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Abstract: Remote passive sonar detection with underwater acoustic vector sensor (UAVS) has
attracted increasing attention due to its merit in measuring the full sound field information. However,
the accurate estimation of the direction-of-arrival (DOA) remains a challenging problem, especially
under low signal-to-noise ratio (SNR) conditions. In this paper, a novel convolution (COV)-based
single-vector acoustic preprocessing method is proposed on the basis of the single-vector acoustic
preprocessing model. In view of the theoretical analysis of the classical single-vector acoustic DOA
estimation method, the principle of preprocessing can be described as “to achieve an improved
denoising performance in the constraint of equivalent amplitude gain and phase response.” This
can be naturally guaranteed by our proposed COV method. In addition, the upper bound with
matched filtering (MF) preprocessing is provided in the consideration of the optimal linear signal
processing for weak signal detection under Gaussian noise. Numerical analyses demonstrate the
effectiveness of our proposed preprocessing method with both vector array signal processing-based
and intensity-based methods. Experimental verification conducted in South China Sea further verifies
the effectiveness of our approach for practical applications. This work can lay a solid foundation in
improving underwater remote vector acoustic DOA estimation under low SNR, and can provide
important guidance for future research work.

Keywords: underwater acoustic vector sensor (UAVS); direction-of-arrival (DOA) estimation; vector
convolution (COV) preprocessing; low signal-to-noise ratio (SNR)

1. Introduction

Direction-of-arrival (DOA) estimation is of key importance for underwater sonar
applications such as coastal surveillance, target tracking, and navigation. This can be
generally realized by traditional pressure sensor arrays with beamforming and time delay
estimation approaches [1]. In recent years, utilizing underwater acoustic vector sensor
(UAVS) has attracted an increasing attention due to its merits in measuring the full sound
field information [2—4]. A single UAVS is composed of three orthogonally oriented uni-
axial particle-velocity sensors plus a pressure sensor, all collocated in a point-like spatial
geometry. In comparison to traditional pressure sensor arrays, acoustic vector arrays
can be seen as an extended array with several times the number of array elements with
the same aperture size, hence overcoming the disadvantages of conventional arrays with
large aperture size. Moreover, they can estimate both elevation and azimuth without
left-right ambiguity [5-10].

A single UAVS can be regarded as a 4 x 1 point space array. They have been ubig-
uitously applied in small underwater platforms such as gliders, ocean bottom seismome-

Electronics 2024, 13, 1796. https:/ /doi.org/10.3390/ electronics13091796 https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics13091796
https://doi.org/10.3390/electronics13091796
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13091796
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091796?type=check_update&version=2

Electronics 2024, 13, 1796

2 of 20

ters(OBS), sub-sea latent buoys, and other ocean monitoring equipment [11-14]. As a
consequence, in recent years a sizable literature has focused on the applications of single
UAVS, mainly for vector acoustic DOA estimation [4,5,15-23]. From the view of method-
ology, the single-vector acoustic DOA estimation methods can be classified into array
signal processing-based and intensity-based methods. In this way, classical array signal
processing-based techniques such as conventional beam forming (CBF), minimum vari-
ance distortionless response (MVDR), estimation of signal parameters via the rotational
invariance technique (ESPRIT), multiple signal characteristic (MUSIC), and others can
be initially adopted in the consideration of a point space array [15-17,24]. However, the
different signal-to-noise ratios (SNRs) of the vector channels may corrupt the signal sub-
space, leading to the performance degradation when using the method under low-SNR
circumstances. To ease the influence of noise, several research works have adopted de-
noising preprocessing methods to improve estimation performance. Agarwal et al. [25]
employed higher-order statistics for preprocessing, which can increase the sound source
count estimation when utilizing a single UAVS. Zhang et al. [26] considered the Gaussian
noise suppression characteristic of higher-order cumulants and proposed a high-resolution
ESPRIT algorithm for single UAVS DOA estimation, which can improve the estimation
accuracy at lower SNR. Intensity-based methods can generally be classified into two major
categories: average acoustic intensity measurement (AAIM)-based methods in the time
domain, and complex acoustic intensity measurement (CAIM)-based methods in the fre-
quency domain [5]. Related research has been ongoing for a long time. Experimental
comparisons and verifications have shown that CAIM-based methods have more potential
in comparison with array signal processing-based and intensity-based methods [16]. As
acoustic intensity measurement-based algorithms are proposed for zero mean and uncorre-
lated background noise, these methods are generally limited to higher SNR conditions and
ideal white Gaussian noise (WGN) backgrounds. Therefore, for practical applications, the
CAIM method suffers from low accuracy, especially for remote targets corresponding to
lower SNR and complex ocean ambient noise conditions. To ease this problem, a weighted
bar graph statistics-based CAIM method named WCAIM has been proven to obtain better
vector acoustic DOA estimation performance [16]. Zhong et al. [27] utilized the particle
filtering approach for vector acoustic DOA estimation, resulting in improved accuracy
and performance for tracking processing. Similarly, Gunes et al. [28] utilized a Bernoulli
filter and random finite sets to reprocess the vector acoustic DOA estimations for better
tracking. Chen et al. [29] proposed a source counting method of vector acoustic DOA
histograms for distinguishing multiple sources. his can certainly improve the estimation
performance due to its statistical property; however, it is essentially unable to solve the low
SNR problem, as it is a postprocessing approach. Such methods, which reprocess the DOA
estimation outputs within a period of time to decrease the estimation error can be regarded
as postprocessing; however, these postprocessing methods are essentially unable to solve
the issue of poor accuracy under low SNR conditions. Thus, several researchers have
focused on preprocessing approaches. Zhao et al. [18] proposed an improved vector DOA
estimation method utilizing matched filter preprocessing, which is considered to achieve
the best output under WGN background. However, this method can only be utilized with
strictly prior information in active sonar systems. Stinco et al. [4] considered a modulation
analysis to determine the signatures of broadband propeller cavitation noise and proposed
XC-DEMON and TF-DEMON to represent the intensity vector with DEMON preprocessing.
Nevertheless, while DEMON preprocessing can improve the clarification of ship features,
it is invalid for processing the received signal under low SNR conditions. Machine learning
has been adopted to improve single-vector acoustic DOA estimation. Wang et al. [30]
proposed learning a soft mask with DNN and DNN-SVM for multi-speaker vector acoustic
DOA estimation. This method can accurately extract TD-TFPs under different background
noise and reverberant conditions; however, this method was developed to solve the prob-
lem under high SNR conditions. Cao et al. [31] proposed a deep transfer learning method
for underwater direction-of-arrival using one UAVS, revealing the effectiveness of deep
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leaning in improving the estimation accuracy. Nevertheless, the limited measured un-
derwater sample data restricts generalization performance for real applications. In our
previous work, we presented a parameter tuning method with a classical bistable stochastic
resonance model for vector acoustic DOA estimation, which can effectively improve vector
acoustic estimation performance under low SNR conditions [21]. This work has preliminary
demonstrated that a linear amplitude response with fixed phase shift is required for vector
acoustic preprocessing; we further employed a single potential parameter tuning method
for nonlinear bistable stochastic resonace to achieve a linear output response.

In view of the above analyses, while vector postprocessing methods can improve
estimation performance, they are essentially unable to solve the issue of poor accuracy
under low SNR conditions. To solve the problem of low SNR vector acoustic DOA es-
timation, vector acoustic preprocessing with noise suppression performance should be
adopted. In this paper, a vector convolution-based preprocessing method is proposed on
the basis of the single-vector acoustic preprocessing model to improve the performance of
underwater single-vector acoustic DOA estimation. The main contributions of this work
can summarized as follows:

(1) A single-vector acoustic preprocessing model is presented and theoretically analyzed
with classical the CAIM method for a single UAVS, with the goal described as “to
achieve improved denoising performance in the constraint of equivalent amplitude
gain and phase response.”

(2) A novel convolution (COV)-based single-vector acoustic preprocessing method is
proposed which can naturally guarantee the linear gain-phase restrictions and achieve
effective denoising performance. In addition, its upper bound with matched filtering
(MF) preprocessing is provided under consideration of the optimal linear signal
processing for weak signal detection under Gaussian noise.

(3) Improved vector acoustic DOA estimation performance is achieved for both array
signal processing-based and intensity-based methods. This is verified by simulation
and experimental results conducted in the South China Sea.

(4) This work can lay a solid foundation in improving underwater remote vector acoustic
DOA estimation under low SNR, and can provide important guidance for future
research work.

The rest of the paper is arranged as follows. In Section 2, the signal model and three
classical single vector acoustic DOA estimation approaches are provided and compared
with the mean error (ME) and root mean square error (RMSE). In Section 3, the single-vector
acoustic preprocessing model is presented and theoretically analyzed with the classical
UAVS CAIM method, and the detailed implementation of the proposed convolution (COV)-
based single vector acoustic preprocessing method is further described. Simulation results
are evaluated in Section 4, and experimental verification conducted in the South China Sea
is further discussed in Section 5. Finally, concluding remarks are drawn in Section 6.

2. Single-Vector Acoustic DOA Estimation Model
2.1. Signal Model

An “underwater acoustic vector sensor” (UAVS) (known as an “underwater vector
hydrophone”) is composed of three orthogonally oriented uniaxial particle-velocity sensors
plus a pressure sensor in a point-like spatial geometry. It is composed of a sound pressure
sensor and vibration speed sensor that measure the pressure and the vibration velocity of
the sound field at one point. Located at the origin of the Cartesian coordinate system, at any
time t it measures the sound pressure p(t) and three orthogonal components represented
as vx(t), vy(t), and v,(t) alongthe x—, y—, and z— axes, respectively.

For simplicity, in the following discussion we assume plane waves x, 0, y and a source
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signal s(t) while omitting the height information. The observations of the AVS can be
expressed as [22]

s(t)

(t) . 1y (t)
y(t) = vrl(t) _ F?Os(t)cosf)smzx n ni(t) 1)
vy(t) Ls(t‘) sin 6 sinw 1y (t)

pCo

where s(t) is the source signal, p and ¢( are the density and velocity of the sound of
water, a € (0, 7r] symbolizes the incident elevation angle of the source measured from the
positive z-axis, and 6 € (0, 27t| denotes the corresponding azimuth angle measured from
the positive x-axis. Assuming that the vector sensor is far away from the sound source,
the signal arriving at the vector hydrophone can be regarded as a plane wave. For this
circumstance, 1, (t), ny(t), and ny(t) are the corresponded noise items and are assumed to
be isotropic and uncorrelated to the received source signal. Assuming that the noise field of
the marine environment is isotropic, the autocorrelation coefficient of the vibration velocity
channel noise is 1/2; hence, the covariance matrix R, can be expressed as [32]

1 0 0
Ro=02[ 0 1/2 0 )
0 0 1/2

where 072 is the variance of the P channel.

For the source signal, ship-radiated noise can be modeled as a combination of broad-
band noise and sinusoidal tonal signals. These sinusoidal tonals are commonly considered
to be the “acoustic fingerprint” of a moving vessel (refer to ship-radiated line spectral
signatures [33]). For simplicity, we can assume that the target signal consists of sinusoidal
tonals, as below:

k
s(t) = Y Agel?ittei 3)
i=1
where k is the number of ship-radiated line spectral signatures, f; represents the character

frequencies, and A; and ¢; are the corresponding amplitudes and phases, respectively.
Note that the velocity direction characteristics of UAVS are frequency-independent.

2.2. Classical Single-Vector Acoustic DOA Estimation Approaches

In this paper, three classical single-vector acoustic DOA estimation approaches are
adopted to better reveal the performance and generalizability of our proposed method for
both array signal processing-based methods (MUSIC) and intensity-based methods (AAIM
and CAIM).

2.2.1. MUSIC for UAVS

A single vector hydrophone can be described as a special point space array, and its
array manifold vector can be represented as

Ax(0) =1 sinacosf sinasin® ]T. (4)

On this basis, general array signal processing methods can be introduced to achieve
azimuthal estimation of targets. Here, the classical MUSIC algorithm is adopted over
other array signal processing methods due to its high resolution and accuracy. Its spatial
spectrum output can be provided by

. 1 1
p(6) = —
AU UNA, A1 - U U A

)
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where U and U, represent the signal subspace and noise subspace, respectively, while [ is
the identity matrix.

2.2.2. AAIM for UAVS

The intensity-based azimuth 6 estimation with average acoustic intensity can be
calculated as follows:

I= [Ipx/ Ipy]T = <P(t) v(t)) (6)

where (-) denotes time averaging and v(t) = [vx(t), v,(t)] stands for the vibration velocity
of channels x and y; the corresponding I,y and I, can be obtained by

Ipx = <P(t)UX(t)>

)
Ipy = (p(H)vy (1))
meaning that the intensity-based azimuth estimator can be provided as follows:
A Lpy
6 = arctan — (8)

Ipx
where 8 is the estimation of the target azimuth angle.

2.2.3. CAIM for UAVS

Such a calculation can be completed in the frequency domain or time—frequency
domain with complex conjugating and the complex acoustic intensity measurement (CAIM)
algorithm [16]. Due to the sparse nature of the target signal energy in the frequency domain,
using CAIM can achieve a frequency domain filtering effect. As it can more accurately
and effectively distinguish multiple targets with different line spectra signatures, CAIM
performs better than AAIM, especially under low SNR and multi-target-source conditions.
The direction of the intensity can be obtained by,

S(w) = [Spx(w), Spy(w)]" = [P(w) Vi (w), P(w) Vy (w)] ©)

where P(w), Vx(w), and V, (w) are the Fourier transforms of p(t), vx(t), v, (t), respectively,
while X* denotes the complex conjugating

) —arcanm—arcanw
o) =aret RSp(@) TN RP@) Vi (@) (10)

where 0(w) represents the estimated azimuth angle corresponding to a frequency bin and
R(-) represents the real part.

A simulated comparison of these three vector acoustic DOA estimation methods is
provided in Figure 1. The target source azimuth is simulated as 30° with a single line
spectrum f; = 100 Hz, then the mean error (ME) and root mean square error (RMSE) of
the azimuth angle are evaluated, where it can be seen that CAIM performs the best. The
corresponding ME and RMSE are defined as follows:

1 N .
N (60 —10)
i=1

ME = (11)

and

1Y .
RMSE = N 2(9 —-0) (12)
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where 6 and 0 represent the true azimuth and estimated azimuth of the source, respectively,
while N is the number of independent Monte Carlo trials. Note that every data point here
is obtained by 1000 independent realizations. In this paper, the SNR is defined as follows:

P(wy)
P(w;) — P(wy)

SNR = 10lo (13)
810 =N /2
i=1

where P(wy) represents the energy of signal s(t) with a single frequency wy, N is the
length of the discrete Fourier transform (DFT) number, and the item Zfi /12 P(w;) — P(wp)
is the total energy of the background noise. Note that in the rest of this paper, the SNR is
calculated by channel P.

As shown in Figure 1a, CAIM can perform better than AAIM and MUSIC, especially
under low SNR conditions. This indicates improved performance for CAIM with postpro-
cessing approaches such as vector acoustic DOA histogram, particle filtering approaches,
etc. The RMSE comparison in Figure 1b is in accordance with the above analysis, indicating
that CAIM is superior in practical situations with SNR > —20 dB. Nevertheless, under
circumstances where SNR < —20 dB, the RMSE of CAIM is worse than that of AAIM.
In fact, all three methods see decreased performance with large estimation errors. The
AAIM results tend towards 30° as a constant, with the background noise taking a dom-
inant position. Note that 2° and 5° reference lines are utilized to provide guidance for
practical applications.

30, . ‘ : : : 80
- [ S |
B L ‘a, «@ MUSIC
70 ..
25+ \l -:- :\\AAL:IS\/Ilc 1 'Il“ @+ AAIM
< e anefhens
1 —4Ae- CAIM 60 - a, CAIM
201 > .
L] N )
. \ QJSOAL...A._,A A,
£..0 .. 3
o 15413000} 2 40 £y ;.
s - = L
A\ \e, ~ ° "A "
S 0 3000 96u0...5... 5
10 A LReY > oa, %
\ v “ o, a
\, v e 20 WS
5t A R\ S ", .
\ p 10 -
[ SR, S .Q ..................... }' ......... L esssscessescdeccnssinsacnnstasessenss A.A' ............ £ . ," ......
0 : Ea NI PP 0 . . Aot per Rt R
-30 -25 -20 -15 -10 -5 0 -30 25 20 -15 -10 -5 0
SNR (dB) SNR (dB)
(a) (b)

Figure 1. Performance comparison of three vector acoustic DOA estimation methods in terms of
(a) mean error (ME) and (b) root mean square error (RMSE).

3. Method
3.1. Single-Vector Acoustic Preprocessing Model

In general, to improve vector acoustic DOA estimation performance, signal preprocess-
ing with noise reduction methods should be adopted, especially under low SNR conditions.
However, different methods will result in different amplitude gains and random phase lag
responses, potentially causing unexpected and significant estimation errors.

To analyze the factors influencing estimation accuracy with general preprocessing
(or noise reduction) methods, a generalized vector acoustic preprocessing analysis model
is provided below. The denoised vector signal y'(t) can be subjected to the non-ideal
gain-phase responses in order to generate an amplitude gain G and random phase lag ¢,
as follows:
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Gp(w)ejq’l’(“’)s(t) +my,(t)
p'(t) Gx(@) g (w osi (t
YO = | o) | = | o " sE)cossinetni(t) (14)
vy (

) . /
oco eIy (@s(t)sinfsina + ny (t)
where G,(w), Gx(w), Gy(w) denote the amplitude gain response of the components of
the pressure sensor and the uniaxial velocity sensor oriented along the x-axis and y-axis,
respectively, while ¢, (w), ¢x(w), ¢y(w) represent the corresponding phase bias response,
which can be modeled as a stochastic and arbitrary distribution. Finally, ny,(t), n%(t), ny(t)
represent the preprocessed noise items and generalized assumed certain correlation with
nonzero mean. Note that G, (w)= Gy (w)=Gy(w) =1, ¢p(w)=¢x(w)=¢y(w)= 0, and there
is no pretreatment, which is consistent with the received signal of Equation (1).

In the consideration of preprocessing, we neglecting pcy, meaning that we have the
intensity of CAIM for the UAVS denoised vector signal i (t), as follows:

P (w) = 7Gp(w) As(w) [6(cw + wp)e TP (@)F0W)) 4 (o — wp)el (9@ H0(@)] 4 N, (w)
Vo (w) = Gy (w) As(w) [6(w + wp)e T @)F0(@W)) 4 50 — wp)el (@) +2(«“)] cos 6 cos a + Ny (w) (15)
Vy(w) = Gy (w) As(w)[5(w + wp)e /P9 4 §(w — wy)el #0(«)+9())] sin f cos & + Ny (w)

where w = 271f and wy = 27 f) are the angular frequency, Ny(w), Nx(w), and N, (w) are
the energy of noise corresponding to the frequency domain, and As(w) is the amplitude of
signal s(t) in the frequency domain. Then, we have

R{P'(w)Vy* (@)}
R{P (w) Vi (w) }

where 8(w) represents the estimated azimuth angle corresponding to the frequency bin of
the target signal.

Taking the complex conjugation of V(w) and Vy/(w) and multiplying with P'(w),

f(w) = arctan|

] (16)

respectively, , / /
{Pl(w)V,i*(w) = Fy(w) cosBcosa + Af{(w) a”
P (w)V,"(w) = Fy(w) cos O cosa + A, (w)
in which Fy(w), Fy(w), A (w),and A, y(w) can be written as
F(w) = sz(w) Hw) A2 (w)[0? (w + wo)e]((ﬂx( @)=p(@)) 4 52( — wo)ej(w(w)f%(w))]
+ Np(w) TG (w) A% (w)[6(w + wp)e @@ +0(@) 510 — wy)el(Px(W)Hel@))]
Fy(w) =n Gp(w) 7 (w)A 2(w)[82(w + wp)el Py @)=p(@)) 4 520y — wy)el (@r(@)=y(«))] (18)
+ Ny ()G () Az (@) [5(w + wp)e NPy @He(@W)) 4 5w — wy)el(ov(@)telw))
and
(@) = Nj (@) TGp(w) As (@) [3(w + wo)e O F0D) 1 5(co — cwp)el @@ To(@D] 4 N, () N ()
{A/y(w) = N; (0)7Gp(w) As(w) [(w + wp)e TP @IT0(@) 1 §(w — wp)el 0@ 9] 4 N (w) Ny (w) 19

y
where §(w + wg)d(w — wy) = 0.
Expanding Equations (18) and (19) using Euler’s formula and taking the real part,

we have
{%[Fx(aJ)] =2[1*R[Gp(w) G (w)]AF (w)8*(w — wp) + R[N (w) 1G5 (w) Af (w)]6(w — wp)] cos(x (w) — p(w) 20)
R[Fy(w)] =2[1*R[Gp(w) Gy (w)]AF (w)8*(w — wp) + R[Np(w) 1Gy (w) AL (w)]6(w — wp)] cos(y(w) — gp(w
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and
{?R[AIX(W)] = 2R[N; () 71Gp(w) As(w)]6(w — wp) cos(9x(w) = pp(w)) + R[Ny (w) Ny (w)] 1)
R[A, ()] = 2R[N; (@) Gy (@) As (@)]6(w — wp) cos(gy (@) = pp(w)) + R[Np(w) Ny ()]
Its asymptotic unbiased estimator ' can be obtained as shown below.
5 o) —  arctan (wo)Vy*(wo)]
) = e oy ()
s.t. %[F;s(wo)] = R[F(wo)] (22)
%[Afc(wo)] —0
R[A,(wo)] — 0

In view of this, the constraints can be discussed as follows:

(1) For the first constraint $[F;(wo)] = R[F,(wp)], according to the Equation (20), we
can see that its amplitude is directly related to the amplitude gain response G (w), Gx(w),
Gy(w) and phase bias response ¢y, ¢x, ¢y. In the strict sense, we can find a particular
solution with equivalent amplitude gain responses as well as phase bias lags, that is to say,

{Gp(w) = Gx(w) = Gy(w) (23)
Pp(w) = gx(w) = ¢y(w)

(2) To asymptotically achieve R[A(wp)] — 0 and %[A;(wo)] — 0, preprocessing
approaches should have a filtering effect that can enhance the signal-to-noise ratio im-
provement (SNRI) performance of the vector channels. The SNRI is generally utilized to
evaluate the filtering performance for input and output signals [34]. In the consideration
of low-SNR conditions, noise reduction performance should be addressed in the signal
preprocessing approach.

In view of this, Equation (22) can be eased and rewritten as follows:

!/

. RIP (w0) V' (w0)]

I = et V)]

st Gy(w) = Gy(w) (24)
px(w) = gy(w)
SNRI > 1

where SNRI > 1 is to guarantee the required noise reduction performance. The goal of
this model can be described as “to achieve an improved denoising performance in the
constraint of equivalent amplitude gain and phase response.”

3.2. Convolution (COV)-Based Single-Vector Acoustic Preprocessing

Convolution (also known as linear convolution) is an operation that describes the rela-
tionship between the input and output of a linear system in the time domain. Considering
its linear property, it is naturally suitable for vector acoustic preprocessing.

The convolution of two signals can be accomplished as follows:

fi(t) x f2(t) :/j:ofl(f)fz(f—f) (25)

where * represents the convolution operator. According to the time domain convolution
theorem, the convolution integral of two signals in the time domain corresponds to the
product of their Fourier transforms in the frequency domain, as follows:

F[f1(t) * f2(t)] = F1(w)F2(w) (26)
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where F is the Fourier transform operator and F; (w) and F,(w) are the Fourier transforms
of f1(t) and f»(t), respectively.
Assuming that channel p is adopted for convolution preprocessing, we have the output

of three channels p'(t), v'(t), vj(t), as follows:

p(t). 27)
p(

Vi(w) = Vi(w)P(w). (28)
Vy(w) = Vy(w)P(w)

In considering the CAIM method, the complex acoustic intensity of the convolution
preprocessed signals can be obtained by

{s;,x(w) = P@)P(@)V; ()P (@) )
Spy(w) = P(w)P(w)Vy (w)P*(w)
and the azimuth estimation corresponding to w can be provided as

N R(Shy (w)) R(P(w) P (w)P(w)Vy (w))

0’ (w) = arctan W = arctan R(P(w)P* (w)P(w)VZ‘ @) (30)

where ' (w) represents the estimated azimuth angle with convolution preprocessing. As
the convolution involves linear signal processing, there is no change in the amplitude
gain responses or phase bias lags. This means that the constraint in Equation (24) can be
well satisfied. Then, if the constraint of SNRI > 1 can satisfied, the vector acoustic DOA
estimation performance can be improved.

The framework of the proposed convolution-based single-vector acoustic prepro-
cessing method for vector acoustic DOA estimation is shown in Figure 2. By adding a
convolutional preprocessing module, it is possible to improve the vector acoustic DOA
estimation performance. For convenience of expression, we use a simple representation of
“COV” in the remainder of this paper. A detailed analysis of this module is provided below.

(1) Selection of the reference channels.

In the following analysis, the p channel is adopted for convolution preprocessing. As
is known, three signal channels p, vy, and vy are measured by a UAVS. Without loss of
generality, either vy or v, can be the reference channel. According to the signal model of
UAVS, when the target azimuth is 6, the projection intensity coefficient vector of its signal
part on the x and y axes is A = [cos 6, sin 60)'T. Due to the unknown target situation in
practice, its orientation has uncertainty within the range of (—, 7. For a certain distance
of the target, the received signal-to-noise ratio of the UAVS p channel is only related to the
target distance, while the signal-to-noise ratio of the v, and vy channels fluctuates greatly
with changes in target orientation. As the p channel is omnidirectional scalar, we take the
SNR received by the p channel as a reference of 0 dB. Then, a theoretical comparison of the
SNR changes for channels vy and v, is provided as shown in Figure 3. It is clear to see that
when there is a dynamic change in the SNR received by each channel, especially when the
target azimuth 6 is close to 0° and 90°, the corresponding SNR of channels v, and vy is
greatly decreased. This can provide guidance in the selection of reference channels, as the
vector channel SNR is related to the target azimuth 6. Note that the results in Figure 3 are
a qualitative description according to Equation (1) and Equation (2).
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(2) Matched filtering (MF) preprocessing with referenece signal s(t).

If the source signal s(t) is known with prior information, then the convolution-based
preprocessing method is equivalent to matched filtering preprocessing. For convenience,
“ME” is utilized in the rest of this paper. As we know that matched filtering is the optimal
linear signal processing for weak signal detection under Gaussian noise, it should be the
upper bound of the convolution-based single-vector acoustic preprocessing method, where
the pure signal s(t) is utilized without any noise. The azimuth estimation corresponding to
w can be provided as follows:

R(P(w)Vy (w)S*(w)S(w))

Our(w) = arctan R(P(w)Vi(w)S*(w)S(w))

(31)

where S(w) is the Fourier transform of s(t). Note that the matched filtering is optimal,
while we need the prior knowledge of received signal frequency and phase. This prior
knowledge can be acquired by active sonar systems, while it cannot be achieved for passive
sonar systems. For a sonar system with a passive mode, convolution-based preprocessing
can be adopted without any prior knowledge. According to Equations (30) and (31), the
computational complexity of these two methods remains equal in theory.
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4. Analysis of Simulation Results

To evaluate and verify the performance of the proposed method, simulation and
experimental results were analyzed. In view of the constraint of SNRI > 1, we first analyze
the noise reduction performance, then the vector DOA estimation performance under
different SNR conditions, which can verify the effectiveness of convolution preprocessing.

4.1. Noise Reduction Performance Analysis

To assess the noise reduction performance, a simulation comparison was conducted.
The tested signal was a combination of two sinusoids with signal frequency f; = 100 Hz
and f, = 180 Hz. The ambient noise was simulated by Gaussian noise. The sampling
frequency was f; = 1 kHz, while the data length was N = 3000 points to better reveal its
output performance.

A comparison of the noise reduction performance is shown in Figure 4. The input
SNR was set as —5 dB. In Figure 4a,b, two narrowband line spectral signatures can be
seen submerged in the background noise. By utilizing the convolution method (refer
to p * p), the results in the time and frequency domains are shown in Figure 4c. From
the corresponding lofargram in Figure 4d, it is possible to clearly see the improvement
in f; and f, which reveals the effectiveness in terms of improved SNRI performance.
The matched filtering (refer to p * s) results are illustrated in Figure 4e,f, where it can be
ssen that superior filtering performance is achieved. A comparison of the normalized
power spectrum density (PSD) of the input and output with the Welch method are further
illustrated in Figure 5. As the noise reduction performance of both MF and COV are
effective, we can expect good vector acoustic DOA estimation performance with both
and better preprocessing with MFE. Note that the algorithm for convolution preprocessing
is simple, with N(N + 1) — 1 times multiplier calculations and N(N — 1) — 1 times add
calculations. The computational complexity is low, and is related to the data length N. In
this paper, the simulation was conducted in MATLAB with the ‘conv’ function. The runtime
was recorded in Matlab R2019b on a platform configured with the following parameters:
Intel i5, 3.2-GHz Quad Core processor, 8 GB memory, and a 64-bit Windows 10 operating
system. The average runtime for ‘COV’ with ten runs was 0.000452 s.
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4.2. Vector DOA Estimation Performance Analysis

To verify the effectiveness of the COV and MF preprocessing method for vector
acoustic DOA estimation, the estimated mean error (ME) and root mean square error
(RMSE) of the azimuth angle were evaluated with the classical MUSIC, AAIM, and CAIM
methods. In the remainder of this paper, MUSICcoy, AAIMcoy, and CAIMcoy denote
the classical vector DOA estimation methods with COV preprocessing, while MUSICyr,
AAIMpyr, and CAIMyr denote MF preprocessing. Because the SNRs of UAVS channels are
different, the P channel is adopted for reference. The target source azimuth was simulated
as 30°, and the SNR of the signal was varied from -30 dB to 0 dB to verify its performance,
especially under low SNR conditions. The signal length N was set as 1000 points.

The results are shown in Figure 6, with every data point the averaged of 2000 times.
It is clear that the vector acoustic estimation performance can be effectively improved
by MUSICcoy, AAIMcoy, and CAIMcoy. By utilizing MF preprocessing, the results of
MUSICyg, AAIMyr, and CAIMyr are superior, which can be regarded as the upper bound
of the convolution-based single vector acoustic preprocessing methods. In view of the
improvement in performance, the utilization of COV preprocessing is more effective for the
MUSIC and AAIM methods than for the CAIM method. This means that the proposed COV
preprocessing is more effective for vector acoustic DOA estimation methods subjected to
time domain signals. As shown in Figure 6a, within 2° estimation error, the ME performance
of the MUSIC, AAIM, and CAIM methods can be improved by around 3 dB, 4 dB, and 1 dB,
respectively. Note that the analysis of ME performance can make sense for postprocessing
methods of vector acoustic DOA such as particle filtering, histograms, etc. [27-29]. The
RMSE performance results are shown in Figure 6b. It can be seen that within 5° estimation
error, the RMSE performance of the MUSICcoy, AAIMcoy, and CAIMcoy methods can be
consistently improved, which reveals the effectiveness of the proposed COV preprocessing.
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Figure 6. Performance comparison of different vector acoustic DOA estimation methods with COV
preprocessing and MF preprocessing in terms of (a) mean error (ME) and (b) root mean square
error (RMSE).

5. Experimental Verification
5.1. Experiment Description

To better reveal the practical application performance, a set of sea data was adopted
from an experiment conducted in the South China Sea. In this experiment, a single UAVS
that was installed on a deep-sea buoy and deployed at 1825 meters depth, as shown in
Figure 7a. The sampling rate was f; = 1 kHz. As the line signatures are known as a set
of narrow band discrete spectral components, a low frequency broadband sound source
(UW350) was utilized to set the periodic signal frequency with 170 Hz and 270 Hz. The
UW350 was deployed at three locations, named V;, V,, and V3, for different distances;
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the relative distance to the UAVS and the true azimuth are provided as referenced to the
measured GPS data. The detailed experimental layout parameters are shown in Table 1.

(a) (b)

Figure 7. Sea experiment: (a) deep-sea buoy with a single UAVS and (b) deployment of the UW350
low-frequency broadband sound source.

Table 1. The experimental layout parameters.

Location Longitude Latitude Layout Depth Relative Distance (UAVS) Ture Azimuth

UAVS  19° 24.30400" 115° 10.30700’ 1825 m 0 0
1% 19° 22.23300" 115° 11.56100/ 96 m 4.42 km 189.74°
Vs 19° 27.18400" 115° 8.71600/ 96 m 6.02 km 7.01°
Vs 19° 17.40600" 115° 14.16000 96 m 14.44 km 187.30°

5.2. Vector Acoustic DOA Estimation Performance Analysis

The received signals of V;, V,, and V3 and the corresponding COV preprocessing
results are provided in Figures 8-10. A bandpass filter [150 Hz, 300 Hz] was utilized
before COV preprocessing. The V; point was about 4.42 km to the UAVS, which was the
nearest. The ocean background noise was varied with time, with impulsive interference in
about a 10 s period. The SNR of the p channel was the best overall, allowing us to clearly
distinguish the signal frequencies of 170 Hz and 270 Hz in the time—frequency domain, as
shown in Figure 8.

By utilizing our proposed COV preprocessing method, the signatures could be more
clearly seen with certain denoising performance, with the results for the 270 Hz signal
being better. For the longer-distance circumstances, as shown in Figures 9 and 10, the
results for the 270 Hz signal are better as well. This is due to the higher level of ocean
ambient noise in lower frequency bands. The ME and RMSE of the vector acoustic DOA
estimation results corresponding to the different distances of the UW350 signals with
MUSIC, AAIM, CAIM, MUSICcoy, AAIMcoy, and CAIMcoy are compared and listed
in Table 2. Every data point was obtained from ten independent estimation results. It
can be seen that the estimation error of the classical MUSIC, AAIM, and CAIM is larger
than 4°. When using our proposed COV preprocessing, however, the estimation error is
greatly decreased, revealing improved performance. Among MUSICcoy, AAIMcoy, and
CAIMcovy, we found that CAIMcoy performed the best, which is in accordance with the
simulated results. In addition, the estimation performance for the 270 Hz signal was better
than for the 170 Hz signal. This is due to the complex noise background in lower frequency
bands, where the ocean background noise corresponding to 170 Hz is more complicated.
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Figure 8. Comparison of COV preprocessing for vector p, vy, and v, channels of V; data with

reference p channel signal: (a) lofargram of the p channel signal; (b) lofargram of the COV processed

p channel (p * p); (c) lofargram of the vy channel signal; (d) lofargram of the COV processed vy

channel (vy * p); (e) lofargram of the v, channel signal; (f) lofargram of the COV processed v;, channel

(vy * p).
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Table 2. Estimated mean error (ME) and root mean square error (RMSE) of the azimuth angle for
received UW350 signals under different distances.

Signal Error MUSIC AAIM CAIM MUSICcoy  AAIMcoy  CAIMcov
V4 270Hz)  ME 2.43° 1.82°  129° 1.24° 1.01° 0.85°
RMSE  554°  480°  4.16° 2.24° 2.01° 1.43°
V; (170Hz)  ME 974°  751°  5.19° 3.24° 2.33° 1.83°
RMSE 1574°  1251° 11.19° 6.24° 4.38° 3.62°
V> (270Hz)  ME 1.01°  098°  0.67° 0.59° 0.56° 0.43°
RMSE  248° 194°  156° 1.83° 1.25° 1.04°
V, (170Hz)  ME 9.04°  721°  535° 3.51° 2.38° 1.16°
RMSE  14.01°  11.12° 10.39° 5.14° 3.82° 2.61°
V3(270Hz) ME  14.30° 10.03°  8.87° 11.32° 9.36° 7.37°
RMSE  33.60°  18.00° 17.28° 19.32° 15.37° 12.63°
V3(170Hz) ME  3125°  22.84° 17.55° 27.65° 14.51° 11.32°
RMSE  87.30° 28.84° 36.52° 57.65° 25.14° 23.28°

The estimation error for the V, point data can be better than for V;. Although the
relative distance to the UAVS is larger, the background noise is more stationary, as shown
in Figure 9. This indicates that the non-Gaussian and impulsive properties of the noise
greatly affect the estimation performance. For V3 point data, the relative distance is about
14.44km. It can be seen that the SNR of the received signal is lower when the signals to be
detected are weak, as shown in Figure 10. In this circumstance, the overall estimation error
is increased; MUSIC and MUSICcoy see loss of performance, with an extremely large error
for the 170Hz signal. The RMSEs for CAIMcoy corresponding to different distances are all
optimal. This reveals that our proposed COV preprocessing method could be effective in
dealing with weak signals with impulsive background noise.

According to the aforementioned analyses, our proposed COV preprocessing method
can effectively enhance vector acoustic DOA estimation performance, demonstrating its
potential for practical application in single acoustic vector DOA estimation, especially
under lower SNR conditions and complex noisy circumstances. In view of the superior
performance of the MF preprocessing method, COV preprocessing could have room for
improvement. As discussed in Section 3, the generalized vector acoustic preprocessing
model can be described as seeking “to achieve an improved denoising performance in the
constraint of equivalent amplitude gain and phase response.” Our proposed COV and MF
basically satisfy this constraint; however, without loss of generality, we think that there
are other approaches that could achieve the constraints as well. This represents important
guidance for future research work.

6. Conclusions

In this paper, a novel convolution (COV)-based single-vector acoustic preprocessing
method is proposed on the basis of the single-vector acoustic preprocessing model. The
proposed approach can naturally guarantee the principle of vector preprocessing in order to
achieve improved denoising performance under the constraint of equivalent amplitude gain
and phase response. Numerical analyses conducted with the classical MUSIC, AAIM, and
CAIM methods demonstrate the effectiveness of our proposed COV preprocessing method
for both vector array signal processing-based and intensity-based methods. Experimental
verification conducted in the South China Sea further verifies its effectiveness for practical
application. In addition, its the upper bound with matched filtering (MF) preprocessing is
provided under consideration of optimal linear signal processing for weak signal detection
under Gaussian noise. In view of the linearity principle of preprocessing, the single-vector
acoustic preprocessing model allows for a new point of view on preprocessing restrictions
for vector acoustic DOA estimation, and can represent a breakthrough innovation in
guidance for underwater acoustic remote sensing with vector sensors in the future. In
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recent years, deep learning has led to rapid development in a variety of research fields.
For vector acoustic signal processing, deep learning has already been adopted to improve
AVS-DOA estimation performance, although there is a lack of theoretical guidance. We
think that our proposed method can be an important guide to learning tasks, especially in
determining better loss function design. This work will be further studied in the future.
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