents the simulation validation; and Section 4 concludes the paper.

2. Materials and Methods
2.1. System Overview

Two types of autonomous vehicle decision-making behavior in the parking lot are
considered, namely the decision to select the optimal parking space and the behavioral
decision during autonomous vehicle driving. The overall structure is shown in Figure 1.
In the optimal parking space decision, the study uses multi-attribute decision to select the
optimal parking space [12]. In autonomous vehicle driving behavioral decisions, the study
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uses a combination of the behavior tree and DQN to make decisions about the behavior of
autonomous vehicles and incorporates the predictive trajectory method from other vehicles
in some specific scenarios.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 26 
 

 

2. Materials and Methods 
2.1. System Overview 

Two types of autonomous vehicle decision-making behavior in the parking lot are 
considered, namely the decision to select the optimal parking space and the behavioral 
decision during autonomous vehicle driving. The overall structure is shown in Figure 1. 
In the optimal parking space decision, the study uses multi-attribute decision to select the 
optimal parking space [12]. In autonomous vehicle driving behavioral decisions, the study 
uses a combination of the behavior tree and DQN to make decisions about the behavior 
of autonomous vehicles and incorporates the predictive trajectory method from other ve-
hicles in some specific scenarios. 

Ego distance

Obstacle

Map Data

Global Trajectory Planning

Vehicle Driving Decision

Local Trajectory Planning

Behavior Decision

Different Behaviors

Five-degree Polynomial

CV

LSTM

drive into a parking space

drive in this lane

Trajectory PredictionBehavior Prediction

Behavior Tree DQNDealing with Special Situations

Parking Space Final SelectionParking Space Preliminary Selection

Multi-attribute Decision

the Analytic Hierarchy Process

the Entropy Method
the Technique for Order Preference 
by Similarity to an Ideal Solution

Driver Preferences

the shortest distance of driver

the shortest distance of vehicle

the shortest time

Optimal Parking Space Selection

Vehicle Control

 
Figure 1. Overall structural framework. 

2.2. Optimal Parking Space Selection 
The decision framework for selecting the optimal parking space is shown in Figure 

2. The decision method is divided into two main parking scenarios: at the entrance of the 
parking lot and during the driving in the parking lot. 

Entrance to the Parking Lot

Parking Space Preliminary 
Selection

Multi-
attribute 
Decision

Walking distance

Parking space type

Driving distance

Driving in the Parking Lot

Parking Space Final Selection

Driver 
Preferences

 shortest distance of driver

shortest distance of vehicle

shortest time

Dealing with special situations

Ego Vehicle

Obstacle Vehicle

Other Obstacle

Map Data

Optimal 
parking space

 
Figure 2. The optimal parking space selection framework. 

2.2.1. Parking Space Preliminary Selection Model 
When the autonomous vehicle arrives at the entrance of the parking lot, an optimal 

parking space needs to be preliminarily determined as the driving destination. In order to 
improve the calculation efficiency, we first select a few high-quality parking spaces from 
a large number of parking spaces by preliminary selection. Our goal is to filter the parking 
spaces around each pedestrian exit to find a better parking space and then determine an 
optimal parking space as the vehicle’s driving destination. The method first needs to de-
termine the factors that affect the choice of parking space. 

Factors influencing the selection of parking spaces include walking distance, vehicle 
driving distance, and the type of parking space, etc. [16]. As the distance difference be-
tween the parking spaces around each pedestrian exit and the entrance of the parking lot 
is small, we only consider two influencing factors: the walking distance and the type of 
parking space in the initial selection of parking spaces. 

The walking distance refers to the distance between the parking space and the pedes-
trian exit. Drivers usually prefer a shorter distance due to human initiative. The walking 
distance can be calculated using the Euclidean distance [16]: 

Figure 1. Overall structural framework.

2.2. Optimal Parking Space Selection

The decision framework for selecting the optimal parking space is shown in Figure 2.
The decision method is divided into two main parking scenarios: at the entrance of the
parking lot and during the driving in the parking lot.
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2.2.1. Parking Space Preliminary Selection Model

When the autonomous vehicle arrives at the entrance of the parking lot, an optimal
parking space needs to be preliminarily determined as the driving destination. In order to
improve the calculation efficiency, we first select a few high-quality parking spaces from a
large number of parking spaces by preliminary selection. Our goal is to filter the parking
spaces around each pedestrian exit to find a better parking space and then determine
an optimal parking space as the vehicle’s driving destination. The method first needs to
determine the factors that affect the choice of parking space.

Factors influencing the selection of parking spaces include walking distance, vehicle
driving distance, and the type of parking space, etc. [16]. As the distance difference between
the parking spaces around each pedestrian exit and the entrance of the parking lot is small,
we only consider two influencing factors: the walking distance and the type of parking
space in the initial selection of parking spaces.

The walking distance refers to the distance between the parking space and the pedes-
trian exit. Drivers usually prefer a shorter distance due to human initiative. The walking
distance can be calculated using the Euclidean distance [16]:

di_j =
√(

xi − xi_j
)2

+
(
yi − yi_j

)2 (1)

where (xi, yi) represents the coordinates of the pedestrian exit and
(
xi_j, yi_j

)
represents the

coordinates of the center of the parking space.
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There are three types of parking spaces, namely the T shape parking space, the line
shape parking space, and the bias shape parking space, as shown in Figure 3. We use
t f , ty, andtx to represent the parking difficulty of three types of parking spaces, with the
value relationship ty > t f > tx [9].
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Considering that different drivers evaluate the importance of the influencing factors
differently, we use a multi-attribute decision model with a combination of subjective
and objective weighting methods. The subjective factors are analyzed using the analytic
hierarchy process (AHP) [17] and the objective factors are evaluated using the entropy
method [18]. The final solution to the multi-attribute decision problem is obtained by using
the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) [19].

The calculation process of AHP is shown below. Firstly, the hierarchical structure
model is established as shown in Figure 4. The goal layer is the optimal parking space, the
criterion layer is the walking distance and the type of parking space, and the scheme layer
is the alternative parking space.
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The judgment matrix W2×2 is constructed according to the relative importance of
the two influencing factors, where w1/w2 indicates the importance of influence factor w1
relative to influence factor w2. The method takes values from 1 to 9 depending on the
level of importance, where 1/1 indicates equal importance while 9/1 indicates extreme or
absolute importance. In addition, the elements on the main diagonal of the matrix are set
to 1.

W2×2 =

[
1 w1/w2

w2/w1 1

]
. (2)

The maximum eigenvalue λmax of this matrix and its corresponding eigenvector
a =

(
a′1, a′2

)
are solved for the consistency test. If the test is passed, the eigenvector a is

regularized (a1 + a2 = 1), where a1 and a2 are the subjective weights of the corresponding
influencing factors, otherwise, the judgement matrix is adjusted.

The stochastic consistency ratio of the judgment matrix is

CR =
CI

RI(n)
, (3)
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where the consistency indicator of the judgment matrix is CI, which can be calculated as

CI =
λmax − n

n − 1
, (4)

where RI(n) is the average random consistency index of the judgment matrix, and the
values of RI(n) can be found in Table 1.

Table 1. Average random consistency indicators.

n 1 2 3 4 5

RI 0 0 0.58 0.90 1.12

When CR < 0.1, the judgment matrix is considered to have better consistency; other-
wise, the consistency test of the judgment matrix fails.

The calculation process of entropy method is shown as follows: Let E = {ei|i = 1, 2, · · · , n}
be the set of alternative parking spaces and F =

{
f j
∣∣j = 1, 2

}
be the set of influence factor

values of each alternative parking space. The obtained original data matrix is A =
(
aij
)

n×2
and the walking distance and parking difficulty are both negative indicators; therefore, the
evaluation matrix R =

(
rij
)

n×2 is obtained by normalizing and transforming the matrix by:

rij =
max

i
aij − aij

max
i

aij − min
i

aij
, i = 1, 2, · · · , n. (5)

The entropy of the jth influencing factor can be calculated as:

hj = −k
n

∑
i=1

fijln fij, (6)

where k = 1/lnn and fij =
rij

∑n
i=1 rij

.

The objective weight of the jth influencing factor is:

bj =
1 − hj

n − ∑2
j=1 hj

(
0 ≤ bj ≤ 1,

2

∑
1

bj = 1

)
. (7)

The calculation process of the subjective–objective combination weighting is shown
as follows. Assuming that α and β are used to measure the importance of vector weights
of influencing factors. The weight of the influencing factor calculated by the subjective
weighting method is aj = (a1, a2)

T and the weight of the influencing factor calculated by the
objective weighting method is bj = (b1, b2)

T . Moreover, since α + β = 1, then ω = αa + βb
is the weight determined by the subjective and objective combination weighting method.

α =
∑n

i=1 ∑2
j

(
r−j − rij

)
aj

∑n
i=1 ∑2

j

(
r−j − rij

)(
aj + bj

) , (8)

β =
∑n

i=1 ∑2
j

(
r−j − rij

)
bj

∑n
i=1 ∑2

j

(
r−j − rij

)(
aj + bj

) . (9)

where r−j is the mean of the elements in column j of the evaluation matrix R.
The calculation process of TOPSIS is as follows. The indicator decision matrix

A =
(
aij
)

n×2 is normalised using the vector normalisation method to obtain the matrix
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Y =
(
yij
)

n×2, where yij =
aij√
∑
l

a2
ij

and the weighted normalization matrix is

V =
(
vij
)

n×2 =
(
ωjyij

)
n×2. The ideal solution and negative ideal solution are determined by

V+ =

(
min

1≤i≤n
vij
∣∣j ∈ J−

)
=
{

v+1 , v+2
}

, (10)

V− =

(
max

1≤i≤n
vij
∣∣j ∈ J−

)
=
{

v−1 , v−2
}

. (11)

The distance of parking space i to the positive ideal solution and negative ideal solution
are S+

i and S−
i , respectively, which are calculated as:

S+
i =

√√√√ 2

∑
j=1

(
vij − v+j

)2
, (i = 1, 2, · · · , n), (12)

S−
i =

√√√√ 2

∑
j=1

(
vij − v−j

)2
, (i = 1, 2, · · · , n). (13)

The approximation of the value of each parking influence factor to the ideal solution
can be calculated as:

C+
i =

S−
i

S−
i + S+

i
, (i = 1, 2, · · · , n). (14)

If the value of the parking influence factor with the greatest posting progress is found
in Equation (15), the parking space can be used as the optimal parking space for that
pedestrian exit.

Ci = max
(
C+

1 , C+
2 , · · ·C+

n
)
. (15)

After completing the preliminary selection of parking spaces, the vehicle driving
distance can be added to the factors affecting the parking space, and then the method
described above can be used again to make a decision to select the optimal parking space.
The vehicle driving distance is defined as the distance between the parking space and the
entrance of the parking lot, which can be obtained by Dijkstra’s algorithm [20].

2.2.2. Parking Space Final Selection Model

The autonomous vehicle may pass by some free parking spaces on its way to the target
parking space. In a normal parking lot, the autonomous vehicle does not have access to
information on whether the target parking space is occupied or not. Therefore, it needs to
make a decision between the target parking space and the free parking space while passing
by to determine the final parking space.

We have the option of using driver preferences for decision-making. The three driver
preferences are classified as the shortest distance walked by the driver, the shortest distance
travelled by the autonomous vehicle, and the shortest time taken by the driver to park. The
driver chooses according to their own situation, and the default preference is the shortest
time taken by the driver to park.

The shortest distance walked by the driver means that the driver walks the shortest
distance from the parking space to the pedestrian exit. The preference can be determined by:

dw = dw f − (1 + pz)·dwt, (16)
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where dw f represents the distance from the passing free parking space to the pedestrian
exit, dwt represents the distance from the target parking space to the pedestrian exit, and pz
represents the occupied probability of the target parking space, which can be calculated as:

pz =
nz

ni
, (17)

where nz represents the number of occupied parking spaces passed by the vehicle from
the entrance of the parking lot to the current parking space, ni represents the number of all
parking spaces passed by the vehicle from the entrance of the parking lot to the current
parking space.

When dw ≥ 0, the autonomous vehicle chooses to continue to the target parking space;
otherwise, the autonomous vehicle chooses to park in a passing free parking space directly.

The second preference is the shortest distance travelled by the autonomous vehicle. It
means that the total distance travelled by the autonomous vehicle in the parking lot should
be minimized. The preference can be determined by:

dd = dd f − (1 + pz)·ddt, (18)

where dd f represents the distance from the passing free parking space to the entrance of the
parking lot and ddt represents the distance from the target parking space to the entrance of
the parking lot.

When dd ≥ 0, the autonomous vehicle chooses to continue to the target parking space;
otherwise, the autonomous vehicle chooses to park in a passing free parking space.

The third preference is the shortest time taken by the driver to park. It means the
shortest time from the entrance to the pedestrian exit of the parking lot. The preference can
be determined by:

t =
dw f

vw
− (1 + pz)

(
dwt

vw
+

dd ft

vc

)
, (19)

where dd f _t represents the distance from the passing free parking space to the target parking
space, vw represents the average walking speed of the driver, and vc represents the average
speed of the vehicle.

When t ≥ 0, the autonomous vehicle chooses to continue to the target parking space;
otherwise, the autonomous vehicle chooses to park in a passing free parking space.

When the autonomous vehicle reaches the target parking space and its sensors detect
that the target parking space is free, the autonomous vehicle drives into the target parking
space and completes the parking process.

There are also some special cases in the optimal parking space selection decision.
When the autonomous vehicle travels to a target parking space and its sensors detect
that the target parking space is occupied, then the autonomous vehicle needs to decide
on travelling to the next target parking space. There are two choices, one is the nearest
free parking space passed by and the other is the second optimal parking space decided
according to the aforementioned multi-attribute decision method.

The next target parking space is determined by setting a threshold dT . When dT ≥ dm,
the autonomous vehicle selects the nearest free parking space as the target parking space;
otherwise, the autonomous vehicle selects the next optimal parking space as the target
parking space, where dm is the distance between the current position of the autonomous
vehicle and the nearest free parking space.

2.3. Vehicle Driving Decision

The autonomous vehicle driving decision framework diagram is shown in Figure 5. It
includes three main parts. In some specific situations, we can first predict the trajectory of
the target vehicle driving in a straight lane. Then, we can use the behavior tree to make a
decision on the vehicle’s behavior and output the behavior that the vehicle follows or other



Electronics 2024, 13, 1760 8 of 26

behaviors, and finally input the result into the DQN method to output the vehicle’s jerk
and steering wheel angular speed.
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2.3.1. Behavior Tree Decision Model

The behavior tree is a more common rule-based behavioral decision-makingmethod [21].
The autonomous vehicle can classify the vehicle’s current driving scenario based on
information such as environmental perception and vehicle status. It can search the
behavior tree model from the top down according to the formulated conditional rules to
finally decide on the vehicle’s behavior [22].

In the parking lot, surrounding obstacles include vehicles, pedestrians, other static
obstacles, etc. [23]. The parking lot can be divided into three small scenarios for consid-
eration: straight-line driving scenario, intersection driving scenario, and parking space
driving scenario. The behavioral decision results may be different in different driving
scenarios. Autonomous vehicles can enter different scenarios according to the access
conditions of different scenarios in the behavior tree decision model. The access condi-
tions of the straight-line driving scenario can be set as follows: the road segment that the
autonomous vehicle is about to drive is a straight road, the distance between the vehicle
position and the intersection center point is greater than 10 m, and the distance between
the vehicle position and the target parking space is greater than 10 m. The scenario
decision model diagram is shown in Figure 6.
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Autonomous vehicles enter the behavior tree decision model after meeting the access
conditions of each scenario. The behavior tree models for the three scenarios are shown in
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Figures 7–9. The meanings corresponding to the symbols in the behavior tree are shown
in Table 2.
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2.3.2. DQN Decision Model

During the driving process of autonomous vehicles, sudden changes in speed and
steering angle can occur during the switching and execution process of behavior decided
by the behavior tree. To address this issue, the study used the DQN method to model
different behaviors separately.

First, the kinematics of the autonomous vehicle is modelled, as shown in
Equations (20)–(25).

at+1 =
∫ t+1

t
jdt + at (20)

vt+1 =
∫ t+1

t
adt + vt (21)

δt+1 =
∫ t+1

t
kwdt + δt (22)

θt+1 =
∫ t+1

t

v·tan δ

L
dt + θt (23)

yt+1 =
∫ t+1

t
v·sin θdt + yt (24)

xt+1 =
∫ t+1

t
v·cos θdt + xt (25)

where j represents the jerk, a represents the acceleration, v represents the speed, k represents
the ratio of steering wheel speed to front wheel steering angular speed, δ represents the front
wheel steering angle, θ represents the transverse sway angle, x represents the longitudinal
displacement, and y represents the lateral displacement.

As the state space, action space, and reward function considered in the DQN are
different, the models are conducted as below.

1. Car following behavior.

Since under the car following behavior, the autonomous vehicle follows a planned
global trajectory, we only need to replan its speed here:

S = {∆dx, v, a, j}, (26)

A = {j}, (27)

where S represents the state space, ∆dx represents the relative longitudinal distance to the
vehicle ahead, and A represents the action space, with 3 ≥ j ≥ −3 and a discrete interval
of 0.1.

The reward function consists of the following components: The first influencing factor
is the time to collision (TTC) [24], which represents the time to collide with the autonomous
vehicle at the current speed and lane, and is derived by:

TTC =
∆dx

v − vz
, (28)

where vz represents the speed of the vehicle ahead.
The second influencing factor is the minimum safe distance (MSD) between the

autonomous vehicle and the vehicle ahead.
The third influencing factor is the vehicle interval time (IVT), which indicates the time

it would take for a collision to occur if the vehicle ahead stopped and the autonomous
vehicle continued at its current speed and lane.

For each of the three influences mentioned above, the value-at-risk definition can be
derived by:

RTTC =

{
1 TTC < t1
0 otherwise

, (29)
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RMSD =

{
1 MSD < da
0 otherwise

, (30)

RIVT =

{
1 IVT < t2
0 otherwise

, (31)

where t1 represents the TTC threshold, da represents the MSD threshold, t2 represents the
IVT threshold, RTTC represents the TTC risk value, RMSD represents the MSD risk value,
and RIVT represents the IVT risk value.

The reward value for the safety component can be derived by:

RF =

{
r f RTTC + RMSD + RIVT ≥ 1
0 otherwise

, (32)

where r f represents the penalty value for the safety component, which is negative.
The second part is the desired speed of the vehicle; it can be derived by:

RV = rv × |v − vdesire|, (33)

where rv represents a negative coefficient and vdesire represents the desired speed of the
autonomous vehicle.

The third part is the choice of vehicle actions, mainly the acceleration of the vehicle,
trying to avoid frequent acceleration and deceleration, which can be derived by:

RA =

{
ra × a2 a ̸= 0

0 otherwise
, (34)

where ra represents a negative coefficient.
The fourth part is the penalty for a vehicle collision; it can be derived by:

RR =

{
rr ∆d = 0
0 otherwise

, (35)

where rr represents a large negative value.
The fifth part is the desired relative distance of the vehicle; it can be derived by:

RD = rd × |∆dx − ∆ddesire|, (36)

where rd represents a negative coefficient and ∆ddesire represents the desired relative dis-
tance to the vehicle ahead.

The sixth part is the reward for the autonomous vehicle reaching the desired state; it
can be derived by:

RT =

{
rt v = vdesire, ∆dx = ∆ddesire
0 otherwise

, (37)

where rt represents a positive reward value.
In conclusion, the value of the reward for autonomous vehicle following behavior can be

derived by:
R = w1RF + w2RV + w3RA + w4RR + w5RD + w6RT , (38)

where w1~w6 are the coefficients for each partial award value.

2. Overtaking and obstacle avoidance behavior.

If obstacles occupy the planned global trajectory under the overtaking obstacle avoidance
behavior, both the speed and lateral displacement of the autonomous vehicle need to be
considered to ensure reasonable obstacle avoidance.

S =
{

∆dx, ∆dy, v, a, j, θ, δ
}

(39)
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A = {j, w} (40)

where ∆dy represents the relative lateral distance from the autonomous vehicle to other
obstacles, with 3 ≥ w ≥ −3 and a discrete interval of 0.1.

The reward function consists of the following components: The first part is the relative
lateral distance expected by the autonomous vehicle from other obstacles; the value can be
derived by:

RD =

{
rd ×

∣∣∆dy − ∆ddesire1
∣∣ ∆dx < da

rd ×
∣∣∆dy − ∆ddesire2

∣∣ otherwise
, (41)

where rd represents a negative coefficient, ∆ddesire1 represents the desired relative lateral
distance while lane changing, ∆ddesire2 represents the desired relative lateral distance
without lane change, and da represents the safe distance.

The second part is the desired speed of the vehicle, which can be derived in Equation (33).
The third part is the choice of vehicle actions; trying to avoid frequent acceleration,

deceleration, and lateral oscillation, the value can be derived by:

RA =

{
ra × a2 + rw × w2 a ̸= 0, w ̸= 0

0 otherwise
, (42)

where ra and rw represent negative coefficients.
The fourth part is the penalty for a vehicle collision, which can be derived in Equation (35).
The fifth component is the penalty for driving out of the lane. The value can be derived by:

RS =

{
rs outline
0 otherwise

, (43)

where outline represents a vehicle out of the lane and rs represents a negative coefficient.
In conclusion, the value can be derived by:

R = w1RD + w2RV + w3RA + w4RR + w5RS, (44)

where w1 ∼ w5 are the coefficients for each partial award value.

3. Stop behavior.

As vehicles generally stop along a global trajectory, the vehicle stop behavior can be
modelled in the same way as the vehicle following behavior, but with some differences in
the assignment of parameters.

2.3.3. Target Vehicle Trajectory Prediction in Parking

At present, many scholars have focused on the trajectory prediction of vehicles driving
in the lane [25,26]. Most of the scenarios in the parking lot can refer to the above papers for
vehicle trajectory prediction. However, the scenario shown in Figure 10 cannot be realized,
so this paper chooses this scenario for target vehicle trajectory prediction to make up for
the above deficiencies. Since the target vehicle will not affect the driving of the autonomous
vehicle when driving in this lane but may affect it when driving into a parking space, the
behavior of the target vehicle is simplified to continue driving along this lane or driving
out of this lane into a parking space.

At present, few researchers have predicted the behavior and trajectory of vehicles in
the parking lot, so there is no public dataset of vehicles driving in the parking lot. This
study firstly uses MATLAB to build the dataset, which includes the location of lane lines,
the location of parking spaces, and the coordinates, speed, and behavioral information of
vehicles. As the study only considers the prediction of the behavior and trajectory of the
target vehicle in the aforementioned scenario, two types of behaviors are considered when
building the dataset: continuing to drive along this lane or driving out of this lane into the
parking space.
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It is necessary to divide the departure zone in the dataset. The two zones are when
the heading angle ( θ2 ∼ θ4) of the target vehicle at three consecutive coordinate points
is detected to be greater than the heading angle θ1 of the previous point, and when the
distance from the lane line is less than a certain threshold (since most vehicles are between
1.4 m and 1.6 m wide, the threshold is set to 1 m). The behavior of the target vehicle is then
identified in the dataset as performing the act of driving out of this lane into the target
parking space, and the rest of the behavior is identified as continuing to drive along this
lane, as shown in Figure 11.
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Based on the specificity of the parking lot, the study divides the datasets into continu-
ing to drive along this lane and driving out of this lane, where the datasets of driving out
of this lane contains driving into the left and right parking spaces. The LSTM model for
predicting driving behavior is trained using these datasets.

When the behavior of the target vehicle is to continue to drive along this lane, the
trajectory of the target vehicle can be predicted using the CV motion model.

X =
[
x,

.
x, y,

.
y
]

(45)
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0
0

0
t2/2

t

Wk (46)

where (x, y) represents the position coordinates,
.
x represents the vehicle velocity along the

x direction,
.
y represents the velocity along the y direction, X represents the vehicle state

matrix, t represents the prediction time, and Wk represents the Gaussian noise, which is
simplified to 0.
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When the behavior of the target vehicle is to drive out of this lane into a parking space,
the end position of the target vehicle is known as driving into a free parking space. At this
point, we can use a five-degree polynomial to predict the trajectory of the target vehicle.

y(x) = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 (47)

y′(x) = c1 + 2c2x + 3c3x2 + 4c4x3 + 5c5x4 (48)

y′′(x) = 2c2 + 6c3x + 12c4x2 + 20c5x3 (49)

where c0 ∼ c5 represent the coefficients of the five-degree polynomial. In Equations (47)–(49),
we can find out the coefficients c0 ∼ c5 by only knowing the coordinates of the vehicle at the
starting point (xs, ys) and the ending point

(
xg, yg

)
, and the corresponding first and second

order derivatives, where (xs, ys) represents the coordinates of the current point of the vehicle
and

(
xg, yg

)
represents the target parking position scaled by the vehicle center of rear axle

point. The nearest free parking space on the left and right side is used as the target parking
space. The first and second order derivatives of y with respect to x at the starting point can be
found from three points: the starting point, the first point before the starting point, and the
second point before the starting point. The first and second order derivatives of y with respect
to x at the end point can be obtained empirically.

The parking behavior can be simplified into a uniform deceleration motion with a
speed of 0 at the end point, so that the total time required for the target vehicle to drive out
of this lane into the target parking space can be found.

3. Simulation Validation

Different maps of parking lots are built based on different levels of decision-making
methods, which are used to validate the soundness of the proposed methods.

3.1. Simulation Validation of Optimal Parking Space Selection

The parking lot established in this section is shown in Figure 12. A joint simulation
experiment using MATLAB and PRESCAN can verify the feasibility of the proposed method.
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Figure 12. Parking lot map.

In Figure 12, there are two pedestrian exits and six parking spaces around each
pedestrian exit, where pedestrian exits and parking spaces are indicated by letters and
numbers. For example, E1 is pedestrian exit number 1 and P1_1 is one of the parking spaces
around pedestrian exit number 1.

3.1.1. Parking Space Preliminary Selection

The attributes of the 12 parking spaces around the pedestrian exits in the parking lot
are shown in Table 3, the parking difficulty of the bias shape parking space and the T shape
parking space are both between 3 and 5, and the parking difficulty of the line shape parking
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space is between 5 and 7 [27]. We set the parking difficulty of the three parking spaces as 3,
5, and 7.

Table 3. Parking space attributes.

Pedestrian Exit
Number

Parking Space
Number Walking Distance Parking Difficulty

E1

P1_1 4.50 5
P1_2 13.00 3
P1_3 13.34 3
P1_4 11.50 5
P1_5 6.19 5
P1_6 6.19 5

E2

P2_1 4.50 5
P2_2 6.19 5
P2_3 6.19 5
P2_4 13.01 5
P2_5 13.09 5
P2_6 13.09 5

As walking distance is far more important than the parking difficulty, the judgement
matrix is expressed by:

W2×2 =

[
1 5

1/5 1

]
(50)

Inputting the parameters above into the multi-attribute decision method, we can
initially select parking spaces as follows: the optimal parking space for pedestrian exit E1
is P1_1 and the optimal parking space for pedestrian exit E2 is P2_1.

The attributes of the two initially screened parking spaces are shown in Table 4.

Table 4. Preliminary screened parking attributes.

Pedestrian Exit
Number

Parking Space
Number

Walking
Distance

Driving
Distance

Parking
Difficulty

E1 P1_1 4.50 132 5
E2 P2_1 4.50 162 5

For drivers of autonomous vehicles, three influencing factors are ranked in order
of importance: walking distance > vehicle driving distance > parking difficulty. The
judgement matrix is expressed by:

W3×3 =

 1 3 5
1/3 1 3
1/5 1/3 1

 (51)

Inputting the parameters into the multi-attribute decision method, the optimal target
parking space is P1_1.

3.1.2. Parking Space Final Selection

The current parking spaces are used as shown in Figure 13, but the autonomous vehicle
has no access to information such as the utilization rate. The red car is the autonomous
vehicle. The vehicle travels at about 3 m/s and the pedestrian walks at about 1 m/s.
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Figure 13. Parking space occupancy map.

As shown in Figure 14a, when the autonomous vehicle is at the entrance of the parking
lot, a trajectory towards the target parking space is planned based on the information
from the multi-attribute decision method and the parking lot map. When the autonomous
vehicle travels to the location shown in Figure 14b, its sensing system will find a free
parking space. The autonomous vehicle will then make a choice based on the driver’s
preference in the target parking space and free parking space decision. When the driver’s
preference is the shortest total distance by the autonomous vehicle and the shortest time
taken by the driver to park, the autonomous vehicle will park in the parking space shown
in Figure 14c. When the driver’s preference is the shortest distance walked by the driver,
the autonomous vehicle will park in the parking space shown in Figure 14d.
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3.2. Simulation Validation of Vehicle Driving Decision

The section first validates the autonomous vehicle driving decision method with
examples such as a straight-line driving scenario and an intersection driving scenario, as
shown in Figures 15 and 16; then, a straight-line driving scenario is constructed to validate
the driving decision method with a fusion prediction method, as shown in Figure 17.
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3.2.1. Behavioral Decision-Making in Straight-Line Driving Scenarios

A straight-line driving simulation scenario in the parking lot is established as shown
in Figure 15, in which the red vehicle is the autonomous vehicle, and the black vehicles
are the obstacle vehicles. The obstacle vehicle in the same lane as the autonomous vehicle
drives at a speed of 2.5 m/s and then gradually decreases to 0. The obstacle vehicle in the
lane different to the autonomous vehicle first stops and then drives at a speed of 3 m/s,
and finally the speed decreases to 0. The effect diagrams are shown in Figures 18–22.
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Figure 22. Relative lateral distance between the autonomous vehicle and the vehicle ahead.

In Figure 18, the red vehicle is the autonomous vehicle, driving in the right direction,
and the black vehicle in the same lane as the red vehicle is the obstacle vehicle, driving
in the same direction as the autonomous vehicle. The black vehicle in the other lane is an
obstacle vehicle, traveling in the opposite direction to the self-driving vehicle. The figure
from a to d is the process diagram of the key points of the interaction process.

In terms of vehicle behavior decision, according to the behavior tree decision model,
the autonomous vehicle enters the straight-line driving scenario, and performs corre-
sponding behaviors according to the surrounding environment. The behavior is shown in
Figure 19, including the output result of the decision tree model decisions such as vehicle
stopping in the interaction process. Figure 20 shows the speed information decided by
the autonomous vehicle through the DQN in this interaction process. When the vehicle
ahead stops with no obstacles in the opposite lane, the autonomous vehicle performs a
vehicle overtaking behavior, which helps to improve vehicle driving efficiency. The safety
of the autonomous vehicle is ensured by the fact that at least one of the horizontal and
vertical relative distances from the vehicle obstacles is greater than 0 when performing any
behavior, as shown in Figures 21 and 22. Figure 21 shows the relative longitudinal distance
between the autonomous vehicle and the vehicle in front of it. Figure 22 shows the relative
lateral distance between the autonomous vehicle and the vehicle in front of it.

3.2.2. Behavioral Decision-Making in Intersection Driving Scenarios

A parking lot intersection driving simulation scenario is built as shown in Figure 16,
where the red vehicle is the autonomous vehicle, and the black vehicle is the obstacle vehicle.
The effect of the obstacle vehicle in the lane driving at 2.5 m/s is shown in Figures 23–26.
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In terms of vehicle behavior decision, according to the behavior tree decision model,
the autonomous vehicle enters the following scenarios in turn, the straight-line driving
scenario, intersection driving scenario, and straight-line driving scenario, and performs
corresponding behaviors according to the surrounding environment. The behavior is shown
in Figure 24. Ensuring that the autonomous vehicle slows down during the intersection
driving scenario, in terms of the relative distance between the vehicle and the obstacle, if
the longitudinal relative distance between the autonomous vehicle and the vehicle obstacle
is greater than 0 when performing any behavior, the safety can be ensured as shown in
Figure 26.

3.2.3. Combined Prediction for Autonomous Vehicle Driving Decisions

A straight-line driving simulation scenario is built as shown in Figure 17, in which the
behavior of the target vehicle is predicted by using the LSTM method, and the prediction
results are shown in Figures 27 and 28. Between 0 and about 45 s, the probability of a
vehicle performing the behavior of continuing to drive along this lane is close to 1; between
45 s and 52 s, the probabilities of the three behaviors change, with the probability of a
vehicle performing the behavior of continuing to drive along this lane decreasing and
the probability of a vehicle performing the behavior of driving out of this lane into the
left parking space increasing and eventually approaching 1; after 52 s, the probability
of a vehicle’s behavior does not change, as shown in Figure 27. The vehicle’s behavior
prediction results also overlap with its real behavior, and the behavior prediction results
predict that the vehicle is about to perform the act of driving out of this lane into the left
parking space about 0.1 s earlier than the real results as shown in Figure 28. The predicted
and actual trajectories are shown in Figure 29. The error values of the two trajectories are
shown in Figure 30. The maximum error value occurs when the target vehicle is driving
out of this lane.
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Figure 30. Vehicle trajectory error diagram.

The results of autonomous vehicle driving decisions using the fusion prediction
method are shown in Figures 31–34. Figure 31a–d describe the driving process diagram of
the interaction between the autonomous vehicle and the target vehicle, and it can be found
that no dangerous accidents such as collisions occur between the target vehicle and the
autonomous vehicle.
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The speed comparison is shown in Figure 32, where the autonomous vehicle, in the
decision of the fusion prediction method, performs an early deceleration when it is about
to interact with the target vehicle, and an early acceleration when the target vehicle pulls
into a parking space.

The average speed comparison is shown in Figure 33. The average speed of the
autonomous vehicle in the decision of the fusion prediction method is greater than in the
decision of the non-fusion prediction method.

The acceleration comparison is shown in Figure 34. The acceleration of the autonomous
vehicle in the decision of the fusion prediction method is less than in the decision of the
non-fusion prediction method for the same scenario.

4. Conclusions

This paper proposes two aspects of decision-making for an APS in the parking lot,
aiming to provide a method for optimal parking space selection and vehicle driving
decision. In terms of selecting the optimal parking space decision, we select the optimal
parking space by using a multi-attribute decision-making method considering the type of
parking space, walking distance, and vehicle driving distance. In terms of vehicle driving
decision, we first use a prediction method to predict the behavior and trajectory of the target
vehicle, and then use a combination of rule-based and learning-based decision-making
methods to make decisions on autonomous vehicle behaviors in the APS. The simulation
results show that both aspects of decision-making can produce better decision effects. The
paper can serve as a guide or reference for future vehicle decision research in parking lots.

Compared with the existing research, the parking space selection decision method
based on multi-attribute decision making in the paper only needs to use a plane map of the
parking lot to select a better parking space purposefully. In addition, at present, there are
few studies on parking lot decision-making, which mainly uses rule-based methods. This
paper proposes a decision-making method combining behavior trees and deep Q-learning,
which can improve the driving efficiency and comfort of intelligent vehicles on the premise
of ensuring safety. However, the proposed method still has some limitations. Although
the decision model based on the behavior tree can make decisions for most scenarios, it
cannot traverse all possible cases when making behavior tree rules due to the limitations of
rule-based methods such as behavior tree. Therefore, to solve the problem, future research
can incorporate a learning-based approach into the upper-level decision-making, to adapt
to more complex parking lot situations.
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