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Abstract: Urban transportation systems are increasingly burdened by traffic congestion, a consequence
of population growth and heightened reliance on private vehicles. This congestion not only disrupts
travel efficiency but also undermines productivity and urban resident’s overall well-being. A critical
step in addressing this challenge is the accurate prediction of bus travel times, which is essential for
mitigating congestion and improving the experience of public transport users. To tackle this issue,
this study introduces the Hybrid Temporal Forecasting Network (HTF-NET) model, a framework that
integrates machine learning techniques. The model combines an attention mechanism with Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, enhancing its predictive capabilities.
Further refinement is achieved through a Support Vector Regressor (SVR), enabling the generation of
precise bus travel time predictions. To evaluate the performance of the HTF-NET model, comparative
analyses are conducted with six deep learning models using real-world digital tachograph (DTG) data
obtained from intracity buses in Cheonan City, South Korea. These models includes various architectures,
including different configurations of LSTM and GRU, such as bidirectional and stacked architectures.
The primary focus of the study is on predicting travel times from the Namchang Village bus stop to the
Dongnam-gu Public Health Center, a crucial route in the urban transport network. Various experimental
scenarios are explored, incorporating overall test data, and weekday and weekend data, with and
without weather information, and considering different route lengths. Comparative evaluations against
a baseline ARIMA model underscore the performance of the HTF-NET model. Particularly noteworthy
is the significant improvement in prediction accuracy achieved through the incorporation of weather
data. Evaluation metrics, including root mean squared error (RMSE), mean absolute error (MAE), and
mean squared error (MSE), consistently highlight the superiority of the HTF-NET model, outperforming
the baseline ARIMA model by a margin of 63.27% in terms of the RMSE. These findings provide valuable
insights for transit agencies and policymakers, facilitating informed decisions regarding the management
and optimization of public transportation systems.

Keywords: bus travel time prediction; long short-term memory (LSTM); gated recurrent unit (GRU);
autoregressive integrated moving average (ARIMA); digital tachograph data (DTG); real-world data

1. Introduction

The development of an ”Intelligent Transportation System” (ITS) has become increas-
ingly crucial in modern transportation. An ITS aims to provide innovative services for
efficient traffic management and diverse modes of transportation while ensuring user
safety [1]. This cutting-edge technology encompasses emergency services, passenger travel
time prediction, and the use of cameras to enforce traffic regulations or dynamically adjust
speed limits based on real-time traffic conditions.

Among these transportation modes, buses play an important role in urban areas,
serving as a sustainable means of public transportation. Buses effectively address issues
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such as traffic congestion, parking challenges, and environmental pollution stemming from
private vehicles. Public transportation stands as an integral component of efficient urban
planning, consuming fewer resources and emitting fewer pollutants compared to private
transportation. By embracing public transportation, cities can enhance air quality, alleviate
traffic congestion, and improve the overall quality of life for citizens, fostering a more
sustainable and livable urban environment.

Buses serve as a crucial means of public transport in cities, providing convenient mo-
bility for citizens, including commuters and students. However, during peak traffic periods,
they encounter persistent issues such as lengthy travel times and a lack of punctuality,
which results in passenger dissatisfaction and decreased ridership. To tackle this problem,
optimizing bus routes and schedules has become a top priority. Accurate prediction of
bus travel times plays a vital role in achieving this objective [2]. Precise predictions can
assist in optimizing bus scheduling systems, thereby enhancing the overall efficiency of
the transportation network. Moreover, accurate travel time predictions meet passenger’s
expectations and foster their trust in the public transport system.

Ensuring reliable predictions is a significant challenge due to the multitude of factors
that can influence bus travel times, including traffic conditions, weather, and passenger
load. Inaccurate travel time predictions can have adverse effects on the system’s efficiency,
resulting in operational inefficiencies and increased costs for the bus company. To overcome
this challenge, the exploration of advanced technologies, such as deep learning models,
can be beneficial in providing more accurate predictions. These technologies can utilize
real-time data from various sources, including GPS and digital tachographs, to enhance
prediction accuracy. By addressing the issue of predicting bus travel times, public trans-
portation agencies can improve the reliability and punctuality of their services, leading to
increased ridership and enhanced mobility for citizens.

South Korea has implemented comprehensive measures known as the “Management
Guidelines for Automobile Operation Records and Devices” to efficiently manage automobile
operation records. These guidelines, enforced through the Traffic Safety Act Article 55, the
Enforcement Ordinance Article 45, and the Enforcement Regulation Articles 29 and 30, en-
compass various aspects such as storage, submission, inspection, analysis, and utilization [3].

Since 2005, the installation of digital tachograph (DTG) devices has been mandatory
for commercial vehicles, including buses and trucks, in compliance with these guidelines.
Additionally, since 2011, newly registered cargo vehicles weighing 1 ton and above have
been required to install DTG devices. The primary objective of these devices is to promote
safe driving practices and discourage reckless behavior by recording and monitoring
various aspects of vehicle operation. The DTG data recorded by the DTG devices have
proven to be invaluable for a wide range of applications. They enable the analysis of work
conditions, facilitate the detection of road slipperiness, and aid in the development of
representative driving cycles for delivery trucks, among various applications [4–7]. As a
result, the DTG device has emerged as a crucial tool for ensuring the safety and efficiency
of vehicle operations in South Korea.

In this paper, we utilize DTG data and state-of-the-art deep learning models to pre-
dict bus travel time. The DTG data are obtained from intracity buses in Cheonan City,
South Korea, while the deep learning models include pure Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), bidirectional LSTM and GRU, Stacked-LSTM
and -GRU, and Hybrid Temporal Forecasting Network (HTF-NET). We have conducted
several experiments to evaluate the model’s performance on overall test data, weekday
data, weekend data, and with and without weather information. Furthermore, we can
successfully predict travel times for different types of routes, including both short and
long routes. To evaluate the model’s performance, we compare it with the autoregressive
integrated moving average (ARIMA) time series model, which has been commonly used
in previous studies [8–11]. The experimental results demonstrate the effectiveness of the
HTF-NET model in predicting bus travel times. Additionally, the inclusion of weather
information enhances prediction accuracy. We use evaluation metrics such as root mean
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squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) to assess
the model’s performance. Notably, the HTF-NET model outperforms the baseline ARIMA
model by an impressive 63.27% in terms of the RMSE.

Our main contributions are as follows:

• To the best of our knowledge, this is the first work aiming at employing DTG data
to predict bus travel time. We demonstrate that DTG data from intracity buses in
Cheonan City are effective in predicting bus travel times.

• Our approach introduces a hybrid model that integrates various deep learning ar-
chitectures, including attention, LSTM, and GRU layers. This ensemble model, in
conjunction with the Support Vector Regressor (SVR), demonstrates outstanding per-
formance, surpassing all other models in terms of the RMSE, MAE, and MSE.

• We extract novel temporal features, such as days of the week, and holidays, from the
existing dataset. This enhancement contributes to the robustness of our model, leading
to more accurate bus travel time predictions.

• Our developed deep learning model is versatile and applicable to various real-world
traffic scenarios, encompassing both rush and non-rush hour periods in Cheonan,
South Korea. By accounting for specific characteristics and patterns associated with
different time periods, our models can adapt to the dynamic nature of bus travel times,
resulting in more precise predictions. Furthermore, we successfully predict travel
times for both short and long routes.

• We conducted thorough experiments to evaluate the proposed model. The results
demonstrate that our model significantly enhances the accuracy of predicting bus
travel time, affirming its effectiveness in diverse traffic scenarios.

The remainder of this paper is structured as follows: In Section 2, we provide a review
of the related work. Section 3 describes the data collection process and the preprocessing
steps employed to obtain the travel time dataset used in our study. Section 4 outlines the
methodology adopted for developing the travel time prediction models, which leverage
deep learning techniques. In Section 5, we present the results of the comparative analysis of
the algorithm performance in our study, based on the RMSE, MAE, and MSE, emphasizing
the effectiveness of the deep learning algorithms utilized. Finally, in Section 6, we provide
concluding remarks and discuss future directions.

2. Related Work

To address the challenge associated with accurate and reliable travel time prediction
(TTP) models, the integration of advanced machine learning techniques has gained substan-
tial attention in recent years. Deep learning models, including recurrent neural networks
(RNNs) and convolutional neural networks (CNNs), have demonstrated significant poten-
tial for capturing the intricate temporal dependencies and spatial characteristics of travel
time data. These models can automatically extract and learn meaningful representations
from vast amounts of historical data, enabling more accurate and reliable travel time pre-
dictions. Moreover, the fusion of multiple data sources, such as weather data, traffic sensor
data, and historical travel patterns, has been explored to enrich the input features and
enhance the predictive capabilities of TTP models.

Several researchers use DTG data for many purposes. For example, Kim et al. [3] pre-
sented an algorithm that used blockchain technology to improve the security and reliability
of the data from a DTG device. M.-H. Jeong et al. [4] proposed a model that utilized GRUs
to consider historical traffic speed data and weather conditions for forecasting highway
speeds. H. Jeong et al. [5] suggested a data integration process that combined GPS data
with other vehicle sensor data to create a vehicle trajectory database for livestock vehicles.
Ahn and Shin. [6] analyzed the travel patterns of taxi passengers in Busan, South Korea,
using DTG data. Seung-Bae Jeon et al. [7] utilized DTG data integrated with road link
data to predict bus travel speed. They employed an LSTM neural network, which shows
the potential of this approach for enhancing bus travel speed prediction. These valuable
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contributions exemplify the diverse range of research endeavors to explore the potential
and address the intricacies associated with DTG data in various contexts.

An accurate prediction of travel time is a crucial aspect of transportation planning.
Therefore, extensive research has been conducted to explore two primary approaches: route-
based and data-driven approaches. The existing TTP techniques can be categorized into these
two approaches. Route-based approaches calculate the overall travel time by combining the
segment time and transition time, which includes waiting time resulting from signals, turns,
and other factors between segments. Based on the formulation of the overall travel time,
the route-based approaches can be further divided into segment-based methods that utilize
segment time while disregarding inter-segment correlation [12], and path-based methods that
consider both segment time and intersection delays [13,14]. On the other hand, data-driven
approaches treat travel time as a regression task and estimate the travel time for an entire
path or route based on historical data, implicitly capturing the complexities of traffic patterns.
Data-driven approaches can be further classified into trajectory-based methods [15,16] and
origin–destination (OD)-based methods [17]. Trajectory-based methods utilize road network
and trajectory data to predict travel time, while OD-based methods solely consider pickup
and drop-off location data for travel time estimation.

In recent years, the utilization of data-driven approaches for travel time estimation
and prediction has gained substantial momentum. These approaches have emerged as
powerful tools capable of uncovering hidden patterns and relationships within vast volumes
of traffic data. Leveraging technological advancements and a diverse array of machine
learning algorithms, including linear regression (LR), decision trees (DTs), random forests
(RFs), gradient boosting regressors (GBRs), and ARIMA, as well as deep learning techniques
such as GRU and LSTM, these sophisticated models offer remarkable capabilities. The key
strength of these models lies in their ability to capture intricate and underlying relationships
among various factors, even when such connections are not readily apparent. By effectively
leveraging the vast amounts of available data, they excel at identifying complex temporal
dependencies and nonlinear relationships within the data, ultimately contributing to improved
travel time predictions. The flexibility and adaptability of these models allow them to handle
diverse and dynamic traffic scenarios, providing valuable insights into travel time variations
under different conditions. In Table 1, we provide a comprehensive overview of recent studies
that have employed modern machine learning techniques for travel time prediction. The
table shows the wide range of methodologies and algorithms utilized in the TTP research
field, highlighting the diversity and richness of approaches. From traditional regression-
based models to sophisticated deep learning architectures, researchers have explored various
avenues to enhance travel time prediction accuracy and robustness.

Table 1. Summary of travel time prediction studies using machine learning algorithms.

Author Year Country Data Source Analysis Area Method Vehicle Data Type

Sun, Xiaoyu et al. [18] 2018 China FWOM, OPATDS Fixed Road K-NN, SVM, RF Trucks TT
Wang, Zheng et al. [19] 2018 China GPS Urban Road LSTM Taxi Taxi TS
Zheng, Fang et al. [20] 2013 Netherlands GPS Urban Road State-Space NN Car Vehicle Position, TS
Mendes-Moreira et al. [21] 2015 Portugal STCP System Urban Road Regression and SVM Bus TT
Yu, Bin et al. [22] 2018 China AVLS Bus Route RF and K-NN Bus Bus TT
Gupta, Bharat et al. [23] 2018 Portugal GPS Urban Road RF, GB Taxis Taxi TS
Crist, Teresa et al. [24] 2019 Spain PTN Urban Road K-Mean Clustering Bus Travel Time
Zhi-jian, Wang et al. [25] 2020 China GIS GPS Urban Road LSTM Taxis TT, Taxi TS
Chughtai, J.-U.-R et al [26] 2022 Pakistan FCD Urban Road LSTM+GRU Car TT
Lee, G. et al [27] 2022 South Korea STD Urban Road Geo-conv LSTM Bus TT
Lee, C. et al [28] 2022 South Korea BMS & BIS Urban Road LSTM, GRU, ALSTM Bus TT
Shaji, H. et al [29] 2023 India GPS Urban Road RF, ANN, Clustering Bus TT

3. Data Collection and Preprocessing
3.1. Study Area

In this study, our focus was on collecting travel time data specifically from public
transport buses operating in Cheonan, a significant transportation hub in the central region
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of South Korea, located approximately 83 km south of Seoul, the capital city. With a
population of 689,881 residents as of the end of May 2023. Cheonan is a bustling industrial
city, housing renowned companies such as Samsung SDI and Samsung Display. Buses play
a pivotal role in the transportation system of Cheonan, with the bus transport authority
assigning specific routes to individual buses. Currently, there are over 150 designated routes
available for passengers to travel from their source locations to their desired destinations.
For our research, we focused on a specific sub-route of route number 200, which spans
from the Ibjang bus stop to the Cheonan Station, as shown in Figure 1.

Figure 1. Geographical Scope: Namchang Village bus stop to Dongnam-gu Public Health Center.

This sub-route covers a distance of 8.5 km, stretching from the Namchang Village
bus stop to the Dongnam-gu Public Health Center. The choice of this particular sub-
route was driven by its reputation for high traffic volume, making it one of the busiest
routes in the Cheonan area. Moreover, this sub-route encompasses a diverse range of
public and private institutions, including several universities (such as Dankook University,
Sangmyung University, Hoseo University, and Baekseok University), public and private
hospitals (including Dankook Hospital and Dongnam-gu Public Health Center), large
shopping malls, and various public areas. The commuter volume on this sub-route varies
depending on the day of the week. On weekdays, there are significant increases during
morning and evening rush hours as students travel to and from work and school. On
the other hand, weekends generally witness lower congestion levels due to the closure of
universities and hospitals in the area. These distinct scenarios contribute to the unique
and multifaceted nature of this sub-route, making it an ideal choice for our analysis. The
scheduled travel time for this sub-route is estimated to be approximately 27 min.

3.2. DTG Device

This study uses a data-driven methodology that uses portable devices and sensors
to collect vehicle information. In the city of Cheonan, an array of commercial vehicles,
including buses, cars, and taxis, are equipped with state-of-the-art sensors and devices,
most notably DTG. The mandatory installation of DTG devices in all commercial vehicles
across South Korea, driven by the overarching goal of enhancing road traffic safety, has
been discussed in the introduction Section 1. The DTG device plays an important role
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in recording real-time data, capturing essential parameters such as GPS location, brake
signals, acceleration, and time stamps with a granularity of one-second intervals. It is
important to note that the DTG device strictly adheres to privacy regulations, ensuring
the exclusion of any personally identifiable information about the driver. To ensure the
reliability and accuracy of data collection, the DTG device adheres to the necessary security
standards. A multifaceted approach has been implemented, incorporating various security
measures to safeguard the confidentiality, integrity, and availability of the collected data.
For instance, the DTG device operates as an offline, secure device, minimizing the risk
of unauthorized access or data breaches. The data from commercial vehicles are securely
collected under the supervision of the South Korean government and safely transferred
to the designated government office. Moreover, access to and downloading of data from
the DTG device is restricted to registered individuals only, further bolstering data security
and preventing unauthorized tampering or manipulation. Figure 2 shows a sample of a
DTG device. Overall, the utilization of DTG devices ensures the collection of reliable and
accurate data, enabling a robust analysis of vehicle-related parameters in the context of
this study. The digital tachograph (DTG) data used in this study are securely managed by
the Korea Transportation Safety Authority. While the DTG data can be obtained through a
request to open access data in Korea, access to these data is limited to authorized personnel
within South Korea. The data collection process is conducted with robust security measures,
including offline operations, supervised data collection, and stringent access controls.

Figure 2. Sample of a DTG device. This figure presents a sample of a DTG (digital tachograph) device
used for collecting transportation data.

3.3. Dataset Description

Raw data were gathered daily from 1 January 2020 to 30 May 2020 using DTG devices
installed on all buses operating within Cheonan City. The DTG devices are designed to
record various parameters, providing a comprehensive dataset for analysis. However, for
our study, we selected specific information deemed relevant for predicting travel time.
Table 2 shows the information recorded and stored by the DTG device. Among the available
data, we narrowed our focus to six key variables: trip number, bus registration number,
distance covered, longitude, latitude, and information on occurrence. To show our travel
time prediction task, we selectively include a portion of the collected dataset in Table 3.

Table 2. Details of the digital tachograph (DTG) data used in the study.

Column Name Description

Trip Key An identifier for a specific trip taken by a vehicle. It uniquely identifies a particular journey made by the vehicle.
Device Model The model of the DTG device used to record data about the vehicle’s journey.
Bus Number The unique identifier for the vehicle. It distinguishes one vehicle from another in the fleet.
Bus Type The classification of the vehicle, such as rural bus, commercial bus, or minibus.
Business Number The unique registration number assigned to the business owning the vehicle.
Distance covered The distance covered by the vehicle during the trip.
Total Distance The total distance the vehicle has covered since it was last serviced or had its odometer reset.
Bus Speed The speed of the vehicle at a particular point during the trip.
Engine Rotation The rotation speed of the vehicle’s engine at a particular point during the trip.
Brake Signal An indicator of whether the vehicle’s brakes were applied during the trip.
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Table 2. Cont.

Column Name Description

Longitude The longitude coordinates of the vehicle’s location at a particular point during the trip.
Latitude The latitude coordinates of the vehicle’s location at a particular point during the trip.
Azimuth The azimuth means direction of the vehicle’s movement, as determined by GPS.
Device Status An indicator of the vehicle’s operational status, e.g., whether it is in service or out of service.
Operating Area The geographic area in which the vehicle is authorized to operate.
Timestamp A timestamp indicating when the data were recorded.

Table 3. Description of the travel time data extracted from raw digital tachograph (DTG) data.

Bus No. Date Time Stop Name Longitude Latitude Distance Covered (Km)

1216 9 January 2020 8:03:33 AM Namchang Village bus stop 127.194035 36.265738 Trip Start
1216 9 January 2020 8:04:08 AM Songnam-ri bus stop 127.191316 36.861926 0.5
1216 9 January 2020 8:04:41 AM Cheonggu Villa bus stop 127.184462 36.85576 0.5
1216 9 January 2020 8:05:37 AM Seokgyo 2-ri bus stop 127.184462 36.85576 0.4
1216 9 January 2020 8:06:01 AM National Manghyang Cemetery bus stop 127.183946 36.85363 0.2
1216 9 January 2020 8:06:22 AM Seonggeo Yukyeong A bus stop 127.183067 36.850893 0.3
1216 9 January 2020 8:07:01 AM Yobang 3-ri bus stop 127.179921 36.846285 0.6
1216 9 January 2020 8:09:44 AM Dankook Hospital bus stop 127.174243 36.83936 1.0
1216 9 January 2020 8:10:35 AM Sangmyung University bus stop 127.173299 36.833026 0.7
1216 9 January 2020 8:11:31 AM Cheonan Toll Gate bus stop 127.167579 36.828419 0.8
1216 9 January 2020 8:12:24 AM Dosol Square bus stop 127.162813 36.822393 0.8
1216 9 January 2020 8:14:34 AM Daelim Hansup Apartment bus stop 127.159746 36.819947 0.5
1216 9 January 2020 8:16:34 AM Cheonan General Terminal bus stop 127.155642 36.819008 0.4
1216 9 January 2020 8:18:37 AM Bangjukan Five-way Street bus stop 127.151097 36.817461 0.5
1216 9 January 2020 8:19:37 AM Bokja Girls Middle and High School bus stop 127.149857 36.815137 0.3
1216 9 January 2020 8:20:35 AM Samdo Shopping Mall bus stop 127.148792 36.812047 0.3
1216 9 January 2020 8:22:59 AM Cheonan Station bus stop 127.149029 36.808867 0.4
1216 9 January 2020 8:23:41 AM Dongnam-gu Public Health Center bus stop 127.151555 36.807345 0.3

The accuracy of travel time estimation, whether in urban or rural areas, is profoundly
influenced by prevailing weather conditions [30]. Previous studies highlighted the negative
impact of severe weather on travel time reliability [31]. To address this concern, we devised
a mapping approach that integrates weather data with travel time information, accounting
for any temporal discrepancies that may arise between the two datasets. To ensure precise
analysis, we established a common time and date column to establish a robust link between
the weather and travel time data, ensuring that the datasets were aligned for accurate anal-
ysis. As an integral part of our feature set, we incorporated a rich assortment of weather
conditions sourced from the esteemed Korea Meteorological Administration (KMA) dataset.
This comprehensive dataset encompasses crucial meteorological variables, including tem-
perature, air pressure, humidity, and precipitation. To comprehensively assess the varying
impact of weather conditions across distinct seasons and their particular significance for
travel, we meticulously gathered weather data over five months, with a specific emphasis
on January, February, March, April, and May. These months were deliberately selected to
exemplify the distinct weather patterns commonly observed in Korea. In Korea, January is
a winter month with frequent snowfall, February sees a decrease in snowfall and occasional
rain, March has heavy traffic as schools commence a new semester, and April and May
are the middle of spring, characterized by lower rainfall and mild weather, making it an
enticing time to visit South Korea. This extension allows us to explore the implications of
various weather conditions across different seasons in a more comprehensive manner. An
example of the raw weather data is shown in Table 4. Finally, we combined the weather
features with the travel time data to create a final feature set, which includes bus number,
date, time, stop name, longitude, latitude, distance covered, temperature, air pressure, hu-
midity, and precipitation. By incorporating these diverse dimensions into our analysis, we
aim to unveil the intricate interplay between weather conditions and travel time dynamics,
thus paving the way for more accurate and reliable travel time predictions.
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Table 4. Weather conditions information used in the study.

Date Temperature Air Pressure Humidity Precipitation

Sunday, 1 March 2020 3.1 1.9 63.4 1.5
Monday, 2 March 2020 2.4 2 62.9 1.5
Tuesday, 3 March 2020 3.1 2.1 62.9 1.4
Wednesday, 4 March 2020 3.9 2.1 62.8 1.3
Thursday, 5 March 2020 3.2 2.2 62.8 1.4

3.4. Data Preprocessing

The data collected from the DTG device underwent several preprocessing steps,
including data scrubbing, matching weather data, data standardization, and partitioning
the data into specific study areas for analysis. These preprocessing techniques ensure that
the data are in a suitable format for further investigation. To optimize the performance of
the deep learning models, hyperparameter tuning was conducted using the preprocessed
data. This involved selecting the appropriate batch size, determining optimal factors,
tuning the number of hidden layers, and selecting the number of epochs. By fine-tuning
these hyperparameters, we aimed to achieve the best possible performance from the models.
Once the hyperparameters were optimized, a comprehensive comparison was performed
among different deep learning models. These models included pure LSTM, pure GRU,
LSTM bidirectional, GRU bidirectional, Stacked-LSTM, Stacked-GRU, and our proposed
model HTF-NET. By evaluating and contrasting the performance of these models, we
sought to identify the most effective approach for bus travel time prediction. The flow chart
of the study is shown in Figure 3.

Figure 3. Flowchart of the study methodology, depicting the steps and processes followed throughout
the research.



Electronics 2024, 13, 1771 9 of 26

To ensure the integrity and accuracy of our analysis, we implemented several steps in
our research:

• Data scrubbing: We conducted data scrubbing to eliminate duplicates, address missing
values, correct inaccuracies, and remove outliers, ensuring the reliability of our dataset.
Notably, approximately 5–10% of data are missing when buses begin their journeys from
the initial stops, which we exclude during preprocessing. Importantly, we encounter
minimal to no missing data while buses are in transit within our study area, covering
Namchang Village bus stop to Dongnam-gu Public Health Center bus stop.

• Matching weather data: To assess the influence of weather conditions on bus travel
time, we synchronized our datasets using a 10 s interval. This synchronization is
crucial for aligning timestamps between the travel time and weather data by utilizing
common date and time columns. By merging these datasets, we effectively analyzed
the correlation between weather conditions and bus travel time.

• Data standardization: For data consistency and interpretability, we rigorously stan-
dardized the variables by scaling them to a common range, normalizing their values,
and enhancing the data format. This leveled the playing field for all variables in our
analytical models, improving accuracy, reliability, and our ability to detect meaningful
patterns and trends in the dataset.

• Partitioning the data for analysis: We partitioned the data for analysis in a specific
study area for bus travel time. This involved selecting the study area, partitioning the
data, determining the time period, considering the sample size, and ensuring data
quality. The data were also divided into training, validation, and testing sets.

3.5. Feature Selection

A series of steps were undertaken to preprocess the GPS dataset specifically for the
study area of Cheonan. Initially, a subset of the data was created that exclusively comprised
GPS trajectories from trips taken within the Cheonan study area. This subset was generated
by visualizing the dataset on Google Earth Pro and manually selecting data points that fell
within the geographical boundaries of Cheonan. Subsequently, the longitude and latitude
values of the bus stops were extracted from the route information and plotted accurately
on Google Earth Pro. This allowed for precise visualization of the exact positioning of the
buses at each stop. An imputation strategy was implemented to address any missing or
incomplete records within the dataset. Specifically, missing records were filled in with the
mean values derived from the closest surrounding records. Consequently, through these
preprocessing steps, the GPS dataset was cleansed and made ready for input into the deep
learning algorithm. This preparation ensures that the subsequent analysis and prediction
tasks can be conducted with reliable and accurate data. The analysis included several
parameters related to the bus transportation system, such as the bus number, number of
stops, distances between stops, days of the week, arrival and departure times, and weather
conditions. These parameters were categorized into two groups, namely, dynamic and
static variables. Dynamic variables consisted of travel times between stops, duration of
stays, and weather, while static variables included the bus route, vehicle model, days of
the week, holidays, and working days. The input features consisted of route number,
starting geographical location, ending geographical location, bus number, and departure
time (hours, minutes, and seconds), which is converted into a Unix timestamp, days of the
week, holidays, distance, and weather conditions such as temperature, humidity, and air
pressure. The output prediction series was the travel time in seconds.

4. Travel Time Prediction Models
4.1. Long Short-Term Memory

Hochreiter and Schmidhuber [32] introduced the LSTM model as an effective tool for
learning long-term dependencies. This model has demonstrated remarkable success across
diverse domains, including finance, healthcare, and transportation. Its applications range
from predicting stock prices and diagnosing diseases to forecasting traffic flow [33,34].
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Notably, LSTM has gained significant traction among researchers for predicting bus travel
times [35–37]. LSTM excels at capturing segment-level and long-term information in traffic
data due to its intricate structure, as illustrated in Figure 4. This complexity arises from its
gating mechanism, encompassing the forget, input, and output gates. These gates, defined
by Equations (1)–(3), empower LSTM to address long-term dependencies by extending the
memory cycle of the network.

ft = σ
(

W f [ht−1, xt] + b f

)
(1)

it = σ(Wi[ht−1, xt] + bi) (2)

ot = σ(Wo[ht−1, xt] + bo) (3)

Figure 4. Structure of an LSTM cell, displaying the key components of a Long Short-Term Memory
(LSTM) architecture.

In the context of LSTM, important components include the forget gate ( ft), input gate (it),
and output gate (ot) at each time step (t), with σ representing the sigmoid activation function.
These gates are governed by respective weight matrices (Wf , Wi, Wo) and biases (b f , bi, bo).
The LSTM computations involve the previous hidden state (ht−1) and the current input (xt) to
compute the LSTM cell state (Ct) and hidden output (ht), as referenced from the source [38].

We used different layered LSTM architectures for bus travel time prediction, which
are described below:

• Pure LSTM: The “Pure LSTM” model is such an architecture that relies solely on the
LSTM cells without any additional layers or modifications. The pure LSTM model is
made up of two layers: the LSTM layer and the dense layer. The LSTM layer contains
64 units with 20,992 trainable parameters, while the dense layer produces a sequence
of one-dimensional vectors with a single element and has 65 trainable parameters. The
total number of parameters in the pure LSTM model is 21,057.

• LSTM bidirectional: The “LSTM bidirectional” model consists of two bidirectional
layers and a dense layer. This architecture has gained popularity due to its ability to
model the dependencies of sequential data in both forward and backward directions.
Bidirectional layers can capture patterns from past and future contexts, resulting in a
more comprehensive understanding of the sequence. The model consists of a dense
layer that produces a sequence of one-dimensional vectors with a single element, and
the LSTM bidirectional model has 83,265 trainable parameters.
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• Stacked-LSTM: We stacked multiple layers of LSTM. The Stacked-LSTM model can
improve the accuracy of bus travel predictions. The LSTM stack model is composed
of four LSTM layers and one dense layer. The LSTM stack model has a total of
539,553 trainable parameters. This architecture has been designed to enhance the
capabilities of the LSTM network, allowing for a detailed analysis of bus travel time.

4.2. Gated Recurrent Unit

The GRU (Gated Recurrent Unit), another refined variant of recurrent neural networks
(RNNs), offers a more streamlined architectural approach compared to LSTM by employing
just two gates: the update gate and the reset gate, as opposed to LSTM’s three. This
simplification enhances the GRU’s overall efficiency and reduces the number of trainable
parameters, as noted in [39]. In this experiment, we utilized a two-layer GRU model. The
structural representation of the GRU cell can be observed in Figure 5, and the mathematical
expressions governing the functioning of these two gates to regulate information flow
within the cell are detailed in Equations (4)–(7). The equations describing the GRU model
are sourced from [40].

ut = σ(Wuxt + Uuht−1) (4)

rt = σ(Wrxt + Urht−1) (5)

h′t = µ(Wxt + rt ⊙ Uht−1) (6)

ht = zt ⊙ ht−1 +
(
1 − zt ⊙ h′t

)
(7)

Figure 5. Structure of a GRU cell, depicting the key components of a Gated Recurrent Unit
(GRU) architecture.

In this context, ut signifies the update gate, rt represents the reset gate, h0t stands for the
current memory content, and ht represents the final memory content at time t. The symbols
σ and µ denote the sigmoid and tanh activation functions, respectively. Furthermore, the
⊙ symbol denotes element-wise multiplication, while Wu and Uu are the weight matrices
corresponding to the two gates.

We used different layered GRU architectures for bus travel time prediction, which are
described below:

• Pure GRU: The “Pure GRU” model is a specific type of GRU network that employs
only GRU cells, without any additional layers or modifications. This model consists
of a GRU layer and a dense layer. The GRU layer has 64 units with 15,936 trainable
parameters. The dense layer in this model has 65 trainable parameters and produces
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a sequence of one-dimensional vectors with a single element. The total number of
parameters in Pure LSTM is 16,001.

• GRU bidirectional: The “GRU bidirectional” model consists of two bidirectional layers
and a dense layer. It has a dense layer that generates a sequence of one-dimensional
vectors, each containing a single element. It is worth noting that the GRU bidirectional
model has 63,041 trainable parameters.

• Stacked-GRU: The “Stacked-GRU” model comprises one dense layer and four GRU
layers. It has 406,113 trainable parameters.

4.3. Attention Model

Attention mechanisms play an important role in enhancing the performance of time
series models by allowing them to dynamically focus on relevant temporal information.
In the context of neural networks, attention mechanisms were popularized by seminal
works such as [15,16]. These mechanisms assign weights to different elements of the input
sequence based on their relevance to the current step.

The scoring function computes a set of scores, ei, for each element in the sequence,
given by:

ei = score(ht, hi) (8)

where ht represents the current hidden state and hi are the hidden states of the sequence.
The attention weights, denoted by ai, are then calculated using a softmax function to
normalize the scores:

ai =
exp(ei)

∑n
j=1 exp(ej)

(9)

These attention weights are then used to calculate the context vector, Ct, by applying a
weighted sum over the sequence:

Ct =
n

∑
i=1

ai · xi (10)

The context vector, Ct, is then combined with the current hidden state for further processing.

4.4. Support Vector Regression

Support Vector Regression (SVR) is a powerful machine learning model that extends
the principles of Support Vector Machines (SVM) to regression problems [41]. In the context
of time series modeling, SVR is particularly valuable for predicting continuous values
based on historical data.

4.5. Our Proposed Hybrid Temporal Forecasting Network (HTF-Net) Model

The Hybrid Temporal Forecasting Network (HTF-NET) represents an advanced neural
network architecture engineered for precise temporal forecasting, with a specific focus on
predicting bus travel times. This model leverages an integration of LSTM and GRU layers,
augmented by an attention mechanism. Notably, the model’s predictive capabilities are
further refined through integration with an SVR for travel time predictions.

The attention mechanism, manifested as a custom 3D attention block, assumes an
important role in elevating the model’s discernment of pertinent temporal patterns within
input sequences. The mechanism involves a sequence of operations, including permutation,
a dense layer with softmax activation, and element-wise multiplication. These operations
collectively shape the input sequence, compute dynamic attention weights, and apply them
to the original input sequence, thereby enhancing the model’s temporal representation.

The HTF-NET architecture begins with an input layer tailored for sequences, each
representing a single time step. Successively, an LSTM layer with 512 units captures initial
temporal dependencies, followed by the application of the custom attention mechanism. A
GRU layer with 256 units further refines temporal features, and the outputs of the GRU
and attention layers are intelligently concatenated along the last axis.
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Subsequent layers involve additional LSTM units with decreasing capacities (128,
64, 32) strategically employed to capture hierarchical temporal representations. The ar-
chitecture culminates in a dense output layer generating a singular output, representing
the model’s precise prediction. The model undergoes training with the mean absolute
error loss function and the Adam optimizer, with early stopping mechanisms in place to
mitigate overfitting. Predictions are flattened, and an SVR model is subsequently trained to
utilize these flattened predictions. Evaluation against ground truth values is conducted
using metrics such as RMSE, MAE, and MSE, providing a robust assessment of the model’s
predictive prowess. Figure 6 shows our proposed approach and a brief overview of the
proposed HTF-NET model.

Figure 6. Overview of the proposed HTF-NET model.

4.6. Hyperparameter Settings

The hyperparameters for our deep learning models, outlined in Table 5, were fine-
tuned through a series of experimental runs. Key parameters, including the learning
rate, hidden layer quantity, number of neurons per hidden layer, and batch size, were
optimized. The models consistently employed the ‘adam’ optimizer, ‘relu’ activation
function, a learning rate of ‘0.001’, and a batch size of ‘32’, as summarized in Table 5.
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Table 5. Hyperparameters of the models.

Model Parameters Value

Pure LSTM
layers 2
LSTM Layer 64 neurons
dense layer 1 neuron

Pure GRU
layers 2
GRU Layer 64 neurons
dense layer 1 neuron

LSTM bidirectional

layers 3
Bidirectional LSTM Layer 1 64 neurons
Bidirectional LSTM Layer 2 32 neurons
dense layer 1 neuron

GRU bidirectional

layers 2
Bidirectional GRU Layer 1 64 neurons
Bidirectional GRU Layer 2 32 neurons
dense layer 1 neuron

Stacked-LSTM

layers 5
LSTM Layer 1 256 neurons
LSTM Layer 2 128 neurons
LSTM Layer 3 64 neurons
LSTM Layer 4 32 neurons
Dense Layer 1 neuron

Stacked-GRU

layers 5
GRU Layer 1 256 neurons
GRU Layer 2 128 neurons
GRU Layer 3 64 neurons
GRU Layer 4 32 neurons
Dense Layer 1 neuron

HTF-NET

layers 7
LSTM Layer 1 512 neurons
Attention Layer 1
GRU Layer 1 256 neurons
LSTM Layer 2 128 neurons
LSTM Layer 3 64 neurons
LSTM Layer 4 32 neurons
Dense Layer 1 neuron

4.7. Performance Metrics

To evaluate the accuracy of our deep learning model in predicting bus travel time,
we utilized three widely recognized performance metrics: RMSE, MAE, and MSE. In
these calculations, ti represents the actual travel time for the ith trip on the route, while t̂i
represents the predicted travel time for the ith trip.

• Root mean squared error (RMSE): RMSE quantifies the average distance between the
predicted and actual travel times, measuring the overall prediction error. RMSE is a
widely used metric and emphasizes larger errors. It is calculated using Equation (8):

RMSE =

√
1
n

n

∑
i=1

(ti − t̂i)2 (11)

• Mean absolute error (MAE): MAE provides the average absolute difference between
predicted and actual travel times. MAE is a robust metric that offers a straightforward
interpretation of the average prediction error magnitude. Unlike RMSE, it does not
involve squaring the errors, making it less sensitive to outliers. By incorporating MAE
into our analysis, we can gain insights into the average deviation of our predictions
from the true values. It is calculated using Equation (9):

MAE =
1
n

n

∑
i=1

|ti − t̂i| (12)
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• Mean squared error (MSE): MSE computes the average squared difference between
predicted and actual travel times. MSE, similar to RMSE, emphasizes larger errors due
to the squared differences. It is calculated using Equation (10):

MSE =
1
n

n

∑
i=1

(ti − t̂i)
2 (13)

For detailed derivations, see Appendix A.

5. Results and Discussion
5.1. Experimental Settings

Our study focuses on predicting bus travel time using deep learning models, and for this
purpose, we conducted experiments on a Windows 10 Pro machine. The machine specifications
were as follows: 12th Gen Intel (R) Core-TM i7-12700 processor, 32.0 GB of RAM, and a 500 GB
WD Blue SN570 hard disk. The graphics card used was the NVIDIA GeForce RTX 3060, with
8 GB of RAM. To build and execute deep learning models, we used Python version 3.11.0 in
combination with the TensorFlow framework. Additionally, we used Keras version 2.7.0 as the
high-level API for model construction and training. Our dataset for bus travel time prediction
consisted of 6100 trips over five months, encompassing rush and non-rush hours, weekdays, and
weekends. We divided the dataset into three subsets: 70% for training, 20% for validation, and
10% for testing purposes.

5.2. Performance Evaluation of All Models Using the Overall Test Data

According to the experimental results presented in Table 6, our proposed HTF-NET
model outperformed all other models in terms of predicting bus travel time. The effectiveness
of the HTF-NET model becomes especially pronounced when we employ it to predict an
entire bus journey, exemplified in Figure 7, starting from Namchang Village bus stop and
concluding at Dongnam-gu Public Health Center. This superiority is further evident when
comparing actual and predicted travel times across the test dataset, as illustrated in Figure 8.
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Figure 7. Comparison of actual travel time with HTF-NET model predictions on the entire bus trip
from Namchang Village bus stop to Dongnam-gu Public Health Center.

In order to evaluate the effectiveness of our bus travel time prediction model, we
present examples of its performance for various origin and destination pairs in Table 7. The
table shows the predicted and actual travel times for different trips, allowing us to assess
the model’s accuracy in capturing real-world travel patterns. Upon examination of the table,
it becomes evident that our model performs admirably in most cases, particularly during
rush hour periods. The predicted travel times closely align with the actual travel times,
indicating a high degree of accuracy and reliability. This is demonstrated by the minimal
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difference between predicted and actual times for the majority of the trips. However, it is
crucial to acknowledge that there are specific instances in which the model exhibits some
inconsistencies in its predictions. Notably, in rows 18 and 19, we can observe a significant
disparity between the predicted and actual travel times. These disparities can be attributed
to a range of factors, including traffic congestion, the influence of traffic lights, and the
prevailing road conditions at the time of travel. These complex scenarios underscore
the pressing need for further refinement and enhancement of the model to bolster its
overall accuracy and resilience. Through a comprehensive analysis of our bus travel time
prediction model’s performance using these examples, we glean valuable insights into
both its strengths and limitations. This evaluation establishes a solid foundation for future
research and improvements, empowering us to devise strategies that effectively address
the identified challenges and bolster the model’s predictive capabilities.
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Figure 8. Comparison of actual travel time with HTF-NET model predictions on the entire test dataset.

Table 6. Performance evaluation of all models on the overall test data.

Model Name RMSE MAE MSE

Pure LSTM 33.94 23.17 1152.61
Pure GRU 34.88 24.01 1216.92
LSTM bidirectional 26.65 16.97 710.56
GRU bidirectional 28.06 17.37 787.64
Stacked-LSTM 23.74 15.42 563.73
Stacked-GRU 27.78 17.49 772.09
Our proposed model (HTF-NET) 19.62 13.26 428.64

Furthermore, to establish the robustness and generalizability of our proposed models,
we carried out four additional experiments. These experiments aimed to explore the
influence of weather-related features on our models and evaluate their performance when
trained and tested exclusively on weekday and weekend data. Remarkably, even in these
varying conditions, only a marginal decline in model performance was observed.
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Table 7. Examples of predictions by our proposed model HTF-NET on the test dataset.

No. Origin Destination Actual Time Travel Predict Travel Time Date and Time

1 Namchang Village Songnam-ri 30 28 5 January 2020 and 09:48 AM
2 Songnam-ri Cheonggu Villa 36 32 6 January 2020 and 10:52 AM
3 Cheonggu Villa Seokgyo 2-ri 28 27 12 January 2020 and 12:53 PM
4 Seokgyo 2-ri National Manghyang Cemetery 38 34 16 January 2020 and 01:43 AM
5 National Manghyang Cemetery Seonggeo Yukyeong 47 51 18 January 2020 and 03:38 PM
6 Seonggeo Yukyeong Yobang 3-ri 62 68 22 January 2020 and 04:53 PM
7 Yobang 3-ri Dankook Hospital 176 185 28 January 2020 and 01:43 PM
8 Dankook Hospital Sangmyung University 74 68 11 February 2020 and 08:38 AM
9 Sangmyung University Cheonan Toll Gate 73 76 12 February 2020 and 06:40 PM
10 Cheonan Toll Gate Dosol Square 81 86 18 February 2020 and 06:43 PM
11 Dosol Square Daelim Hansup Apartment 82 73 22 March 2020 and 10:45 AM
12 Daelim Hansup Apartment Cheonan General Terminal 62 61 26 March 2020 and 03:53 PM
13 Cheonan General Terminal Bangjukan Five-way Street 198 203 27 March 2020 and 08:52 AM
14 Bangjukan Five-way Street Bokja Girls Middle and High School 31 35 2 April 2020 and 09:52 AM
15 Bokja Girls Middle and High School Samdo Shopping Mall 117 115 6 April 2020 and 04:14 PM
16 Samdo Shopping Mall Cheonan Station 49 55 12 April 2020 and 08:37 PM
17 Cheonan Station Dongnam-gu Public Health Center 35 38 18 April 2020 and 08:38 AM
18 Cheonan terminal Bangjukan Street 134 186 13 January 2020 and 05:00 PM
19 Samdo Shopping Mall Cheonan Station 136 80 27 February 2020 and 08:50 AM

5.3. Weather Influence on Travel Time Prediction

To assess the impact of weather conditions on travel time prediction, we evaluated
seven deep learning models. Our objective was to demonstrate the significance of incor-
porating weather features in improving the accuracy of travel time prediction. Initially, we
trained and tested our models using the complete dataset, including weather features. The
performance of each model was measured in terms of RMSE as an evaluation metric. We then
removed the weather features from the dataset and re-evaluated the performance of the models
under the same conditions. The results, as summarized in Table 8, indicate that the models
performed less effectively when weather data were excluded. This observation suggests that
weather conditions indeed play an important role in travel time estimation. This emphasizes the
importance of considering weather data for accurate travel time predictions. Figure 9 illustrates
the difference between the RMSE calculated with the complete dataset and the RMSE obtained
when weather data were omitted. Among the deep learning models, including pure LSTM,
pure GRU, LSTM bidirectional, GRU bidirectional, Stacked-LSTM, Stacked-GRU, and HTF-NET,
all models exhibited a noticeable decline in performance when weather features were removed.

Figure 9. This figure depicts the RMSE and MAE values without incorporating weather data in the
prediction models.

Our study reveals that incorporating weather-related features enhances the perfor-
mance of deep learning models in bus travel time predictions. The results indicate that the
HTF-NET with weather data achieves an RMSE of 19.62, compared to an RMSE of 21.91
without weather data. This addition also lowers the MAE from 15.71 to 13.26 and the MSE
from 480.06 to 428.64. These improvements underscore that excluding weather data can



Electronics 2024, 13, 1771 18 of 26

negatively impact model accuracy, emphasizing the importance of considering weather
conditions for reliable travel time predictions.

Table 8. Experimental outcomes: Investigating weather conditions’ effects on travel time prediction.

Model No. Model Name RMSE MAE MSE

1 Pure LSTM 37.41 24.66 1434.01
2 Pure GRU 39.23 27.85 1539.06
3 LSTM bidirectional 35.70 22.06 1275.04
4 GRU bidirectional 39.58 23.67 1567.10
5 Stacked-LSTM 27.88 17.73 777.51
6 Stacked-GRU 29.02 19.50 877.23
7 HTF-NET 21.91 15.71 480.06

5.4. Reliability Analysis of Models during Weekdays’ Data

The present study aimed to investigate the effectiveness of using only weekday data
to predict bus travel time. This is because weekdays are characterized by varying travel
patterns due to school and office schedules, as well as peak and non-peak hours. To
investigate this, we conducted a comprehensive experiment and the results are compiled
in Table 9. The comparison between the RMSE values obtained using the entire dataset
and the subset of weekday data is depicted in Figure 10. The outcomes of our analysis
indicate that our proposed model, HTF-NET, yielded the most favorable results in terms of
the RMSE, achieving a value of 20.16. Additionally, the MAE was found to be 14.95, while
the MSE amounted to 472.41.

Table 9. Weekday-only TTP data: This table presents experimental results derived solely from TTP
data collected on weekdays.

Model No. Model Name RMSE MAE MSE

1 Pure LSTM 30.62 21.41 937.63
2 Pure GRU 34.56 24.10 1194.70
3 LSTM bidirectional 27.53 17.15 758.30
4 GRU bidirectional 33.65 21.83 1132.56
5 Stacked-LSTM 24.76 16.12 613.28
6 Stacked-GRU 25.01 16.30 625.59
7 HTF-NET 20.16 14.95 472.41

Figure 10. RMSE and MAE of prediction models using weekday-only data: This figure shows the
RMSE and MAE values of prediction models using the weekday-only TTP data subset.
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5.5. Reliability Analysis of Models during Weekends’ Data

This experiment aimed to evaluate the reliability of seven distinct models in predicting
bus travel times, specifically during weekends. This investigation is important due to the
distinct travel patterns observed on weekends, characterized by the absence of school or office
schedules and the lack of peak or non-peak hours. The experimental results are shown in
Table 10. Additionally, a comparison between the RMSE values obtained using the entire
dataset and the subset comprising only weekend data is illustrated in Figure 11. Notably,
the HTF-NET model demonstrated better performance compared to the other models when
predicting bus travel times during weekends. These outcomes underscore the effectiveness of
the HTF-NET model in capturing the complexities of weekend travel patterns.

Table 10. Weekend-only TTP data: This table presents experimental results derived solely from TTP
data collected on weekends.

Model No. Model Name RMSE MAE MSE

1 Pure LSTM 33.49 22.48 1122.24
2 Pure GRU 35.98 24.42 1294.65
3 LSTM bidirectional 24.83 15.93 616.84
4 GRU bidirectional 37.44 21.56 1133.27
5 Stacked-LSTM 23.20 15.39 538.47
6 Stacked-GRU 27.31 17.24 746.21
7 HTF-NET 20.18 13.11 510.33

Figure 11. RMSE and MAE of prediction models using weekend-only data: This figure shows the
RMSE and MAE values of prediction models using the weekend-only TTP data subset.

5.6. Robustness of Models on Short Routes

Furthermore, in order to demonstrate the robustness and generalizability of our proposed
models, we conducted an additional experiment to evaluate their performance on shorter
routes. Initially, our models were trained on a long route, specifically from the Namchang
Village bus stop to the Dongnam-gu Public Health Center. This long route spans approximately
8.5 km with an estimated travel time of 27 min, as depicted in Figure 12 from start to end. To
assess the generalization ability of our models on shorter routes, we selected a sub-route from
the Dankook University Hospital bus stop to Cheonan Station, which is also illustrated in
Figure 12. The sub-route is highlighted by the blue line. This shorter route covers a distance
of approximately 4.8 km with a scheduled travel time of 17 min.

We experimented with seven deep learning models for this short route and the results
are shown in Table 11, which provides an overview of the results. The comparison between
the RMSE values obtained using the entire dataset and the data from the short route is
shown in Figure 13.

Notably, among the seven models tested, the HTF-NET model demonstrated superior
performance when predicting bus travel times on the short route. These outcomes underline



Electronics 2024, 13, 1771 20 of 26

the effectiveness of the HTF-NET model in capturing the complexities inherent in the short
route. Taken together, our findings indicate that our proposed models exhibit good accuracy
and robustness not only on long routes but also on shorter ones. By successfully predicting
travel times on both types of routes, our models demonstrate their generalizability and
suitability for real-world applications in the transportation domain.

Figure 12. Short route: This figure shows the bus route from Dankook University Hospital bus stop
to Cheonan Station.

Table 11. Results from short route data: This table summarizes the findings obtained from analyzing
the short route data.

Model No. Model Name RMSE MAE MSE

1 Pure LSTM 30.22 20.18 1026.22
2 Pure GRU 32.39 22.65 1113.22
3 LSTM bidirectional 21.22 13.16 586.62
4 GRU bidirectional 33.23 19.28 1039.28
5 Stacked-LSTM 19.10 13.29 512.27
6 Stacked-GRU 25.12 15.18 685.21
7 HTF-NET 17.12 11.21 490.27

Figure 13. RMSE and MAE of prediction models with short route data: This figure displays the RMSE
and MAE values of prediction models using data from the short route in TTP.
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5.7. Comparison of All Models with Baseline Model ARIMA

The autoregressive integrated moving average (ARIMA) model is widely used in time
series forecasting, combining autoregressive (AR) and moving average (MA) components.
ARIMA models are instrumental in predicting future values based on historical observations,
making them a valuable tool for time series data analysis and prediction [8]. In the context
of bus travel time prediction, several researchers have explored the application of ARIMA
models. For instance, Li et al. [9] employed ARIMA and hybrid ARIMA models to forecast
bus travel time in a congested urban network in China, with the hybrid ARIMA model
demonstrating superior prediction accuracy. Similarly, Liu et al. [10] successfully utilized an
ARIMA model to predict bus travel time in Singapore, highlighting its ability to capture data
trends and seasonality for precise short-term predictions. In Beijing, China, Hu et al. [11] also
leveraged an ARIMA model for bus travel time forecasting, achieving accurate predictions
up to 30 min ahead to support real-time bus operations. Table 12 shows the experimental
results for bus travel time prediction, and Figure 14 illustrates a comparison between seven
deep learning models and the baseline model, ARIMA. Our analysis reveals that ARIMA
performed significantly worse than the deep learning models, including LSTM, GRU, and
HTF-NET. This gap in performance was reflected in ARIMA’s higher RMSE, MAE, and
MSE values, suggesting that it struggles to model complex temporal patterns and nonlinear
relationships within the data. The HTF-NET model, on the other hand, achieved superior
results, outperforming ARIMA by 63.27% in terms of RMSE. This finding emphasizes the
potential of deep learning approaches for accurate bus travel time prediction.

Table 12. Comparison of ARIMA with deep learning models on the overall test dataset.

Model No. Model Name RMSE MAE MSE

1 ARIMA 53.31 41.52 2842.31
2 Pure LSTM 33.94 23.17 1152.61
3 Pure GRU 34.88 24.01 1216.92
4 LSTM bidirectional 26.65 16.97 710.56
5 GRU bidirectional 28.06 17.37 787.64
6 Stacked-LSTM 23.74 15.42 563.73
7 Stacked-GRU 27.78 17.49 772.09
7 HTF-NET 19.62 13.26 428.64

Figure 14. Comparison of ARIMA and deep learning models for RMSE and MAE: This figure shows
the performance of the baseline ARIMA model and various deep learning models on the overall test
dataset, comparing their RMSE and MAE values.
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6. Conclusions and Future Work

In this study, we presented an approach to predicting bus travel time using digital
tachograph (DTG) data. Our methodology has the potential to enhance scheduling accuracy
and improve passenger’s travel experience by providing real-world travel time informa-
tion. The evaluation involved seven deep learning models tested on a sub-route from
Namchang Village bus stop to Dongnam-gu Public Health Center. This route, covering
a diverse landscape of universities, hospitals, shopping malls, and public areas over an
8.5 km road length, offered a representative scenario for assessing the models’ performance
under various traffic conditions. Five experiments were conducted, analyzing the models’
performance across different scenarios, including overall test data, weekdays, weekends,
with and without weather information, and different route types (long and short). Notably,
our proposed Hybrid Temporal Forecasting Network (HTF-NET) model consistently ex-
hibited exceptional performance, with the lowest root mean squared error (RMSE) and
mean absolute error (MAE) values. This underscores its strong capacity to predict travel
times accurately under diverse traffic patterns on both weekdays and weekends. Our study
also highlighted the importance of weather data in travel time prediction. The exclusion
of weather information led to a significant drop in prediction accuracy, emphasizing the
necessity of integrating weather data into travel time prediction models. Specifically, the
HTF-NET model outperformed the baseline ARIMA model by 63.27% in terms of the RMSE,
indicating the practicality of this model for real-world applications. However, it is essential
to note the limitations of our study. The models were trained on data collected under
normal traffic conditions, excluding unexpected events such as accidents or work zone ac-
tivities. This points to a need for future work to incorporate real-time event data, enhancing
the model’s robustness and applicability in addressing unforeseen travel disruptions.

In our future work, we plan to integrate additional data sources, such as road conditions
and traffic camera feeds, to improve the accuracy of travel time predictions. By expanding
our data sources, we aim to make the models more resilient to unexpected situations, such as
accidents or roadwork, enhancing the reliability of our predictions. Additionally, we intend
to conduct an in-depth analysis using 12 months of weather data to gain a comprehensive
understanding of weather’s impact on bus travel time. By refining the precision of bus travel
time predictions, our methodology could play an important role in assisting transportation
planners and policymakers in managing weather-related risks within the transportation sys-
tem. Furthermore, our research can contribute significantly to smart city mobility applications,
fostering more efficient and reliable transportation networks.
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Abbreviations
The following abbreviations are used in this manuscript:

ITS Intelligent Transportation System
TTP Travel time prediction
DTG Digital tachograph
RNN Recurrent Neural Network
GPS Global positioning system
OD Origin–destination
BMS Bus Management System
BIS Bus Information System
STD Spatio-temporal data
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
HTF-NET Hybrid Temporal Forecasting Network
ARIMA Autoregressive integrated moving average
RMSE Root mean squared error
MSE Mean squared error
MAE Mean absolute error

Appendix A. Derivation of Performance Metrics

In this appendix, we provide detailed calculations for deriving the performance metrics
RMSE, MAE, and MSE from the attention mechanism.

Appendix A.1. Derivation of RMSE from Attention Mechanism (Equation (11))

From Equation (8), we have:

ei = score(ht, hi) (A1)

Let us proceed with the step-by-step derivation:

1. Definition of Score Function: The score function is defined as the measure of similarity
between the current hidden state ht and the hidden state hi at time i.

ei = score(ht, hi) (A2)

2. Substitution of Score Function: We substitute the score function into the calculation
of attention weights ai in Equation (9).

ai =
exp(ei)

∑n
j=1 exp(ej)

(A3)

3. Context Vector Calculation: Using the attention weights ai, we compute the context
vector Ct in Equation (10) as the weighted sum of the input sequence xi.

Ct =
n

∑
i=1

ai · xi (A4)

4. Combination with Hidden State: Finally, we combine the context vector Ct with the
current hidden state ht for further processing.

5. Definition of RMSE: Equation (11) defines the root mean squared error (RMSE) metric
for evaluating the model’s performance in predicting travel time.

RMSE =

√
1
n

n

∑
i=1

(ti − t̂i)2 (A5)
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6. Substitution of Predictions: Substituting the predicted travel time t̂i with the context
vector Ct obtained from the attention mechanism.

7. Further Simplification : Further simplification and manipulation may be performed
to obtain the final form of Equation (11).

Appendix A.2. Derivation of MAE from Attention Mechanism (Equation (12))

From Equation (9), we have:

ai =
exp(ei)

∑n
j=1 exp(ej)

(A6)

Let us proceed with the step-by-step derivation:

1. Definition of Attention Weights: The attention weights ai are calculated based on the
scores ei obtained from Equation (8).

ai =
exp(ei)

∑n
j=1 exp(ej)

(A7)

2. Substitution of Attention Weights: We substitute the attention weights ai into the
formula for the MAE (Equation (12)).

MAE =
1
n

n

∑
i=1

|ti − t̂i| (A8)

where t̂i is represented as the weighted sum of the input sequence xi based on the
attention weights ai.

3. Substitution of Predictions: Substituting t̂i with the weighted sum of input sequence xi.
4. Absolute Difference Calculation: Absolute differences |ti − t̂i| are calculated for each

trip i.
5. Average Calculation: Taking the average of these absolute differences over all n trips

to obtain the mean absolute error (MAE).

Appendix A.3. Derivation of MSE from Attention Mechanism (Equation (13))

From Equation (10), we have:

Ct =
n

∑
i=1

ai · xi (A9)

Let us proceed with the step-by-step derivation:

1. Definition of Context Vector: The context vector Ct is computed as the weighted sum
of the input sequence xi based on the attention weights ai.

Ct =
n

∑
i=1

ai · xi (A10)

2. Substitution of Context Vector: We substitute the context vector Ct into the formula
for the MSE (Equation (13)).

MSE =
1
n

n

∑
i=1

(ti − t̂i)
2 (A11)

where t̂i is represented as the weighted sum of the input sequence xi based on the
attention weights ai.

3. Substitution of Predictions: Substituting t̂i with the context vector Ct.
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4. Squared Difference Calculation: Squared differences (ti − t̂i)
2 are calculated for each

trip i.
5. Average Calculation: Taking the average of these squared differences over all n trips

to obtain the mean squared error (MSE).

By following these steps, we have demonstrated the derivation of the performance
metrics RMSE, MAE, and MSE from the attention mechanism.
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